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Purity and decoherence in the theory of a damped harmonic oscillator

A. Isar,1,2,* A. Sandulescu,1,2 and W. Scheid2
1Department of Theoretical Physics, Institute of Atomic Physics, Bucharest-Magurele, Romania

2Institut für Theoretische Physik der Justus-Liebig-Universita¨t, Giessen, Germany
~Received 2 November 1998; revised manuscript received 2 August 1999!

For the generalized master equations derived by Karrlein and Grabert for the microscopic model of a
damped harmonic oscillator, the conditions for purity of states are written, in particular for different initial
conditions and different types of damping, including Ohmic, Drude, and weak coupling cases, and the Agarwal
and Weidlich-Haake models. It is shown that the states which remain pure are the squeezed states with
variances that are constant in time. For pure states, generalized nonlinear Schro¨dinger-type equations corre-
sponding to these master equations are also obtained. Then the condition for purity of states of a damped
harmonic oscillator is considered in the framework of Lindblad theory for open quantum systems. For a special
choice of the environment coefficients, correlated coherent states with constant variances and covariance are
shown to be the only states which remain pure all the time during the evolution of the considered system. In
Karrlein-Grabert and Lindblad models, as well as in the particular models considered, expressions for the rate
of entropy production are written, and it is shown that state which preserve their purity in time are also states
which minimize entropy production and, therefore, are the most stable state under evolution in the presence of
the environment, and play an important role in the description of decoherence phenomenon.
@S1063-651X~99!00412-2#

PACS number~s!: 05.30.2d, 03.65.Bz, 05.40.2a
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I. INTRODUCTION

In the last two decades, more and more interest has ar
about the search for a consistent description of open quan
systems@1–5# ~for a recent review, see Ref.@6#!. Dissipation
in an open system results from microscopic reversible in
actions between the observable system and the environm
Because dissipative processes imply irreversibility a
therefore, a preferred direction in time, it is generally thou
that quantum dynamical semigroups are the basic tool
introduce dissipation in quantum mechanics. In the Mark
approximation and for weakly damped systems, the m
general forms of the generators of such semigroups w
given by Lindblad@7#. This formalism was studied for th
case of damped harmonic oscillators@6,8–12#, and applied to
various physical phenomena, for instance, to the dampin
collective modes in deep inelastic collisions in nuclear ph
ics @13#. A phase space representation of open quantum
tems within the Lindblad theory was given in Refs.@14,15#.
Important progress beyond the limitations of the weak c
pling approach was made in describing quantum dissipa
systems by using path integral techniques@16,17#.

In the present study we are also concerned with the
servable system of a harmonic oscillator which interacts w
the environment. We discuss under what conditions the o
system can be described by a quantum mechanical pure s
In Sec. II we present the generalized uncertainty relati
and the correlated coherent states, first introduced in
@18#, which minimize these relations. In Sec. III we consid
generalized quantum master equations derived by Karr
and Grabert in Ref.@17# for the microscopic model of a
harmonic oscillator coupled to a harmonic bath@19# by using
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the path integral, and we obtain conditions for the purity
states, in particular for different initial conditions and diffe
ent types of damping, including Ohmic, Drude, and we
coupling cases, and the Agarwal and Weidlich-Haake m
els. We show that the states which satisfy the conditions
purity are pure squeezed states with well-determined v
ances that are constant in time. For pure states, we also
rive generalized Schro¨dinger-type nonlinear equations corr
sponding to these master equations. The Lindblad theory
open quantum systems is considered in Sec. IV. For the o
dimensional harmonic oscillator as an open system, we s
that for a special choice of the diffusion coefficients, t
correlated coherent states, taken as initial states, remain
for all time during the evolution. In some other simple mo
els of a damped harmonic oscillator in the framework
quantum statistical theory@20,21#, it was shown that Glaube
coherent states remain pure during the evolution, and in
other cases the oscillator immediately evolves into mixtur
In this respect we generalize this result and also our prev
result from Ref.@10# as well as the results of other autho
@22#, obtained by using different methods. In Sec. V we
troduce the linear entropy; we present its role in the desc
tion of the decoherence phenomenon, and we derive exp
sions of the rate of entropy production. We show w
Lindblad and Karrlein-Grabert models, respectively, that
correlated coherent states, and pure squeezed states, w
fulfill the condition for purity of states, are also the mo
stable states under evolution in the presence of the envi
ment, and make a connection with work done in this field
other authors@23–28#. Finally, a summary is given in Sec
VI.

II. GENERALIZED UNCERTAINTY RELATIONS

In the following we denote bysAA5^Â2&2^Â&2 the dis-
persion of the operatorÂ, where ^Â&[sA5Tr( r̂Â), Tr r̂
6371 © 1999 The American Physical Society
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6372 PRE 60A. ISAR, A. SANDULESCU, AND W. SCHEID
51, and r̂ is the statistical operator~density matrix!. By
sAB5 1

2 ^ÂB̂1B̂Â&2^Â&^B̂& we denote the correlation~co-
variance! of the operatorsÂ and B̂. Schrödinger @29# and
Robertson@30# proved that for Hermitian operatorsÂ andB̂
and for pure quantum states the following generalized un
tainty relation holds:

sAAsBB2sAB
2 > 1

4 u^@Â,B̂#&u2. ~1!

For the particular case of the operators of momentump̂ and
coordinateq̂, the uncertainty relation~1! becomes

s[sppsqq2spq
2 >

\2

4
. ~2!

