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Two-particle problem in a nonequilibrium many-particle system
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The two-particle problem within a nonequilibrium many-particle system is investigated in the framework of
real-time Green’s functions. Starting from the nonequilibrium Bethe-Salpeter equation on the Keldysh contour,
a Dyson equation is given for two-time two-particle Green’s functions. Thereby the well-known Kadanoff-
Baym equations are generalized to the case of two-particle functions. The two-time structure of the equations
is achieved in an exact way using the semigroup property of the free-particle propagators. The frequently used
Shindo approximation is thus avoided. It turns out that results obtained earlier are valid only in limiting cases
of a nondegenerate system or a static interaction, respectively. For the case of thermodynamic equilibrium, the
differences to former results obtained for the effective two-particle Hamiltonian are discussed.
[S1063-651X99)01012-0

PACS numbd(s): 05.30—d, 52.25-b

I. INTRODUCTION causal Green'’s functioft1-13
This paper is devoted to the kinetic theory of many- 0an(12,12")=0,(1,1')gp(2,2)
particle systems which are able to form bound states. Such
systems arise in very different fields, e.g. nuclear, semicon- +iJ d1d2d1d20.(1. 1) a.(2.2)
ductor and plasma physics, respectively. To be specific, we 9a(1,1)95(2.2)

will consider the case of two-particle bound states, e.g., hy- — ~~
drogenlike atoms or ions. Our focus will be the derivation of XKan(12,12)gap(12,1'2"). @
a kinetic equation for the distribution function of tkgossi-
bly excited bound states. Starting with papers by, for in- The kernel of this integral equation, the effective interaction
stance, Waldman[i], Snider and co-workel®,3], McLen- K, is a four point function and has a dynamical character.
nan and co-workergt—6], and Klimontovich and Kremp7], = This makes the structure complicated: although one is inter-
the derivation of kinetic equations has appealed great intereststed only in the two-particle Green’s function in the
over many years. Usuallysee, e.g. the review article by particle-particle channelt{=t, andt;=t;), the knowledge
Klimontovich et al. [8]) the two-particle density matrix is of a Green’s function with three times is enforced in the
split into different parts with respect to some projection op-integral term. In Fourier spader within the Matsubara tech-
erator which projects onto the space of the bound statesique), this corresponds to the problem that, for the determi-
Often the states are taken to be those of the isolated atomation of the two-particle Green’s function dependent on one
The diagonal matrix elements are considered to be the digrequency, a more general function dependent on two fre-
tribution function for the respective bound state. However, inquencies has to be known. A way out of this dilemma was
a dense system, it is not clear whether the diagonalization aittempted by applying the Shindo approximatidi#], in
the density matrix with respect to the unperturbed two-which a causal quantity with two frequencies is constructed
particle states is a good approximation. from a quantity with one frequency. Then one obtains a
It is well known that many-particle effects like dynamical closed equation for the causal Green’s function. There are
screening, self-energies, or phase space occupation may hafesv estimations on the range of validity of this approxima-
an influence on the two-particle properties. A unique description. It is an exact relation for a static interactiéh It has
tion of these effects within the investigation of nonequilib- been argued that the Shindo approximation reflects a first
rium behavior can be given in the framework of the real-timeorder approximation with respect to the retardation of the
Green’s functions technique. For the single-particle func-effective interactiorf15,10,18.
tions, there were derived the Kadanoff-Baym equations for With help of this BSE, an effective Schdimger equation
the correlation functiong; . In this paper we aim at the was derived which has some important corrections in com-
derivation of similar equations on the two-particle level.  parison with that for an isolated atorti) phase space occu-
Some remarks on the bound state problem in equilibriunpation factors,(ii) exchange self-energie@artree-Fock
seem to be useful first. The investigation of bound states iltiii) a dynamically screened effective potential, &vd dy-
dense systems has been the topic of a lot of paffers namical single-particle self-energy corrections. It has been
references, see Ref@] and[10]). In the framework of the shown that for localized states there is, to a large extent, a
Green’s functions method, a proper starting point is the soeompensation between the effects and (i) on one side
called Bethe-Salpeter equatidBSE) for the two-particle and (ii) and (iv) on the other. It follows that the binding
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energies of(at least the low lying bound states are not
changed considerably in comparison with the isolated atom.
In contrast, there is a large shift of the continuum edge by the 1 T
self-energy corrections. This results in a lowering of ioniza- = % 5
tion energies with increasing plasma density and leads, at the

end, to the well-known Mott effect. An effective wave equa-

\VE

tion was solved numerically in Refgl7,18]; for a discussion + t ty t>t
of the result, see Kraett al.[19]. N

However, the results obtained for the effective Hamil- t t -
tonian also have some serious shortcomings. There occurs a - t, t,

division by Pauli-blocking factors 4+ f,—f,,, which causes
spurious pole structures for highly degenerate systems. Fur-
ther, the effective Hamiltonian has static contributions which G, 1. Time ordering on the Keldysh double time contour for
lack a clear physical interpretatidsee, e.g., Ref.20]). the functiong., "~ " . The ordering is causal on the upper branch,
Another approach was given by Schuck and co-workergnd anticausal on the lower branch.
[21,22. They postulated that Dyson equations exist for two-
time causal and retarded Green'’s functions, respectively. Exively, are given in Sec. IV. The transformation of the BSE
pressions for the self-energy operatafso called the mass into a Dyson equation is shown in Sec. V. The two-time
operator or effective Hamiltoniarare derived by compari— structure will be achieved by app|y|ng the Semigroup prop-
son with the respective equations of motion. Also in thiserty of the ideal propagators. After that, the algebraic struc-
approach, it remains unclear what approximatisrany) is  tures turn out to be similar to those of the nonequilibrium
connected with the assumption that such two-time DysomDyson-Keldysh equation in the single-particle case. The
equations for the investigated functions and the inverse ofhermodynamic equilibrium case is considered in Sec. VI.
those functions, respectively, do exist. There also occurs §he structure of the two-particle self-energy which can be
problem of division by Pauli-blocking factors. understood as an effective Hamiltonian is discussed. The re-
In nonequilibrium one can derive an equation of the same&ults are compared with the former ong,15,10,2Q It

structure as in Eq(1); however, the time integrations then will turn out that only in the nondegenerate case and in the
have to be performed on the Keldysh contour. $ehat al. static limit is one led to the same results.