This result was generalized for arbitrary operators~in general
non-Hermitian! and for the most general case of mixed sta
in Ref. @18#. Inequality ~2! can also be represented in th
form

sppsqq>
\2

4~12r 2!
, ~3!

where

r 5
spq

Asppsqq

~4!

is the correlation coefficient. The equality in relation~2! is
realized for a special class of pure states, called correl
coherent states or squeezed coherent states, which are r
sented by Gaussian wave packets in the coordinate repre
tation. These minimizing states, which generalize
Glauber coherent states, are eigenstates of an operator o
form

âr ,h5
1

2h F12
ir

~12r 2!1/2G q̂1 i
h

\
p̂, ~5!

with real parametersr and h, ur u,1, andh5Asqq. Their
normalized eigenfunctions, denoted as correlated cohe
states, have the form

C~q!5
1

~2ph2!1/4expH 2
q2

4h2 F12
ir

~12r 2!1/2G
1

aq

h
2

1

2
~a21uau2!J , ~6!

with a a complex number. If we setr 50 and h
5(\/2mv)1/2, where m and v are the mass and the fre
quency of the harmonic oscillator, respectively, state~6! be-
comes the usual Glauber coherent state. In Wigner repre
tation, the state~6! has the form

Wr ,h~p,q!5
1

p\
expF2

~q2sq!2

2h2~12r 2!
2

2h2

\2 ~p2sp!2

1
2r

\~12r 2!1/2~q2sq!~p2sp!G , ~7!
r-

s

ed
pre-
en-
e
the

nt

n-

where sq and sp are the expectation values of coordina
and momentum, respectively. This is the classical norm
distribution with the dispersions

sqq5h2, spp5
\2

4h2~12r 2!
, spq5

\r

2~12r 2!1/2 ~8!

and the correlation coefficientr. The Gaussian distribution
~7! is the only positive Wigner distribution for a pure sta
@31#. All other Wigner functions that describe pure stat
necessarily take on negative values for some values ofp and
q.

In the case of relation~1! the equality is generally ob
tained only for pure states. For any density matrix in t
coordinate representation~normalized to unity! the following
relation must be fulfilled:

1

n
5Tr r̂2<1. ~9!

The quantityn characterizes the degree of purity of the sta
for pure statesn51 and for mixed statesn.1. In the lan-
guage of the Wigner function condition~9! has the form

1

n
52p\E W2~p,q!dp dq<1. ~10!

Let us consider the most general mixed squeezed st
described by the Wigner function of the generic Gauss
form with five real parameters:

W~p,q!5
1

2pAs
expH 2

1

2s
@spp~q2sq!21sqq~p2sp!2

22spq~q2sq!~p2sp!#J , ~11!

where s is the determinant of the dispersion~correlation!
matrix

S spp spq

spq sqq
D .

Here s is also the Wigner function area—a measure of
phase space area in which the Gaussian density matr
localized. For Gaussian states of the form of Eq.~11!, the
coefficient of purityn is given by

n5
2

\
As. ~12!

Inequality ~2! must be fulfilled actually for any states, no
only Gaussian. Any Gaussian pure state minimizes rela
~2!. For s.\2/4 function ~11! corresponds to mixed quan
tum states, while in the case of the equalitys5\2/4 it takes
the form of Eq.~7! corresponding to pure correlated cohere
states.

The degree of the purity of a state can also be charac
ized by the quantum entropy~we put the Boltzmann’s con
stantkB51):

S52Tr~ r̂ ln r̂ !52^ ln r̂&. ~13!
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PRE 60 6373PURITY AND DECOHERENCE IN THE THEORY OF A . . .
For quantum pure states the entropy is identically equa
zero. It was shown@12,32# that for Gaussian states with th
Wigner functions~11!, the entropy can be expressed throu
s only:

S5
n11

2
ln

n11

2
2

n21

2
ln

n21

2
, n5

2

\
As. ~14!

III. GENERALIZED QUANTUM MASTER EQUATIONS

In the framework of the standard microscopic mod
@19,32–35# for the damped harmonic oscillator, it was show
in Ref. @17# that in general there exists no exact master eq
tion for the damped harmonic oscillator,

]

]t
r~ t !5Lr~ t !, ~15!

with a dissipative Liouville operatorL describing the dy-
namics of the oscillator and independent of the initial sta
For specific initial preparations the time evolution is d
scribed exactly by a time-dependent Liouville operator, a
the resulting master equation for the damped harmonic o
lator with the Hamiltonian

H05
1

2M
p21

Mv0
2

2
q2, ~16!

corresponding to this Liouville operator†given by Eq.~40!
of Ref. @17#‡, has the following general form~$,% denotes the
anticommutator of two operators!:

ṙ~ t !52
i

2M\
@p2,r~ t !#2

iM

2\
gq~ t !@q2,r~ t !#2

i

2\
gp~ t !

3@q,$p,r~ t !%#1
M

\2 Dq~ t !†p,@q,r~ t !#‡

2
M2

\2 Dp~ t !†q,@q,r~ t !#‡. ~17!

The dependence onv0 is included in the coefficients of com
mutators.

~a! For the so-called thermal initial condition@36#, which
can be used to describe initial states of the entire sys
~oscillator and bath! resulting from position measurement
Dq(t) andDp(t) can be written as

Dq~ t !5gq~ t !^q2&2
^p2&
M2 , Dp~ t !5gp~ t !

^p2&
M2 . ~18!

Heregq(t) andgp(t) and the equilibrium variances^q2& and
^p2& are given in terms of the equilibrium coordinate au
correlation function̂ q(t)q&.

We now derive the necessary and sufficient condition
r(t) to be a pure state for all times.r(t) is a pure state if and
only if Tr r2(t)51. This is equivalent with (d/dt)Trr2(t)
50 for all times, i.e., with the condition Tr„r(t)Lr(t)…50.
With the explicit form ofLr(t) given by the right-hand side
of Eq. ~17!, and using the relationsr2(t)5r(t) and
r(t)Ar(t)5Tr„r(t)A…r(t), we obtain the following condi-
tion for a state to be pure for all times:
to

l

a-

s.
-
d
il-

m

-

r

M2Dp~ t !sqq~ t !2MDq~ t !spq~ t !2
\2

4
gp~ t !50, ~19!

and, by inserting expressions~18!,

gp~ t !^p2&sqq~ t !2FMgq~ t !^q2&2
^p2&
M Gspq~ t !2

\2

4
gp~ t !

50. ~20!

~b! For factorizing initial conditions, that is, if the initia
density matrix of the entire system factorizes in the dens
matrix of the oscillator and the canonical density matrix
the unperturbed heat bath@34,36–38#, i.e., if the oscillator
and bath are uncorrelated in the initial state, then the res
ing master equation is equivalent to the result by Haake
Reibold @37#, who derived it directly from microscopic dy
namics and by Hu, Paz, and Zhang@39# from the path inte-
gral representation. The condition for purity of states
these master equations has also the form of Eq.~20!, where
now the coefficients are given by Eqs.~87! and ~89! in Ref.
@17#.

For a pure stater(t)5uc(t)&^c(t)u, from Eq.~17! we can
obtain the evolution equation for the wave functionc(t) as
an equation of the Schro¨dinger type:

dc~ t !

dt
52

i

\
H8c~ t !. ~21!

Taking into account the condition for purity of states@Eq.
~19!#, we find the non-Hermitian Hamiltonian

H85
p2

2M
1

M

2
gq~ t !q21

1

2
gp~ t !„qp1sp~ t !q2sq~ t !p…

1
iM

\
Dq~ t !„p2sp~ t !…„q2sq~ t !…

2
iM 2

\
Dp~ t !„q2sq~ t !…2, ~22!

which depends on the wave functionc(t) via the expectation
values sq and sp , i.e., this Schro¨dinger-type equation is
nonlinear.

The master equations considered up to now in this sec
are exact. We now consider particular types of damping
which the dynamics can be described in terms of appro
mate Liouville evolution operators, valid for arbitrary initia
states@17#. Then the evolution operator is time independe
and the master equation for the density matrix obeys
~17!, whereDq(t)5Dq andDp(t)5Dp read

Dq5gq^q
2&2

^p2&
M2 , Dp5gp

^p2&
M2 , ~23!

with time-independent coefficientsgq andgp @17#.
~1! For strictly Ohmic damping,gp5g is the Laplace

transform of the damping kernel@17,19# of the model and
gq5v0

2. In this case we do not have a well-defined Liouvil
operator sincêp2&, and, therefore, the coefficientsDq and
Dp given by Eq.~23! are logarithmically divergent. The con
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dition for purity of states for this strictly Ohmic damping
similar to relation~20!, only now the coefficients are con
stant:

g^p2&sqq~ t !2S Mv0
2^q2&2

^p2&
M Dspq~ t !2

\2

4
g50.

~24!

~2! A more realistic case is the so-called Drude dampi
For a sufficiently large Drude parametervD and sufficiently
high temperaturekBT@\g, the oscillator dynamics can b
described by an approximate Liouville operator with the c
efficients

gq5a21h2, gp52a, ~25!

where a and h depend ong, v0 , and vD , and then the
condition for purity of states is

2a^p2&sqq~ t !2FM ~a21h2!^q2&2
^p2&
M Gspq~ t !2

\2

2
a50.

~26!

For a pure state, the Schro¨dinger equation~21! correspond-
ing to the master equation with Ohmic damping has
Hamiltonian~22!, with the coefficients given by Eq.~23! and
with gp5g andgq5v0

2. A similar result holds for the Drude
damping, when we take the coefficients~25!.

~3! In Ref. @17# it was shown that in the limit of weak
damping the general master equation has the following fo

ṙ~ t !52
i

\ F p2

2M
1

M

2
~v0

21v0gs!q
2,r~ t !G

2
igc

2\
@q,$p,r~ t !%#2

Ks

M\v0
Fp,@q,r~ t !#‡

2
Kc

\
†q,@q,r~ t !#‡. ~27!

This equation is given in terms of four dissipation coef
cients:gs leads to a frequency shift and may be absorbed
renormalizingv0 ;gc is the classical damping coefficient; th
coefficientsKs andKc depend on the temperature.Ks can be
calculated analytically only in certain cases. One of thes
the Drude model. The master equation~27! is a generaliza-
tion of the Agarwal equation@40#

ṙ~ t !52
i

\ F p2

2M
1

Mv0
2

2
q2,r~ t !G2

ik

\
@q,$p,r~ t !%#

2k
Mv0

\
cothS \v0

2kBTD †q,@q,r~ t !#‡, ~28!

which was derived with the help of projection operator tec
niques from the same microscopic model using the B
approximation in conjunction with a short memory appro
mation. As a main difference, in Agarwal’s equation theKs
term is absent. Herek is a phenomenological damping coe
ficient.

From Eqs.~27! and ~28!, we obtain the following condi-
tions for purity of states:
.

-

e

:

y

is

-
n

Kcsqq~ t !1
Ks

Mv0
spq~ t !2

\

4
gc50 ~29!

and,

Mv0 cothS \v0

2kBTDsqq~ t !5
\

2
~30!

respectively. The corresponding Schro¨dinger-type equations
for a pure state have the Hamiltonians

H85
p2

2M
1

M

2
~v0

21v0gs!q
21

1

2
gc„qp1sp~ t !q2sq~ t !p…

2 iK c„q2sq~ t !…22
iK s

Mv0
„p2sp~ t !…„q2sq~ t !… ~31!

and

H85
p2

2M
1

M

2
v0

2q21k„qp1sp~ t !q2sq~ t !p…

2 ikMv0 cothS \v0

2kBTD „q2sq~ t !…2. ~32!

respectively.
~4! All the above presented time-independent Liouvi

operators are not of Lindblad form. In Ref.@17# it is shown
that in the weak coupling limit, further coarse graining w
result in a Lindblad operator. Indeed, for weak damping,
master equation~27! simplifies and takes on the following
form, written in terms of usual creation and annihilation o
eratorsa† anda:

ṙ~ t !52 i S v01
gs

2 D @a†a,r~ t !#1g↑„@a†r~ t !,a#

1@a†,r~ t !a#…1g↓„@ar~ t !,a†#1@a,r~ t !a†#…,

~33!

where

g↓,↑5
gc

4 FcothS \v0

2kBTD61G . ~34!