[23] considered a dynamically screened ladder approxima-
tion for the polarizability in a semiconductor within the
Keldysh formalism. They gave a formulation for functions
depending on three times or—after  Fourier Let us briefly summarize the scheme of real-time Green’s
transformation—on two frequencies. At the end, howeverfunction technique in the single-particle case. The equations
they used the Shindo approximation for these two-frequencygre given on a double-time contour, on the so-called Keldysh
quantities in order to obtain kinetic equations for single-contour[28,29. Working on the Keldysh contour has the
frequency functions. advantage that well-developed schemes of functional deriva-
There were attempts to generalize the Shindo approximaives and diagrammatic techniques known from equilibrium
tion to functions in the time domair24]. There was also an [30,31] can easily be generalized to nonequilibrium situa-
attempt [25] to generalize the approach of Schuekal. tions; see, e.g., Reff29,32—34.
within the nonequilibrium real-time Green’s functions  The nonequililibrium Dyson equation on the Keldysh
method, postulating a Dyson equation for the retarded funceontour reads
tion gR,(t,t")=0(t—1')(gs,—9sp). In both approaches
similar results were achieved, and the equilibrium results , , — ~ ~ — =
could be reproduced. Thus the same shortcomings arose. Ja(1.1)=0ao(1,1)+ J'Cdldlgavo(l,l)ga(l,l)g_;a(l,l ),
Within another approacfi26], here we will present the )
solution to this problem. The real-time Green’s functions
method allows us to describe nonequilibrium systems. Reyith 1=r,,t; etc., andg, o being the ideal functions anl,
sults for thermodynamic equilibium will appear as a speciakhe self-energya denctes the species. The time integrations
case of the more general equations. In this paper the noRye performed on the Keldysh contour; see Fig. 1. The un-
equilibrium Bethe-Salpeter equation is considered in a COngerlined quantities are matrices containing four functions.
crete approximation, the so-called dynamically screened ladone obtains the causal functions for both times on the upper

der equation. This is the simplest approximation in which the,.5nch of the contourg,=g. *, and anticausal ones for
effective interaction is of a dynamical nature. This will en- a va_

able us to identify the underlying algebraic structures and t

keep the equations as simple as possible. The general sche%the upper Bran(ih_and_ the secon_d oneon the lower branch,
will be investigated in a forthcoming papg27]. one obtainsg; =g, . Fixing the first time on the lower

The structure of this paper is as follows. In Sec. Il thebranch and the second time on the upper branch gizes
scheme of the real-time Green’s function method for single=d, ' - One can see that these elements are not all indepen-
particle Green’s functions is summarized. The difficulties ofdent. It turns out that the equations achieve a more conve-
the BSE are discussed in Sec. lll. Properties of two-timenient structure if one introduces two other quantiggsand
two-particle correlation and propagator functions, respecgs, defined by

95"l 1 1)

II. SINGLE-PARTICLE QUANTITIES

(poth times on the lower brancEi:g;’ . If the first time is
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RIA_ Ill. BETHE-SALPETER EQUATION

98"=0a=05=05 ~Ga- (3)
) ) ) ) The two-particle Green’s function is determined by the

Equation(2) turns into the following form of the nonequi- gg-called Bethe-Salpeter equation

librium Dyson equation for the correlation functigy ,
, , 9an(12,1'2')=0a(1,1)g5(2,2)
gz (L) =gadtt’) ’ ’
® o +i J d1d2d1d2g,(1,1)gy(2,2)
"‘Jl dtlft dt2[g§,0(tatl)2§(tlat2)g§(t21t,)

0 0 — ~—
R e A XKap(12,12)gar(121'2),  (10)
a0t t) =5 (t1,t2)g5(t,t")

R R < , in which, by introduction of the effective interaction kernel
05,011 2a(11,12) 00 (12, 1), “) Kap, @ closed equation is formally achieved for the four-
point function. Here the kerneéf,, is the sum of all dia-
grams irreducible with respect to a cutting of two single-
particle lines. The Bethe-Salpeter equation can be

which has to be supplemented by an equatior‘gﬁﬁﬁ:

R 1y — AR ’
ga(Lt)=0aolt,t") understood to hold in various contexts: for the ground state
% o T=0), for the imaginary-time equilibrium Green’s functions
+f dt1f dty 95 o(tt) 2E(ty, 1) gR (1o, t). in the Matsubara technique, or for the real-time Green’s
o fo functions on the Keldysh contour.
(5) The properties of a pair of particles should follow from

_ _ ~this equation in the so-called particle-particle channel. If one
Here only the functions’s dependence on times was writteonsiders the causal two-particle Green’s function in this
explicitly in order to save space. Often the initial time is channel {,=t,=t;t;=t}=t’), one has
considered in the limit,— —o. The quantitygh is con-

nected withg? by ga(rt,r't")=[gX(r't’,rt)]". 12g,0(r 7ot First")
In the following sections the one-particle self-energy will R ;
be needed in a special approximation which is calledvthe =0(t—t" ) (Wa(r,D)Wp(ro, ) Wy(ry,t" ) Wa(ry,t'))

approximation(and often also called th&W approxima- , . .
tigr?). This approximation which involves the Fc)ir))/namically +ot —t)(‘l';(rl,t )\Ifg(rZ’t )
screened potential, allows one to describe the influence of a XW (1, )W o(rq,1))
plasma on the particles’ propagation in it. Here one has
=0(t—t')i%g ,+ O(t' —1)i’gy,. (11)

34(11) =35 +iVa,(1.1)ga(1,1), ®)

B - N On the right hand side of Eq10), however, there occurs a
with 3" being the Hartree self-energy. As for the Green'sfnction depending on three tima}, t_z andt’, which is
functions, there is a set of functions describing the dynamixniorced by the dynamical character Kf,. This Green’s
cally screened interactioﬁgb, €.g., function consists of six different correlation functions:

Van(tt)=Vapd(t—t") + O (t—t)V5 (t,t") i2gap(T 1tarotosrirst’)
+ t,_t VS< t,t, , 7 - _
(' —t)V55 (t,t) (@) = 0(t,— ) BT, —t (W W W iw )

VS = —
and, further VS, +V3,=V3, +V3 , andVRA=VS -V . + 0(t,— ty) (L~ ) (W W W iw
Here the correlation functions are defined by B -

+O(ty =) Ot — ) (W W W W)

S= y — = ’ _ _
Vab (t,t )_CZd Vac cd(tyt )dev (8) +a(tz_t/)a(t/_t1)<q,bq,;\lfgq,a>
= : - , , TVt — Tt t
whereL= are the correlation functions of density fluctuations Ot =) 0t — to) (W Wp W W)