This equation, first derived by Weidlich and Haake@41# from
a microscopic model for the damped motion of a sing
mode of the electromagnetic field in a cavity, is of Lindbla
form, and can be obtained formally as a particular case of
general master equation~68! for the damped harmonic oscil
lator ~see Sec. IV!, if we take

Dpp5
\Mv0

2
~g↓1g↑!, Dqq5

\

2Mv0
~g↓1g↑!,

~35!
Dpq50, l5~g↓2g↑!, m50.

From Eq.~33! we obtain the following condition for purity
of states:

2 cothS \v0

2kBTDsa†a~ t !51, ~36!
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or, in terms of coordinate and momentum,

S Mv0sqq~ t !1
spp~ t !

Mv0
D cothS \v0

2kBTD5\. ~37!

For a pure state, the Schro¨dinger-type equation correspond
ing to Eq.~33! has the Hamiltonian

H85H1 i\
gc

2 S sa†a2saa†1
1

2D2 i\
gc

2
cothS \v0

2kBTD
3F ~a†2sa†!~a2sa!1

1

2G , ~38!

with the notationH5\(v01gs/2)a†a. Taking into account
condition ~37!, we see that the mean values of the tw
HamiltoniansH andH8 are equal:̂ H&5^H8&.

In general, the dissipative systems cannot be describe
pure states or by Schro¨dinger equations, because the enviro
ment produces transitions in any state basis. Neverthe
we will show that this can happen in very limiting case
corresponding to certain special states. In order to find in
general Karrlein-Grabert model the states which remain p
during the evolution of the system, we consider the equati
of motion for the second order moments of coordinate a
momentum. To obtain these equations, we first derive
evolution equation~17! with the coefficients~23! in a coor-
dinate representation:

i\
]r

]t
52

\2

2M S ]2

]x22
]2

]y2D r1
Mgq

2
~x22y2!r

2
i\gp

2
~x2y!S ]

]x
2

]

]yD r1MDq~x2y!

3S ]

]x
1

]

]yD r2
i

\
M2Dp~x2y!2r. ~39!

The first two terms on the right-hand side of this equat
generate a purely unitary evolution~with a renormalized po-
tential!. The third term is the dissipative term, and the fou
is the so-called ‘‘anomalous diffusion’’ term, which gene
ates a second derivative term in the phase space repres
tion of the evolution equation, just like the ordinary diffusio
term. The last term is the diffusive term, which is responsi
for the process of decoherence. Since the considered dyn
ics is quadratic, we consider a density matrix solution of E
~39! of the form

^xur̂~ t !uy&5S 1

2psqq~ t ! D
1/2

3expF2
1

8sqq~ t !
~x1y!21

ispq~ t !

2\sqq~ t !
~x22y2!

2
1

2\2 S spp~ t !2
spq

2 ~ t !

sqq~ t ! D ~x2y!2G , ~40!

which is the general form of Gaussian density matrices~with
zero expectation values of coordinate and momentum!. By
by
-
ss,
,
e

re
s
d
e

n

nta-

e
m-
.

direct substitution ofr into Eq.~39!, we obtain the following
system of equations satisfied by dispersions of coordin
and momentum:

dsqq~ t !

dt
5

2

M
spq~ t !, ~41!

dspp~ t !

dt
522gpspp~ t !22Mgqspq~ t !12M2Dp ,

~42!

dspq~ t !

dt
52Mgqsqq~ t !1

1

M
spp~ t !2gpspq~ t !1MDq .

~43!

Introducing the notation

X~ t !5S mAgqsqq~ t !

spp~ t !/mAgq

spq~ t !
D , ~44!

and solving this system of equations with the method use
Refs.@6,9#, we obtain the solution

X~ t !5T„X~0!2X~`!…1X~`!, ~45!

where the matrixT is

T522
e2gpt

V2 S b11 b12 b13

b21 b22 b23

b31 b32 b33

D , ~46!

with time-dependent oscillating functionsbi j ( i , j 51,2,3)
given by (V254gq2gp

2):

b115S gp
2

2
2gqD cosVt2gp

V

2
sinVt2gq , ~47!

b125gq~cosVt21!, ~48!

b135Agq~gp cosVt2V sinVt2gp!, ~49!

b215gq~cosVt21!, ~50!

b225S gp
2

2
2gqD cosVt1gp

V

2
sinVt2gq , ~51!

b235Agq~gp cosVt1V sinVt2gp!, ~52!

b3152AgqS gp

2
cosVt2

V

2
sinVt2

gp

2 D , ~53!

b3252AgqS gp

2
cosVt1

V

2
sinVt2

gp

2 D , ~54!

b33522gq cosVt1
gp

2

2
. ~55!

The asymptotic values of variances and covariance have
following expressions:
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sqq~`!5
Dp1gpDq

gpgq
, spp~`!5

M2Dp

gp
, spq~`!50.

~56!

Introducing expressions~23! for the coefficientsDq andDp ,
we obtain the following equilibrium asymptotic values of th
dispersions:

sqq~`!5^q2&, spp~`!5^p2&, spq~`!50. ~57!

If the asymptotic state is a pure state, then

sqq~`!spp~`!5^q2&^p2&5
\2

4
, ~58!

i.e., it is a squeezed state. Introducing the expression
sqq(t) and spq(t) given by Eq.~45! in the condition for
purity of states@Eqs.~19! and~23!#, we have shown, after a
long but straightforward calculation, that this condition
fulfilled, for any time t, only if the initial values of disper-
sions are equal to their asymptotic values:

sqq~0!5sqq~`!, spp~0!5spp~`!, spq~0!5spq~`!.
~59!

Then it follows from Eq.~45! that X(t)5X(`); that is, the
dispersions have constant values in time, given by Eq.~57!.
Therefore, the state which preserves its purity in time
given by the density matrix~40!, i.e., it is a squeezed state
with the well-determined constant variancessqq and spp
@Eq. ~57!#. The fluctuation energy has also a constant va
in time:

E5
1

2M
^p2&1

Mv0
2

2
^q2&. ~60!

At the same time, the total energy of the open system
given by the mean value of the Hamiltonian~16!,

^H0&5
1

2M
spp~ t !1

Mv0
2

2
sqq~ t !1

1

2M
sp

2~ t !

1
Mv0

2

2
sq

2~ t !, ~61!

and, since the expectation values of coordinate and mom
tum decay exponentially in time@19#, the energy is dissi-
pated and reaches the minimum valueE. In the particular
case of Agarwal model, the purity condition~30! shows that
the variance of coordinate must also be constant in time

sqq~ t !5
\

2Mv0 cothS \v0

2kBTD . ~62!

Using this condition, we find, from the equations of moti
~41!–~43! written for the Agarwal model, when we have
take

Dp5
\v0k

M
cothS \v0

2kBTD , Dq50, gp5k, gq5v0
2,

~63!
of

s

e

is

n-

that the dispersions have to satisfy the equalities

spp~ t !5
\Mv0

2
cothS \v0

2kBTD ,

spp~ t !5M2v0
2sqq~ t !, spq~ t !50. ~64!

Relations ~62! and ~64! are compatible only if
coth(\v0 /2kBT)51, that is only when the temperature of th
thermal bath isT50. Then finally we obtain

sqq5
\

2Mv0
, spp5

\Mv0

2
, spq50, ~65!

and, therefore, in the particular case of the Agarwal mod
the usual coherent state is the only state which remains
for all times, if the temperature isT50. In this case the
fluctuation energy of the harmonic oscillator keeps all t
time its minimum valueEmin5\v0/2. Relation~61! shows
that in this case the total energy is also dissipated
reachesEmin . The same results can be obtained for the mo
of Weidlich and Haake, described by the evolution equat
~33!. Indeed, this model is a particular case@cf. Eqs.~35!# of
the Lindblad model considered in Sec. IV, and from the p
rity condition ~37! it follows again that the coherent state
the only state which preserves its purity during the evolut
in time of the system, for a zero temperature of the therm
bath. The importance of the states which preserve their
rity in time will become evident in Sec. V, in the context o
a discussion of the decoherence phenomenon.

IV. PURITY OF STATES IN THE LINDBLAD MODEL

We now consider the condition for purity of states in t
Lindblad model for the damped harmonic oscillator, bas
on quantum dynamical semigroups@2,3,7,8#. The most gen-
eral Markovian evolution equation preserving the positivi
hermiticity, and trace ofr̂ can be written as

dr̂~ t !

dt
52

i

\
@Ĥ,r̂~ t !#1

1

2\ (
j

„†V̂j r̂~ t !,V̂j
†]

1@V̂j ,r̂~ t !V̂j
†
‡…. ~66!

Here Ĥ is the Hamiltonian operator of the system, andV̂j

and V̂j
† are operators on the Hilbert spaceH of the Hamil-

tonian which model the interaction with the environment.
the case of an exactly solvable model for the damped h
monic oscillator we take the two possible operatorsV̂1 and
V̂2 linear in p̂ and q̂ @6,8,9# and the harmonic oscillato
HamiltonianĤ is chosen to be

Ĥ5Ĥ01
m

2
~ q̂p̂1 p̂q̂!, Ĥ05

1

2m
p̂21

mv2

2
q̂2. ~67!

With these choices the master equation~66! takes the follow-
ing form @6,9#:
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dr̂

dt
52

i

\
@Ĥ0 ,r̂ #2

i

2\
~l1m!@ q̂,r̂ p̂1 p̂r̂ #1

i

2\
~l2m!

3@ p̂,r̂q̂1q̂r̂ #2
Dpp

\2 †q̂,@ q̂,r̂ #‡2
Dqq

\2 †p̂,@ p̂,r̂ #‡

1
Dpq

\2 ~†q̂,@ p̂,r̂ #‡1†p̂,@ q̂,r̂ #‡!. ~68!

The quantum diffusion coefficientsDpp , Dqq , andDpq and
the dissipation constantl satisfy the fundamental constrain
@6,9#: Dpp.0, Dqq.0, and

DppDqq2Dpq
2 >

\2l2

4
. ~69!

Relation ~69! is a necessary condition that the generaliz
uncertainty inequality~2! is fulfilled.

By using the complete positivity property, it was shown
@9# that the relation

TrS r̂~ t !(
j

V̂ j
†V̂j D 5(

j
Tr„r̂~ t !V̂j

†
…Tr„r̂~ t !V̂j… ~70!

represents a necessary and sufficient condition forr̂(t) to be
a pure state for all timest>0. This equality is a generaliza
tion of the pure state condition@42–44# to all Markovian
master equations~66!. If r̂2(t)5 r̂(t) for all t>0, then there
exists a wave functioncPH which satisfies a nonlinea
Schrödinger equation with the non-Hermitian Hamiltonian

Ĥ85Ĥ1 i(
j

^c~ t !,V̂j
†c~ t !&V̂j2

i

2
^c~ t !,(

j
V̂ j

†V̂jc~ t !&

2
i

2 (
j

V̂ j
†V̂j . ~71!

For the damped harmonic oscillator the pure state condi
~70! takes the form@9#

Dppsqq~ t !1Dqqspp~ t !22Dpqspq~ t !5
\2l

2
, ~72!

and Hamiltonian~71! becomes

Ĥ85Ĥ1l„sp~ t !q̂2sq~ t ! p̂…2
i

\ FDpp„q̂2sq~ t !…2

1Dqq„p̂2sp~ t !…22Dpq~ „p̂2sp~ t !…„q̂2sq~ t !…

1„q̂2sq~ t !…„p̂2sp~ t !…!2
l\2

2 G . ~73!

It is interesting to remark that the mean value of this Ham
tonian in the stater̂(t) is equal to the mean value of th
HamiltonianĤ. From a physical point of view this result i
quite natural, since the average value of the new Hamilton
Ĥ8 describing the open system must give the energy of
open system.
d

n

-

n
e

In order to find the Gaussian states which remain p
during the evolution of the system for all timest, we con-
sider the pure state condition~72! and the generalized unce
tainty relation for pure states:

spp~ t !sqq~ t !2spq
2 ~ t !5

\2

4
. ~74!