. ~ - FO(t — 1) 0(t,— t, (WU Iw W), (12
iL (T 1t ots) =(8pa(ri,t1) Spp(ra,ta)), ( Ut t)(Wa¥p¥pla). (12

9) . o — —
Lo S - Only a static interaction in Eq.10) would enforcet,=t,,
iLap(M1ta.ats) =(pp(ra.t) Spalre.te)), and the function would turn into the two-time causal one
- [Eg. (1D)].
; _t 1 7
with  Spa(r,t) =W (r,t) Wa(r,t) = (Wa(r,)Wy(r,t)), and In principle, one could of course try to solve the Bethe-

¥ and¥, are creation and annihilation operators of secondsalpeter equation for a function depending on three times
quantization obeying the known commutation relations. It(equivalent to a function depending on two frequengiead
follows that, e.g.,Vas(1,1)=V5.(1',1) and V54(1,1')  then extract from this the information one is interested in.
=Vp(1',1), butV51,1)=Vpa(1',1). This, however, seems to be too complicated.
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In a number of papers attempts were made to work with Oap ' T(rorot,ririt’)
equations which involve two-time functions exclusively.
This was achieved in two ways. The first approath,13
uses the so-called Shindo approximation within the Matsub-

1
=O(t—t) (Va1 1) Wy(r2,0)
ara technique, in which the two-frequency function is con-

structed from the single-frequency causal Green'’s function. 1

This is possible in an exact way for a statical interaction, and XWo(ry, Wiy )+ 0t =) 5 (Wp(ra.t)
therefore it was argued that for arbitraly,, this would be !

correct in first order with respect to the retardation. In the X‘I’;(ri ,t’)q/g(ré,t’)\[/a(rl,t)), (14)

other approach21], a closed equation for the causal two-
time or single-fregency function, respectively, is postulated. g, " " (rart,rirst’)
The effective Hamiltoniaritwo-particle self-energyis then
determined by comparison with equations of motion.

However, enforcing a closed equation for combinations of
the correlation functiongy,, defined in Eq(11) means that
the information contained in the correlation functions
(W W wiw ) and(W,WwIww,) [third and fourth terms in
Eqg. (12)] is neglected. Therefore, such a closed equation for
the causal two-time Green’s function can exist only in an XWI(ry 1) Wp(ry,)), (15
approximate way. In Sec. V we will show that closed equa-
tions do exist only for other combinations of correlation
functions.

1
=®<t—t'>i—2<\lfz<rg,t'wa(rl,twb(rz,w

X‘P;E(fi,t')H@)(t’—t)iiz<‘1’a(f1,t)‘l'g(f£,t’)

++,—— i _i
Oap = (Fafatirarot’)= iz(‘l’a(rl,t)\lfb(rz,t)

XWlrs )Wl th).
IV. TWO-PARTICLE GREEN'S FUNCTIONS DEPENDING (16)

ON TWO TIMES _ _ .
To give an example, the time ordering on the Keldysh con-

. +_1_+ - . .
In analogy to the single-particle case, one is interested iﬁoa“ry'ﬁs shown forgg, i Fig. 1-‘ f\” Ot“hef”fUI’\CUOI’\S
obtaining information on the statistical properties, carried bydab '~ With greek indices equal to +” or “ —" can be

the two-particle density matrix, as well as information on the_expressed in terms of the six correlation functions involved

two-particle dynamics, i.e., spectral information. Below wel" Eds.(13) and(14)~(16). L
will see that it is not a trivial question to ask which quantity We define the following retarded and advanced quantities:

carries this information. GR (rqrot,ririt))
.. . . . . ab( 1t2%t1t2
One of the quantities of interest is the following two-time
correlation function =0(t—t)i(gap " ~Gab ' ~Gap ' FtOap )

1
=O(t—t") (WL t) [Wi(ry t), Wolra,t)
Oap(rarat,rirst’)

X\Ifa(rlit)]f]I% (17)
1
=i—2<\1f;(r1 AW () )Wy, )W a(rq ). Ghy(rarot,rirst’)
(13 =0t —t)(=)(Jay " —%ap’ —Oap’ ' +Gap )

1
=O(t' =) 5 ([Wa(ra.O).[Wp(ra 1), Wi(r5 1)
In the casd’=t, the quantityizgifb is just the two-particle
density matrixpo(r1rof r5,t). XWlrth]-1-). (18

There are some other two-particle correlation functions inI der t hi th ted at fruct
which the two creation operators have the time-t,=t’, n orger 1o achieve e nested commutator SUClUres, we

whereas the two annihilation operators have the figaet, used the fact that operators with equal times can be inter-

- . 3 ; changed according to the well-known relations. Interestingly
=t. Although the physical timeg;, andt, as well ast; and  gnq,gh, these nested structures were found also by Rajago-

t; are equal, there are still 16 possibilities to fix the tigs  pal and Majumdar in their analysis of double dispersion re-
t,, t;, andt; on the upper and lower branches of thelations for the two-frequency causal Matsubara Green's
Keldysh contour. Fixing the timet; andt, on the upper function(Appendix Il of Ref.[11]). We showed in Appendix
branch of the Keldysh contour artd andt, on the lower C of Ref.[35] how the functionG%, is connected in thermo-
branch, one obtains the correlation functigiy,””~ =95, dynamic equilibrium with the analytic continuation of the
defined in Eq(13). Three other important cases are the fol-two-frequency Matsubara Green's function. The functions
lowing: GRA have the following properties.
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(i) They are connected by Hermitian conjugation 9 i
ab = +

GRy(rarat,rirst’ ) =[Gau(rirat’ ,rar )1, (19

(i) Both functions have the property of crossing symme-
try, i.e., + +

GRA(rar ot rirpt ) =GRa(rorat,rjrit’).  (20)

(i) The inhomogeneity in the equations of motion for
these functions consists @f functions only(without Pauli-
blocking term$. This is easy to see from Eq4.7), and(18).
Derivation of the Heaviside function givesé&function §(t
—1t'), and the commutation relations for the field operators + \ + \
lead to[ 8(r1—r1) 8(ro—r5) = 8ap8(r1—15) 8(r,—r1)]. N

(iv) For vanishing interaction between particesndb,
the correlation functions in Eq$17) and (18) can be con-

tracted into products of single-particle correlation functions 4 \ +
g=; one obtains