By eliminating spp between equalities~72! and ~74!, as in
Ref. @45#, we obtain

S sqq~ t !2

Dpqspq~ t !1
1

4
\2l

Dpp

D 2

1
DppDqq2Dpq

2

Dpp
2

F S spq~ t !2

1

4
\2lDpq

DppDqq2Dpq
2
D 2

1
1

4
\2

DppDqq2Dpq
2 2

1

4
\2l2

~DppDqq2Dpq
2 !2 DppDqq

G
50. ~75!

Since the diffusion and dissipation coefficients satisfy
equality~69!, we obtain from Eq.~75! the following relations
which have to be fulfilled at any moment of time:

DppDqq2Dpq
2 5

\2l2

4
, ~76!

Dppsqq~ t !2Dpqspq~ t !2
\2l

4
50, ~77!

spq~ t !~DppDqq2Dpq
2 !2

\2l

4
Dpq50. ~78!

From relations~74! and ~76!–~78! it follows that the pure
states remain pure for all times only if the variances have
form

sqq~ t !5
Dqq

l
, spp~ t !5

Dpp

l
, spq~ t !5

Dpq

l
, ~79!

i.e., they do not depend on time. If these relations are
filled, then the equalities~72!, ~74!, and~76! are equivalent.
Using the asymptotic values of variances for an und
damped oscillator†given by Eqs.~3.53! in Ref. @9#‡ and re-
lations ~79!, we obtain the following expressions of the di
fusion coefficients which assure that the initial pure sta
remain pure for anyt(V25v22m2):

Dqq5
\l

2mV
, Dpp5

\lmv2

2V
, Dpq52

\lm

2V
. ~80!

Formulas~80! are generalized Einstein relations and rep
sent typical examples of quantum fluctuation-dissipation
lations, connecting the diffusion with both Planck’s consta
and damping constant@4,46#. With Eqs.~80!, variances~79!
become
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sqq5
\

2mV
, spp5

\mv2

2V
, spq52

\m

2V
. ~81!

Then the corresponding state described by a Gaus
Wigner function is a pure quantum state, namely, a co
lated coherent state@18# ~squeezed coherent state!, with the
correlation coefficient~4! r 52m/v. Given sqq , spp , and
spq , there exists one and only one such a state minimiz
the uncertaintys @Eq. ~2!# @47#. A particular case of Lind-
blad model~corresponding tol5m and Dpq50) was con-
sidered by Halliwell and Zoupas by using the quantum s
diffusion method@22#. We have considered general coef
cientsl and m, and in this respect our expressions for t
diffusion coefficients and variances also generalize the o
obtained by Dekker and Valsakumar@45# and Dodonov and
Man’ko @48#, who used models wherel5m was chosen. If
m50, we obtainDpq50 from Eq. ~80!. This case, which
was considered in Ref.@10#, where we obtained a densit
operator describing a pure state for anyt, is also a particular
case of our present results. Form50, expressions~81! be-
come

sqq5
\

2mv
, spp5

\mv

2
, spq50, ~82!

which are the variances of the ground state of the harmo
oscillator; the correlation coefficient isr 50, corresponding
to the usual coherent state.

The fluctuation energy of the open harmonic oscillator

E~ t !5
1

2m
spp~ t !1

1

2
mv2sqq~ t !1mspq~ t !. ~83!

If the state remains pure in time, then the variances are g
by Eqs. ~79! and the fluctuation energy is also constant
time:

E5
1

l S 1

2m
Dpp1

1

2
mv2Dqq1mDpqD . ~84!

Minimizing this expression with the condition~76!, we ob-
tain just the diffusion coefficients~80! and Emin5\V/2.
Therefore, the conservation of purity of state implies that
fluctuation energy of the system has all the time the m
mum possible valueEmin . The total energy of the open sys
tem is given by the mean value of Hamiltonian~67!:

^Ĥ&5
1

2m
^ p̂2&1

mv2

2
^q̂2&1

m

2
^q̂p̂1 p̂q̂&5

1

2m
spp~ t !

1
1

2
mv2sqq~ t !1mspq~ t !1

1

2m
sp

2~ t !1
1

2
mv2sq

2~ t !

1msp~ t !sq~ t !, ~85!

and, since the expectation values of coordinate and mom
tum decay exponentially in time@6,9#, the energy is dissi-
pated and reaches its minimum valueEmin .

If the asymptotic state is a Gibbs state@6,9#, then condi-
tion ~76! on the diffusion coefficients is satisfied only ifm
50 and the temperature of the thermal bath isT50. As in
the Agarwal and Weidlich-Haake models, discussed in S
ian
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te

e
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ic
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e
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n-

c.

III, in this limiting case the influence on the oscillator
minimal andEmin5\v/2, which is the oscillator ground stat
energy; the correlation coefficient~4! vanishes, and therefor
the correlated coherent state~squeezed coherent state! be-
comes the usual coherent~ground! state.

The Lindblad equation with the diffusion coefficients~80!
can be used only in the underdamped case, whenv.m.
Indeed, for the coefficients~80! the fundamental constrain
~69! implies thatm2(v22m2)Dqq

2 >\2l2/4, which is satis-
fied only if v.m. It can be shown@48# that there exist
diffusion coefficients which satisfy condition~76! and make
sense forv,m, but in this overdamped case we have alwa
s.\2/4 and the state of the oscillator cannot be pure for a
diffusion coefficients.

If we choose the coefficients of the form of Eq.~80!, then
the equation for the density operator can be represente
the form of Eq.~66! with only one operatorV̂, which up to a
phase factor can be written in the form

V̂5S 2

\Dqq
D 1/2F S l\

2
2 iD pqD q̂1 iD qqp̂G , @V̂,V̂†#52\l.

~86!

The correlated coherent states@Eq. ~6!# with nonvanishing
momentum average can also be written in the form

C~x!5S 1

2psqq
D 1/4

expF2
1

4sqq
S 12

2i

\
spqD

3~x2sq!21
i

\
spxG , ~87!

and the most general form of Gaussian density matrix co
patible with the generalized uncertainty relation~2! is

^xur̂uy&5S 1

2psqq
D 1/2

expF2
1

2sqq
S x1y

2
2sqD 2

1
ispq

\sqq
S x1y

2
2sqD ~x2y!2

1

2\2 S spp2
spq

2

sqq
D

3~x2y!21
i

\
sp~x2y!G . ~88!

These matrices correspond to the correlated coherent
~87! if sqq , spp , andspq in Eq. ~88! satisfy equality~2!, in
particular if the variances are taken of the form~81!. Con-
sider now the harmonic oscillator initially in a correlate
coherent state of the form of Eq.~87!, with the correspond-
ing Wigner function~7!. For an environment described b
the diffusion coefficients~80!, the Wigner function at timet
is given by

W~p,q,t !5
1

p\

3expH 2
2

\2 @spp„q2sq~ t !…21sqq„p2sp~ t !…2

22spq„q2sq~ t !…„p2sp~ t !…#J , ~89!
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with the constant variances~81!. The correlated coheren
state~squeezed coherent state! remains a correlated cohere
state with variances constant in time and withsq(t) and
sp(t) giving the average time-dependent location of the s
tem along its trajectory in phase space. In the long-time li
sq(t)50, sp(t)50, and then we have

^xur̂~`!uy&5S mV

p\ D 1/2

3expH 2
m

2\
@V~x21y2!1 im~x22y2!#J .

~90!

The corresponding Wigner function has the form

W`~p,q!5
1

p\
expF2

2

\V S p2

2m
1

m

2
v2q21mpqD G .

~91!

V. ENTROPY AND DECOHERENCE

Besides the von Neumann entropyS @Eqs.~13! and~14!#,
there is another quantity which can measure the degre
mixing or purity of quantum states. It is the linear entro
Sl , defined as

Sl5Tr~ r̂2 r̂2!512Tr r̂2. ~92!

For pure statesSl50 and for a statistical mixtureSl.0. As
is well known, the increasing of the linear entropySl ~and of
the von Neumann entropyS! due to the interaction with the
environment is associated with the decoherence phenom
~loss of quantum coherence! given by the diffusion proces
@23,24#. Dissipation increases the entropy, and the pure st
are converted into mixed states. The rate of entropy prod
tion is given by

Ṡl~ t !522 Tr~ r̂ ṙ̂ !522 Tr„r̂L~ r̂ !…, ~93!

whereL is the evolution operator. According to the theory
Refs. @23,24#, the maximally predictive states are the pu
states which minimize the entropy production in time. The
states remain least affected by the openness of the sys
and form a ‘‘preferred set of states’’ in the Hilbert space
the system, known as the ‘‘pointer basis.’’ Decoherence
the mechanism which selects these preferred states—
most stable ones under the evolution in the presence of
environment.

For the models of the damped harmonic oscillator cons
ered in this paper, we can obtain expressions for the rat
entropy production given by Eq.~93!. For Gaussian state
the linear entropy~92! becomes

Sl~ t !512
1

n
, n5

2

\
As, ~94!

and then the time derivative of the linear entropy is given
-
it

of

on

es
c-

e
m,

f
is
he
he

-
of

y

Ṡl~ t !5
1

n2

dn

dt
5

\

4sAs
Fdsqq~ t !

dt
spp~ t !1

dspp~ t !

dt
sqq~ t !

22
spq~ t !

dt
spq~ t !G . ~95!

From the system of equations~41!–~43! for the Karrlein-
Grabert model, we obtain

Ṡl~ t !5
\

2sAs
@M2Dp~ t !sqq~ t !2MDq~ t !spq~ t !2gp~ t !s#.

~96!

Suppose at the initial moment of timet50 the state is pure
When conditions~19! and ~20! for purity of states are ful-
filled for all t, the expression of the rate of linear entrop
becomes

Ṡl~ t !5
4

\2 FM2Dp~ t !sqq~ t !2MDq~ t !spq~ t !2
\2

4
gp~ t !G

50, ~97!

and then the entropy production has its minimum valueSl
50. For the thermal initial condition with coefficients~18!,
the rate of entropy production is given by

Ṡl~ t !5
\

2sAs
Fgp~ t !^p2&sqq~ t !

2S Mgq~ t !^q2&2
^p2&
M Dspq~ t !2gp~ t !s G ;

~98!

for strictly Ohmic damping it is

Ṡl~ t !5
\

2sAs
Fg^p2&sqq~ t !2S Mv0

2^q2&2
^p2&
M D

3spq~ t !2gsG . ~99!

For Drude damping the rate of entropy production is a
given by an expression like Eq.~98!, where nowgp52a and
gq5a21h2. When the condition for purity is fulfilled for
any t, the values of the rate of linear entropy given by Eq
~98! and~99! also become 0. According to the results of Se
III, if the condition for purity of states is fulfilled for anyt in
the Karrlein-Grabert model, then the Gaussian state will b
pure squeezed state, with variances that are constant in
At the same time the rate of linear entropy production va
ishes and, therefore, according to Zurek and co-worke
theory of decoherence, the most stable states are the
squeezed states, with constant variances. The same co
sion is valid for the weak damping model, given by the ma
ter equation~27!, for which the rate of entropy productio
has the expression
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Ṡl~ t !5
\2

2sAs
FKcsqq~ t !1

Ks

Mv0
spq~ t !2gc

s

\ G ,
~100!

while for the Agarwal model, given by the master equati
~28!, we obtain

Ṡl~ t !5
\2k

2sAs
FMv0 cothS \v0

2kBTDsqq~ t !2
2s

\ G .
~101!