%
%
%

N T <2
GR(rarot,rirst ) =igR(r t,rit )gR(rot,rot’
ab(Marat,rarot ) =iga(rat,rot )gp(rat,rot’) N TN P
* SaplgR(rat, 15t )gR(rot,rit’), + " + Ov'y)
(21 =
with the retarded single-particle functiagi defined by Eq. FIG. 2. Diagrammatic expansion of the dynamically screened
). ladder equation up to second order.
(v) The difference of the retarded and the advanced func- o , )
tions defines a spectral function Gan(tatz,1112) = galty, 1) Gu(ta, 1)
Agp(rarat,rarot’) 4 LdTl dTZEa(tlvt_l)gb(tht_Z)
=iGR (rirot,rirst" ) —iGA(rorot,rirst’) - -
gt — g m g g XiV3n(t,t2)Gan(tatz tits).  (24)
a a a a 1 - -
(22 Iteration of this integral equation leads to ladder-type terms.
This BSE (24) will be considered in the following in the
which, in the case of equal times=t’), gives special case; =t,=t andt|=t,=t".
e , , Below the dynamically screened ladder equation as a spe-
Aan(rarat,rirot) = (r —ry) ra—rp) cial approximation of the BSE is transformed into a Dyson

+ e e equation in which the occurring two-particle Green’s func-
= 0apd(r1=12) 02— 1), (29 tions and two-particle self-energy functions are dependent on
. : two times only. For this purpose, the perturbation expansion
hich corresponds to a sum rule in frequency space, ) . k . ;
\}vdzlul(27r)A b(pw =1 ! ue | quency sp of the BSE (24) is considered in the diagrammatic form
a ’ . . . . " B .
We will see in Sec. V that the two-time functions defined shown in F'Q- 2.1tis analyzeg f_|rst (@ deta_|ls are pre-
by Egs.(13—(16) and (17)—(18) will be the constituents of Sented for different orders &f;), in the Appendix.
the algebraic structure of a two-particle nonequilibrium We search forand, indeed, findthe structuregcf. the
Dyson equation. corresponding equations for the single-particle functions,
Egs.(4) and(5)]

V. TRANSFORMATION OF THE BETHE-SALPETER < < R R 1y< R < ~A
=G+ + +
EQUATION INTO A DYSON EQUATION Gap=YGan+ Gadl VanT 2abl0ant GanasGab
< A A

The present section, together with the foregoing, is the +Gap[ Vant 2ablGab. (29
most important part of this paper. The Bethe-Salpeter equa- A A A AA

tion will be considered here in a concrete approximation: for Goo=GapT Gapl Vant 25p1G5p (26)
the effective interaction kerneK,,, the dynamically

screened potentidS, is taken. This is the simplest approxi- With ~ the definitions G (t,t") =05 o(t,t")gp ot t"),

mation in whichK, has a dynamical character which will G5, (t,t")=ig5(t,t")gho(t,t'), and Gh(tt)=
allow us to identify the general algebraic structure of a two-(—i)gﬁvo(t,t’)gﬁvo(t,t’). All quantities in the above equa-
particle Dyson equation. tions depend on two times only. The integration of interme-

In this approximation one has on the Keldysh contour diate times runs in the intervily,o°] as in Eqs(4) and(5).



PRE 60 TWO-PARTICLE PROBLEM IN A NONEQUILIBRIUM MANY-PARTICLE SYSTEM 6387

Padubut"\ t Et1 itz >T1E t ot >t E t
? Zw )7 = + +\+/ A A W
' ! A~ E Va>h 3 E V; 3 E V;._, Va>h E
X . . : R | : gR | : gE ghR 1
FIG. 3. Diagrammatic structure of the two-particle self-energy . —"R ; = — — S
— . R I R, el 1 R ol
in first order InVS. g;h ' Eah, 0 Fab ! Zab,(i) " S ﬂ':: Eab, @ :gab
The zeroth order of, with respect to the two-particle increasing ime |
self-energy isg;{» =G, ; first and second orders are given
by

9ar V=GR Vap+ 310 s+ GRoomnG an

i v> o
+g§b[vab+22b]g§b, (27) E\\

0a82=G 5o Vapt 2 5p]G Rl Vant 2 551G 2
+G 8 Vabt 25p]G 850 apG ab
+ G Vant 256G 2 Vab+ 206150
+G 5oanG an Vabt 2 ap]G b

+G 7 Vap T 251G 5 Vap+ 300100, (28) |

\<\
A

<

N

The self-energy functionsry, and 35, respectively, are FIG. 4. Evaluation of the ladder terms with two rungs. The first,
then identified by comparison with the expansion terms othird, fourth, and fifth terms are reducible, i.e., there are two suc-
the ladder equatiofFig. 2). cessive self-energy insertions of first order. The second and last

All functions in the above equation@5) and (26) are  terms, however, are not reducible: they are two-particle self-
understood to depend on two times. The key idea in order tenergies of second order W?.
achieve such a two-time structure of the equations is to use
the seFEnlgroupApropert|§s of the ideal single-particle propaga- Egb(t,t’) — iEg(t,t’)gbRyo(t,t’)JriEbR(t,t’)g;O(t,t’)
tors g, o and g3, (the time-local Hartree-Fock self-energy

’ - : N +igho(t,t)iVay (1,t)gR(t,t")

could also be includedIn particular, for any timet with t b,0\ " ab it a0\t
>t>t’ one has the following relation: +igp otV gl (tt)

+HigR (4L t)iIVES (', DgR(t,t")

gg,O(rlt,rit’):iJd3r2g;o(rlt,rzt_)gzo(rzt_,rit/)- o e "
(29) +igg otV Dgh ot t'), (31)

There is no time integration in the above equation. Analo\Vhere the one-particle self-energies havt\%;[o be used in first
gously, for the advanced function with<t<t’, one has order of the dynamically screened potential [cf. Eq. (6)],

(integration with respect tor, suppressed gﬁvo(t,t’)= €
S\ A TAA (1 47
(=) Ga0(t, )G o(t,1). _ . SRt ty=3Ht)st—t")+iv(t,t)glt,t)
For the ideal one-particle correlation functiogs,, there
follows +HIVER,t) g5 (t,t). (32)
gao(tt)=igR(thgzg(t,t’) for t>t, The correlation functiorry, is found to be
Oao(tt)=(=1) gao(t,)gag(tt')  for t<t’, Tan(tt) =22 (L) gt )+ 25 (L) gz et ,t)
(30) A ! !
+not.t )iV (tt)gag(tt)
9ot = (=Rt D5 (T, 1)gh (T 1) +9ao(LE)IVES (), Dgne(t,t), (33)
for t>t and t<t'. where the single-particle self-energy functdy is given by

(L) =iV (tt)gs (tt).

Proceeding in the manner presented in the Appendix, and The diagrammatic structure of the two-particle self-
comparing the results with the anticipated structliegls.  energy functions is shown in Fig. 3. Primarily, these func-
(25 and (26)], we obtain the following expression for the tions consist of naked lines because we worked in first order
retarded self-energy function: with respect to the dynamically screened potential. However,
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S0 (rarot,rirst ) =3 (rrit) 8(r,—rh)

— w — +3HF(rorot) 8(ry—ry)
E: :i +[ig5 (rqt,rit)8(ro—rj)
'P,W;f £ +igp (rat,rst) 8(ry—r1)Vap(ri—r3).

(39

FIG. 5. Here two other types of second-order terms are shown; . ) ® .
in the first row two single-particle self-energies are combined, and"Serting the expression for the,,, [Eq. (36)], into Eq.

in the second row one single-particle self-energy is combined witf37), one indeed obtains E¢31).
one interaction between the particles. Depending on how the times The  advanced quantity E{:b is given by
overlap, there are three different kinds of diagrams. SA(rarot,rirst Y =[SR (rirst’,rirot) ]t The analytic prop-
erties of the two-particle self-energy are more involved than

all diagrams necessary to dress the lines could be found ithose of the single-particle self-energigg6], because off-
higher orders of the expansion; see Appendix A2 and espeliagonal matrix elements can already occur in the spatially
cially Fig. 5. homogeneous case.

The self-energy functions ¥* and o, are functionals of Often it is more useful to consider, instead of E(4)
single-particle Green’s functions. That is the reason why it is2nd (35), the differential equations
sufficient to consider the two equatiof5) and(26) in or-
der to determine the correlation functiggy,. In higher ap-
proximations, the two-particle self-energy is also expected to
be a functional of two-particle correlation functions. Then L
one would need also the equations for the other three quan- +og’b(t,t)G§b(t,t’)].
tities defined in Eqs(14)—(16). The full scheme of equa-
tions reads(with ®={++,——};{+—,—+}{—+,+—};

{——,++}:

Jd .
— ~Hab=Vap

I(9t

gt~ [ TSR DT

(39

There are additional equations for the propagator functions
R A ;
O _ b R R 7 ® R & ~A G, andGy,, . As these two functions are connected by Her-
=Gt Vapt + a a : . . )
Oa6=Gant Gad Vant *abl0ant GaboanCab mitian conjugation, only the respective equation @f, is
+G o[ Vapt+ 20,1G5,, (34)  written down:

RIA_ ~RIA RIA RIAq~RIA J .
Gab =Gab +Gab [Vabt 255 1Gap - (35 [i E—Hgb—vab}ng(t,t’)

These equations are not all independ@t}, andG%, are — k= R
connected by Hermitian conjugation. Further they are linear = 5(t—t’)+j dtZop(t,)Gap(t,t’).  (40)
combinations of the preceding four functioggD according

tq Eq.(l?). The gystem ?If equatpns Is consistent, .., com- Equations(34) and (35) and (39) and (40), respectively,
bining the equations fog,, according to Eqst17) or (18),  an pe considered as the most important result of the present
respgcnvely_, one obtains the Dyson equat{8§). paper. The latter equations are the two-particle counterpart to
o are given by(cf. Fig. 3 the Kadanoff-Baym equations in the single-particle case.
Thus these equations are the proper basis for the description
T8PPIV (r ot r it )+ VEL(rot, it )+ VELS(rat,rat’)  of two-particle properties. From E¢B9) there follow gener-
s , N LB ) alized kinetic equations, whereas E40) gives information
+ Voo (ratryt)]gg "(rat,rit" ) gy (rat,rot’). on the spectral properties.
(36)
VI. THERMODYNAMIC EQUILIBRIUM
The retarded two-particle self-energy is defined in anal- ) )
ogy toGEb by A. Two-particle Dyson equation
In thermodynamic equilibrium only the spectral properties
R Ferpry 50 ror b have to be determined, i.e., only E¢0) for the two-particle
Zap(aratirarat) =2ap(rar2.rrzt) ot —t') propagator has to be considered. Its Fourier transform is
+@(t—t')i[0§b+'77—a';rb7'7+ 0 0 R corr, R
U [Q—Hap=Vap—2p= 25 (2)]Ga(Q)=1. (41
—0,, ' tog (37)
This equation can be called two-particle Dyson equation or,
The term which is local in time consists of the single-particlelikewise, the Bethe-Salpeter equation. We want to draw the
Hartree and Hartree-FodidF) self-energies as well as the reader’s attention to the fact that this equation is given here

Pauli-blocking contribution for the functionGY,, whereas in earlier attempts it was tried
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to formulate such an equation for the causal two-particlescribes an effective interaction between partidesndb in

Green'’s function[12,21], or a functiongﬁsz@(t—t’)(ggb the many-particle systerfthe last four terms in Eq31)].

—-g5,) [25]. These terms can be further evaluated using a quasiparticle
The static part of the two-particle self-energy in E41)  approximation

is given by 39, =3"F+ M+ (N,,—1)V,,. The self- o B

energy consists of two different types of terms: some do not *ig, (P,w)=2md(w— €5(p))fa(w), (43

contain an interaction between the particdesndb, whereas with fa(w) {exdA(o—u)]F1 "~ The correlation func-

others do. The first terms are due to single-particle self-
glep tonsV can be expressed in terms of the dielectric function

energies. h
For the correlation part of the two-particle self-energy, (<) and Bose functionag(w) =[exp(Bw)—1] ~ according

there holds the same distinctioBZ°"(Q) consists of two to 37,19
contributions according to V35 (q,0)=—2Va(q)ImeR(q,0)ng(w),
SRem0)=AR(Q)+VETRQ), (42) _ (44)

V3 (0,0)= = 2Vo(@)Im R 1(q,0)[1+ng(w)].
where the first one is due to the one-particle self-enefgies
the first two terms in Eq(31)], whereas the second one de- For the functionA;‘b(Q), there follows

d3q dwl

AR(P1p2.PiPy. Q) =(2m)° S, %p,. pZJW _w7[ Im R~ 1(q,w,)]