Analogously, for Eq.~33! of Weidlich and Haake, the rate o
entropy production is given by

Ṡl~ t !5
\2gc

8sAs
F S Mv0sqq~ t !1

spp~ t !

Mv0
D cothS \v0

2kBTD2
4s

\ G ,
~102!

and, according to the results of Sec. III, for Agarwal a
Weidlich-Haake models, the usual coherent states are
most stable ones under evolution in the presence of the
vironment. Using Eq.~93! for the Lindblad equation~68!, we
obtain the following rate of entropy production:

Ṡl~ t !5
4

\2 FDpp Tr~ r̂2q̂22 r̂q̂r̂q̂!1Dqq Tr~ r̂2p̂22 r̂ p̂r̂ p̂!

2Dpq Tr„r̂2~ q̂p̂1 p̂q̂!22r̂q̂r̂ p̂…2
\2l

2
Tr~ r̂2!G

~103!

or, using Eq.~94! for Gaussian states,

Ṡl~ t !5
\

2sAs

3@Dppsqq~ t !1Dqqspp~ t !22Dpqspq~ t !22ls#.

~104!

If the initial state is pure, then according to the comple
positivity property of the Lindblad model, we have

Ṡl~0!5
4

\2 FDppsqq~0!1Dqqspp~0!22Dpqspq~0!2
\2l

2 G
>0, ~105!

which means that the linear entropy can only increase
that the initial pure state becomes mixed. When the s
remains pure, Eq.~104! becomes@cf. Eq. ~72!#

Ṡl~ t !5
4

\2 FDppsqq~ t !1Dqqspp~ t !22Dpqspq~ t !2
\2l

2 G
50, ~106!

and, therefore, the entropy production will beSl50. Since
the only initial states which remain pure for anyt are the
correlated coherent states, we can state that in the Lind
theory these states are the maximally predictive states.
present results, obtained in the framework of Karrle
he
n-

e

o
te

ad
he
-

Grabert and Lindblad models, generalize previous res
which asserted that for many models of quantum Brown
motion in the high temperature limit typical coherent sta
correspond to minimal entropy production and, therefore,
the maximally predictive states. As we have seen, such
herent states can be obtained in the Lindblad model a
particular case of the correlated coherent states by takinm
50, so that the correlation coefficient~4! is r 50. Zurek and
co-workers@23,24# considered a harmonic oscillator unde
going quantum Brownian motion in the Caldeira-Legg
model, and concluded that minimizing states, which are
tial states generating the least amount of von Neumann
linear entropy~and, therefore, the most predictable or sta
states under evolution in the presence of an environment! are
the ordinary coherent states. Using an information-theor
measure of uncertainty for quantum systems, Anderson
Halliwell showed in Ref.@25# that minimizing states are cer
tain general Gaussian states. Anastopoulos and Halliw
@26# offered an alternative characterization of these states
noting that they minimize the generalized uncertainty re
tion. According to this assertion, we can say that in the Lin
blad model the correlated coherent states are the most s
ones which minimize the generalized uncertainty relat
~2!. Our result confirms that of Ref.@26#, where the model
for the open quantum system consists of a particle movin
a harmonic oscillator potential and linearly coupled to
environment consisting of a bath of harmonic oscillators i
thermal state. We remind the reader that the Caldeira-Leg
model considered in Refs.@23,24# violates the positivity of
the density operator at short time scales@49,50#, whereas in
the Lindblad model the property of positivity is always fu
filled.

The rate of predictability loss, measured by the rate
linear entropy increase, was also calculated in the framew
of Lindblad theory for the damped harmonic oscillator
Paraoanu and Scutaru@27#, who have showed that, in gen
eral, the pure or mixed state which produces the minim
rate of increase in the area occupied by the system in
phase space is a quasifree state which has the same sy
try as that induced by the diffusion coefficients. For isotrop
phase space diffusion, coherent states~or mixture of coherent
states! are selected as the most stable ones. In order to g
eralize the results of Zurek and co-workers, the entropy p
duction was also considered by Gallis@28# within the Lind-
blad theory of open quantum systems, treating environm
effects perturbatively. Gallis considered the particular c
with Dpq50, and found that the squeezed states emerg
the most stable states for intermediate times compared to
dynamical time scales. The amount of squeezing decre
with time, so that the coherent states are most stable for la
time scales. ForDpqÞ0 our results generalize the result
Gallis, and establish that the correlated coherent states
the most stable ones under the evolution in the presenc
the environment.

VI. SUMMARY

In the present paper we have considered the genera
quantum master equations derived by Karrlein and Gra
@17# for the microscopic model of a harmonic oscillat
coupled to a harmonic bath. We have obtained conditions
purity of states for different initial conditions and differen
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types of damping, including strictly Ohmic, Drude, and we
coupling cases, and the Agarwal and Weidlich-Haake m
els. We have shown that the states which remain pure al
time are the pure squeezed states with well-determined v
ances that are constant in time. For pure states, we have
derived corresponding generalized Schro¨dinger-type nonlin-
ear equations. We have also studied a one-dimensional
monic oscillator with dissipation within the framework o
Lindblad theory, and have shown that the only states wh
stay pure during the evolution of the system are the co
lated coherent states, under the condition of a special ch
of environmental coefficients, so that the variances and
variance are constant in time. We have also obtained exp
sions for the rate of entropy production in the conside
models, and have shown that states which preserve thei
rity in time are also states which minimize the entropy p
duction and, therefore, are connected with the decohere
phenomenon. According to the theory of decoherence
W
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Zurek and co-workers, in Karrlein-Grabert and Lindbla
models, as well as in the particular models considered, th
states are the most stable ones under the evolution of
system in the presence of the environment. In a future w
in the framework of these theories we plan to discuss
greater detail the connection between uncertainty, deco
ence and correlations of open quantum systems with t
environment.
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