1=f,(py+a)+ng(wy)
O —w;—€,(P11+0)—€p(p2) +i0

=(2m)%8p, p1 6p, [ 22(P1, Q2 — €n(P2)) + E(P2. 2 — €a(P1))]. (45)

Vaa(q) +(a—b,1-2)

Thus this function is just the sum of the single-particle self-energ@ethe VS approximation to be taken off-shell.
The other contribution to the two-particle self-eneryfj , is given by

o * dwl _ ,
VSER(p1p21p1p2'Q):(277)35p1+p2,p1+péf_m7[_ImSR 1(p1_p1’w1)]
Vou(pi—pl) 1=fa(py) + Ne(@1) +(asb,12) (46)
00— ea(py) — en(p) +i0 ’ '

These two contributions to the two-particle self-energy look very similar. Replacing the Coulomb potgptigiz,z,V, with
z, andz, being the charge numbers, one can see that for particles attracting each other, there is a compensation between these
two functions. This is especially to be seen considering the functions integrated with respeanop,:

d®p d3p
f (ZW;f(Z )3[Aab(plpzvplpzaQ)-f-VeﬁR(plpz'pipé,Q)]

© d +f.(p1+9) +ng(w
—(za+zb>f o e lmsR—l(q,wm{zan) a(pl, 9 Neles) +<a~b,1e>2>}.
(2m)°) == ™ QO —w;—€(p1+0)— €,(p2) +i0
(47)
|
In the case of a symmetrical plasnm,=—2z,, the right These expressions for the two-particle self-energy have to

hand side of the above equation vanishes, and it follows thdie compared with the results of former papgt8,15. The

notations are slightly different in comparison with ours, so

one should compare the expressions of the effective Hamil-

tonians. The total Hamiltonian 2, + V4, + HAL(Q), with
d®p; 3p, Vel ’ Hgb+ V,p being the Hami_ltonian of the isolated pair of par-

:_J (Zﬁ)gf( R Vab (P1P2,P1P3, Q). ticles whereas the medium-dependent part of the Hamil-

tonian is denoted bylg'b(ﬂ). In the present paper this latter
(48)  quantity is given by

SR(p1,Q— ep(py) + 3 R(py. Q2 — €a(p1))
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HEL(Q) =30+ 32T Q) =S+ S5+ N, Vap— Van [Q-HEGR(Q)=1, (53)

+AR(Q)+VERQ), (49
with the effective plasma Hamilton operator
where() is to be understood as a parameter.
The differences consist in the following) now there are
no additional static parts beyond the Hartree-Fock level, and  Hef—p0 + E SHRVS(Q=0)}+ NV, (Q2=0)
(i) no division by Pauli-blocking terms occurs. Both things
seem to be produced atrtificially in the former attempts by 1 g
adopting a closed equation for the wrong quantity. + J
t3.2, > )3[v (0.0 V(@] (59
B. Limiting cases

It is interesting to study some limiting cases of our ex-This is in aggreement with the static limit found by Zimmer-
pressions. First, in the nondegenerate case the one-partigigann[20].
distribution functions in Eqs45) and(46) can be neglected.  Considering this effective Hamiltonian for a nondegener-
Thus the result is in agreement with the nondegenerate limite system, one can writavith Vap— ZaZpV)
of the former approaches using the Shindo approximation

[12,15,10,20 o .
The second important limiting case is that of statical Hab=Hapt ZazoV (1) +2azp[ VI(r,2=0) = V(r)]

screening. Following Zimmermanf20], we consider the 1

case that the excitation energy into a pair of two free par- + E[Zfﬁr 22][VS(0.0=0)—V(0)]. (55)

ticles, e,(p1) + €,(p3) —Q, is small in comparison with the
energyw; occurring in the dielectric function. This could be
a reasonable approximation for excited states. Then, from Adopting for VS(r,Q=0) the statically screened Debye
Egs. (45 and(46), we obtain potential VP(r) = (e?/r)exp(—«r), for the Hamiltonian in
ra Eqg. (55 one obtains
AR(P1p2.p1p3. Q) a. (59

=(2m)°%8(p1—p1) 8(pP2—P3)
HEM=H2, + z,2,VP (r)——(z +72) ke (56)

d3q

<[ | [Va@.0=0~Vay@)
a

The two last terms combined give the well-known effective

potential of Ecker-Weizel typ¢38], which has been used

frequently in order to determine energies and wave functions

of bound states in a plasma environmgh,10,39,4Q

1
X|£fa(pt @)+ 5

1
= fp(pata)+ 5

+[Vip(6,.2=0) = Vpp(a)]
C. Effective wave equation and two-particle energies

(50 Equation(41), which determines the two-particle propa-
and, for the effective interaction term, gator GR,, was written down in an operator form. Using a
representation one obtains a matrix equation. In order to
VETR(p.p,,pips. Q) solve this equation it is favorable to use a representation in
which diagonal elements are the main contribution. Here we
=(2m)38(p1+pa— P~ PR Vap(P1— P12 =0) follow Kilimann et al. [15]; however, now it is not possible

to achieve symmetric real and imaginary parts of the effec-
tive Hamiltonian simply by multiplying with factorsi;,"'2.
Therefore the Hamiltonian is split into Hermitian and anti-
Hermitian parts. This leads to

—Van(P1—=PDI[1=1a(p1) £ F(p2) ] (51

Here it was used that I ! is an odd function, and that the
even part of the Bose functiong(w) is — 3. Further, one

has [Q—HE(Q)IGR(Q)—HALQGR(Q)=1, (57

s 3 dw; Ime 1(q,w;)
Van(9.Q)=Vap(@)| 1= [ — 00410 | ®2 with HI(Q)=HatHy+ Vapt S+ 3IS7(Q). The ei-
genvalue problem of the Hermltlan part of the Hamiltonian

The terms in Eq(50), containing single-particle distribu- reads
tion functions, and Eq(51) can be combined witk ! and
NaoVap. respectively, to give functional® F{vS(Q=0} n _
and N,,V5,(Q2=0) of the screened potentials in the static Hap(D)InP.02)=E,o(D)nP.0). %8
limit. The remaining terms in Eq50) give a constant term.

The Dyson equatiofdl) can then be written The eigenstatesnP,Q), where nP denote the quantum
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numbers and) is a real parameter, can be used as a ortho- R 1 R
normal basis. The eigenvalues,p(Q2) of this effective [Q—Eqp(Q)]IG(P.Q)= 2 Hia(P.O)GE . (P,Q)
Schralinger equation are not yet the spectrum of two- "
particle excitiong15]. The latter follows from the spectral =8y - (59
function A,y .

In the representation with respect to the eigenstatefn the following it is assumed that nondiagonal matrix ele-
InP,Q), Eq.(57) reads(conservation of center-of-mass mo- ments of the anti-Hermitian part of the effective Hamiltonian

mentum already taken into account are small. Then Eq59) has the approximate solution
GR (P Q): 5nn’ T _irnn’(PvQ)(l_énn’)
U Q+i0—Enp(Q) +iTan(P.Q2)  [Q+i0—Ep(Q)+iln(P.Q)[Q+i0—E,p(Q)+il,,(P,Q)]
(60)

where it was introduced thitnn,(P,Q)=iHA (P,Q). For in the single-particle case, and just these functions describe

nn’
the coherent part of the spectral function there follows ~ the propagation of a pair of particles in the nonequilibrium
many-particle system.

20 (P, 2) The case of thermodynamic equilibrium was considered
= 2 2 : (61)  in some detail in order to show the differences from former
[Q—Enp() ]+ (P, Q) approaches. In former attemp#l,12 closed equations for
According to this equation, the spectrum of the two-particlet.he.3 causal two-time two-particle Green's function were an-

o o T ticipated. These equations were enforced by the Shindo ap-
excitations is given by the roots,p of proximation. The expressions for the effective Hamiltonian
O=E »(Q) 62) were the same as those of the present paper, only fqr the case
nPASas of a nondegenerate system. The agreement in this special
case is easy to understand, taking into account that the dif-
ference between the functions used is of higher order in the
density.
Vil. SUMMARY AND CONCLUSION For arbitrary degeneracy there are clear differences be-

Starting from the nonequilibrium BSE in the dynamically f[ween the former results and ours. In the present results there

screened ladder approximation, we have derived a set of nofg N0 division by Pauli-blocking terms. The only intrinsic
equilibrium Dyson equations for two-time, two-particle cor- statl_c contributions of the effective Ham_lltonla(the_ two-
relation functions. The two-time structure of these equation®article self-energyare the Hartree-Fock single-particle self-
was achieved in an exact way using the semigroup properti¢d€rgies and the Pauli-blocked basic potential.
of the ideal one-particle Green’s functions. The price one has e can conclude that the proper generalization of the
to pay for this simpler structure of the equation is that thel<@danoff-Baym equations for two-particle functions is given
two-particle self-energy in the Dyson equation now consist®Y the system of equatione39) and (40). The algebraic
of irreducible diagrams in all orders with respect to the dy_structure of thes_e eq_uatlons was |dgnt|f|ed starting from a
namically screened potentiéih some sense this is similar to CONCréte approximation, the dynamically screened ladder
the transition from Feynman diagrams to Goldstone dia€duation. More general considerations of how the self-
grams[31)). Irreducibility means here that a diagram cannot€n€rgy functions can be determined in higher approximations
be cut with respect to a pair of single-particle lines whichWill be presented in a subsequent pafef].
begin at equal times and end at equal times, i.e., two or more
interaction potentials have some overlap in time. ACKNOWLEDGMENTS

For further considerations we have restricted ourselves to o oo grateful to W.-D. Kraeft and G.”Bke for helpful

a two-particle sglf-energy in fir_st order with respect to thediscussons. This work was performed under the auspices of
screened potential. The algebraic structure of the equations

not affected by this approximation. It was shown that there | ffie Sonderforschungsbereich “Kinetics of partially ionized

i "
: . . . lasmas.
a set of equations for four two-time correlation funct|ons.Sp

This generalizes the pair of Kadanoff-Baym equations for the
one-particle correlation functiong= (g*~ andg™*, re-
spectively. In analogy to the single-particle case there is no
closed equation for the correlation functions, but always a The aim of this appendix is to show the evaluation of the
coupling to other correlation functions. Only for two certain Jowest-order terms in the dynamically screened ladder equa-
functions, namely G, do there exist closed equations. tion. Single-particle self-energy contributions and interaction
Thus these functions are the two-particle generalization oferms have to be treated on equal footing. Special attention is

the retardedadvanceyl commutator Green’s functionﬁ’A paid to the transformation into a structure involving two-

Ann(P.2)

whereas the damping is given By,(P,Enp) [15].

APPENDIX: EVALUATION OF DYNAMICALLY
SCREENED LADDER TERMS
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particle quantities which depend on two times only. The % _ _ _
analysis is made here for the expansion of the funaggpn I(ll)(t,t’)=J’t dt; dta[gzo(t,t)2a(t:, t)gae(ts L)
=g, . Similar considerations are possible for the other ° B B
three functionsg., "~ ", 9., , andg,, " *. This is +OR ()25 (L, t)gho(te,t)
sketched in Appendix A 3. R R — o — _
T 0a0(tit)Z5(t,t1)gqo(t1,t ) ]gpo(t,t").
(A1)

1. First-order contributions
In order to achieve the anticipated structure, one can use the

Thefe T‘Ire three d|agrams O.f fII’S.t order.wnh respect to th(:éemigroup properties for the correlation functigﬁo(t,t’).
dynamically screened interactiofl,; see Fig. 2. Two terms | "o et term on the right hand side, for instance, it holds

have single-particle self-energy insertions of particdesnd - ., .
b, respectively. The third one is a ladder diagram with onethat <t,<t’, enforced by the advanced functions

rung. a(tl, 1) gao(tl,t ). For this case, in Equ) we can use
The first term with a self-energy insertion for partielés gbyo(t,t )= gblo(t,tl)( |)gb’0(t1, 1)( |)gb’o(t1,t ). Treat-
given simply by[cf. Eq. 4 ing the other two terms in a similar way, one obtains

1MLt = ft dty dty{g5o(t,t1) g5 o6t (=S8, t)gh o(ts, 1) 1(—1)ga o1, )gho(ts,t")
0

+igR (6t OR (625 (1, t1)Gp ot t) 1(—1)Gao(t1,t )G o1 )
+igR ot t) g ot )[Rt 1) gR (11, 1) 195 o 1,15 o t1,t))} (A2)

This fits into the structurey 5,3 A,G 8.+ G RoanGant GRn2 R G- The terml{?) containing a self-energy insertion for the
other particle of speciels has a similar shape.

The third first-order term in the perturbation expansion is the ladder term. Each of the two vertices can have the Keldysh
indices+ and —. Thus one obtains the four terms

19t =i f dt; dto[gao(t,t1)gpo(t t2) Vap(ts ) O5e(ts t ) gro(t2,t")

- g;,ogb,oviii,ogﬁo— ga,ogtf,ovasggz:,ogb,o"‘ g§09b<,ov§b5a,05b,o]- (A3)

The causal and anticausal Green’s functions can be eliminated in favor of retarded and advanced Green'’s functions; see Eq.

3):
=08 9 dV5e0a 9607 950950Vt 0a 095 0™ Uaodb o VanIa b0t Oh 09n oV ab Uaodh ot Uaodh o Van 96 09b0

+ 050950V 5b0h 00+ 90950V 509096 0T 9a 0060 Var0h b o- (A4)

There are three classes of terms in the above equaiipn: term on the right-hand side of EGA4). The causal screened

terms ending with a produaga Ogbo, (i) terms beginning potentialVS is expressed according to ). The occurring

with one retarded function and ending with one advancedeaviside functions allow it to use the semigroup property in

function, and(iii) terms beginning witrgzogbfo. certain functionsg® and g=, respectively, in the following
The further procedure is presented in detail for the firstmanner:

j dty dt, gRo(t, 1) gR o1, 12)IVay(t1, 1) g5 o(t1, 1) g o(ta,t")

= f dtdifigRo(t, R ot D Vapd(t—D) +[igR (1, DIV (1, D)gFo(t,D)]

+igR (6, DIVES (T OGR (1D T ga0(T,t )5 (T, )], (A5)

Thus this term belongs to the anticipated struct@ﬁgngg;b.
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Making the same analysis for all terms Icﬁ), one obtains

I&3><t,t'>=fde”tigE,oa,t) O {Vaps(t—T)+igR((t DIV (DR (1, 1) +igs o 1 DIVER L DR (1)
+igRo(tDIVEs (TLOGR (1D +igao L DIVINT, DR (1, Dot ) g5 o(T,t")

fdtdtnga(,(tt)gbo(tt{gbo DIVE (6 Dezo 6D + 020t DIVE (T0 050t DI -1 aadT)ghoEt)

+ded”tg:,o<t,t> oL O{Vapd(t=1)+ (=) gho(t,DIVE (1,000 o(t, D+ (—Dga (L DVERT, Digh o(t,1)

+(=Dgh (L DIVE (1 DAL D+ (=g ot VSR Digso( 6D —Dga (Tt )gpo(T,t). (A6)

A comparison with structur€27) gives four addltlonal terms foE R ab (A p), and two further terms of,, . Altogether we
obtain the expressiof81) for 3%, and Eq.(33) for o, .

2. Second-order contributions

According to Egs(27) and (28) the second-order terms should lead to diagrams with two self-energy insertions of first
order with respect t&° (reducible diagramisas well as to diagrams with one self-energy insertion which is of second order.
We will demonstrate this here for one typical term. The analysis of the ladder term with two (efn§&y. 2 leads, among

many other terms, to the following contrlbutlonl(tz,tl,tz are integration variablgs

l,= f O (1t OR o1 E)iVEp(tr, 1) 9 ot 1) OR o t2, t2)IVEL(ty, 1) On ol t1,t )T o T2 t)). (A7)

The procedure to achieve a two-time structure is similar to that in Appendix A 1. According t@)Egach causal function
VS consists of three terms, which leads to nine terms in(B@). All contributions containing at least one time-diagonal part
are easily shown to be reducible. Therefore we concentrate on the others:

fgaottl)gbo(t t2)i[O(t;— o)V (t1,to) + O (ta—t)Vay (tlltZ)]gao(tlv 1)9bo(t2' t5)

Xi[O(t;— 1) Vg (t1,t) +O(t— 1)V (t1,12) 195 0(t1,t ) g5 o t2,t). (A8)

These terms should fit into the structu@ébEab(z)gabJr GR SR b(l)gabEab(l)gab, WhereEab(z) denotes the two-particle
self-energy in second order, aE@b(l) are the first-order quantities identified in Appendix A 1.
Analyzing the expressions in EA8), we find that the “mixed” termgwith oneV= and onev>) are reducible. The terms

containing two function&/~ (or two functionsV =) lead to a reducible term f(n§>t1 (t1>t2) and to an irreducible part for

t,<t; (t1<t_2). This is shown in Fig. 4 in the form of diagrams. The reducible terms contain two-particle self-energy
insertions of first order with respect ¥°. The second-order terms contributingiﬁb(z) are given by

SR tt)= f dt; dt, O(t3—to)gh o(t,ta) Vag (1,t2) gR o1, t) OR (T2, 1 )Vap (11, )95 oty , 1) +[11'a<>22'b]. (A9)

This term can be shown to be a vertex correction to the Because we started from a ladder equation, we do not find

two-particle vertex. all possible second-order terms contributing to the two-
The other second-order diagrams in Fig. 2 can be disparticle self-energy. Therefore we will restrict ourselves to

cussed in a similar way. The terms with two single-particlethe self-energy in first order with respect to the dynamically

self-energy insertions for the same particle are reducible iscreened interaction.

any case. For the other two types of diagrams, there are

reducible as well as irreducible parts. This is shown in Fig. 5.

The first diagram in each row is a reducible one. The second The analysis for the functiong., '~ ", g,,~" , and

diagram is not reducible, and it corresponds to a vertex corg,, *** can be made in the same way as above. It is

rection term. The third diagram is not reducible as well, butsketched here fog_, '~ * . Consider the first rung diagram.

is the first self-energy correction to the diagrams of the two-Evaluation on the Keldysh contour gives, in analogy to Eq.

particle self-energy of first ordecf. Fig. 3. (A4),

3. Analysis for the other correlation functions
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15 =05 605 0V 2692, 095.0™ 92,0950 V 2692 095.0 Gap T P=G5Vapt 255100 T+ Ga0an ' Ghb
+ 050960V 20050950+ 95 096 o V559096 0 +G a0 [Vapt 201G (Al11)

+ 02095 0V 309409501 90950V 2094 0950

with G2, " =05 5 - The fourth and the fifth terms in Eq.

(A10) contributegy V5,04 0+ 9aoVandeo t0 oy . To-
(A10) gether with the respective contributions from the diagrams

Again the two-time structure can be achieved, and the strudnvolving single-particle self-energies,, '~ " is then given

< > :\/SA< A < > 8 A LA
+ga,ogb,o'Va@ga,ogb,oJfga,ogb,o'Vabga,ogb,o-

ture is(cf. Eq. 27 by Eq.(36) with {e,8,y,8}={+——+}.
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