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Purity and decoherence in the theory of a damped harmonic oscillator
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For the generalized master equations derived by Karrlein and Grabert for the microscopic model of a
damped harmonic oscillator, the conditions for purity of states are written, in particular for different initial
conditions and different types of damping, including Ohmic, Drude, and weak coupling cases, and the Agarwal
and Weidlich-Haake models. It is shown that the states which remain pure are the squeezed states with
variances that are constant in time. For pure states, generalized nonlineadiSgirdype equations corre-
sponding to these master equations are also obtained. Then the condition for purity of states of a damped
harmonic oscillator is considered in the framework of Lindblad theory for open quantum systems. For a special
choice of the environment coefficients, correlated coherent states with constant variances and covariance are
shown to be the only states which remain pure all the time during the evolution of the considered system. In
Karrlein-Grabert and Lindblad models, as well as in the particular models considered, expressions for the rate
of entropy production are written, and it is shown that state which preserve their purity in time are also states
which minimize entropy production and, therefore, are the most stable state under evolution in the presence of
the environment, and play an important role in the description of decoherence phenomenon.
[S1063-651X99)00412-2

PACS numbds): 05.30—d, 03.65.Bz, 05.406-a

I. INTRODUCTION the path integral, and we obtain conditions for the purity of
states, in particular for different initial conditions and differ-

In the last two decades, more and more interest has ariséiit types of damping, including Ohmic, Drude, and weak
about the search for a consistent description of open quantufPupling cases, and the Agarwal and Weidlich-Haake mod-
systemg 1-5| (for a recent review, see RdB]). Dissipation els. We show that the states which satisfy the conditions of
in an open system results from microscopic reversible interPUrty are pure squeezed states with well-determined vari-
actions between the observable system and the environme(ifc€S that are constant in time. For pure states, we also de-

Because dissipative processes imply irreversibility and" V€ generalized Schinger-type nonlinear equations corre-

therefore, a preferred direction in time, it is generally thou htSponding to these master equations. The Lindblad theory for
-ap . . ' 9 y 9 open quantum systems is considered in Sec. V. For the one-
that quantum dynamical semigroups are the basic tools t

introd dissipation i hani h K flimensional harmonic oscillator as an open system, we show
introduce dissipation in quantum mechanics. In the Markoup 4 for a special choice of the diffusion coefficients, the

approximation and for weakly damped systems, the mOStorrelated coherent states, taken as initial states, remain pure
general forms of the generators of such semigroups wergy gl time during the evolution. In some other simple mod-
given by Lindblad[7]. This formalism was studied for the g|s of a damped harmonic oscillator in the framework of
case of damped harmonic oscillatpfs8—13, and applied to  quantum statistical theof20,21], it was shown that Glauber
various physical phenomena, for instance, to the damping Qdoherent states remain pure during the evolution, and in all
collective modes in deep inelastic collisions in nuclear physyther cases the oscillator immediately evolves into mixtures.
ics [13]. A phase space representation of open quantum sysn this respect we generalize this result and also our previous
tems within the Lindblad theory was given in Reff$4,15.  result from Ref[10] as well as the results of other authors
Important progress beyond the limitations of the weak cou{22] obtained by using different methods. In Sec. V we in-
pling approach was made in describing quantum dissipativgoduce the linear entropy; we present its role in the descrip-
systems by using path integral techniq(i#6,17. tion of the decoherence phenomenon, and we derive expres-
In the present study we are also concerned with the obsjons of the rate of entropy production. We show with
servable system of a harmonic oscillator which interacts with jndblad and Karrlein-Grabert models, respectively, that the
the environment. We discuss under what conditions the opegorrelated coherent states, and pure squeezed states, which
system can be described by a quantum mechanical pure statgifill the condition for purity of states, are also the most
In Sec. Il we present the generalized uncertainty relationstaple states under evolution in the presence of the environ-
and the correlated coherent states, first introduced in Refnent, and make a connection with work done in this field by

[18], which minimize these relations. In Sec. Ill we considerother author§23—2§. Finally, a summary is given in Sec.
generalized quantum master equations derived by Karrleify,

and Grabert in Ref[17] for the microscopic model of a
harmonic oscillator coupled to a harmonic bgtB] by using [l. GENERALIZED UNCERTAINTY RELATIONS

In the following we denote byraa=(A?)—(A)? the dis-
*Electronic address: isar@theorl.theory.nipne.ro persion of the operatoA, where(A)=o,=Tr(pA), Trp
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=1, andp is the statistical operatofdensity matrix. By ~ where o, and o, are the expectation values of coordinate
oas=(AB+BA)—(A)(B) we denote the correlatiofco- ~and momentum, respectively. This is the classical normal
variance of the operatorsh and B. Schralinger[29] and  distribution with the dispersions

Robertsor{30] proved that for Hermitian operatofs andB 52 hr
and for pure quantum states the following generalized uncer-  04q= 7, Tpp= 7T 22 Tpa— 5z (8
. : _ 4n°(1-r7) 2(1-r°)
tainty relation holds:
2 1R Ao and the correlation coefficient The Gaussian distribution
oan0s~ 0ag=1[([AB])|". (1) (7) is the only positive Wigner distribution for a pure state
) [31]. All other Wigner functions that describe pure states
For the particular case of the operators of momenfuemd  npecessarily take on negative values for some valugsanfd

coordinatef], the uncertainty relatioil) becomes a.
5 In the case of relatioril) the equality is generally ob-
i . . .7
=G g2 = ®) tained only for pure states. For any density matrix in the
pPTAa TraT 4 coordinate representatignormalized to unitythe following

relation must be fulfilled:
This result was generalized for arbitrary operatanggeneral

non-Hermitian and for the most general case of mixed states 1 2
in Ref. [18]. Inequality (2) can also be represented in the ;=Tr pr=1. ©)
form
5 The quantityr characterizes the degree of purity of the state:
- h 3) for pure stateg=1 and for mixed states>1. In the lan-
Tpp9a0~ 2(1-r2)" guage of the Wigner function conditid®) has the form
where 1 2
;=2wh W4(p,q)dp dg=1. (10
g
r= \/—p—q (4) Let us consider the most general mixed squeezed states
OppYqq described by the Wigner function of the generic Gaussian

. . - I s form with five real parameters:
is the correlation coefficient. The equality in relati@®) is P

realized for a special class of pure states, called correlated 1 1

coherent states or squeezed coherent states, which are reprgy(p,q) = ——=exp — 5—[op(q— 0¢)?+ oqq(P— 0p)?
sented by Gaussian wave packets in the coordinate represen- 2m\o 20

tation. These minimizing states, which generalize the

f%lrar\#ber coherent states, are eigenstates of an operator of the —20p¢(q—0g)(P— Up)]] ; (11
1 ir ” where ¢ is the determinant of the dispersignorrelation
ar,n:ﬂ 1- (1-r9)2 q+i2p, (5  matrix
. . Opp  Tpq
with real parameters and 7, [r|<1, and 7= o, Their o o]
normalized eigenfunctions, denoted as correlated coherent Pa - ~aq
states, have the form Here o is also the Wigner function area—a measure of the
5 ) phase space area in which the Gaussian density matrix is
W (q)= 1 exp[ _ iz[l— I } localized. For Gaussian states of the form of Etf), the
up?)* 47 (1-r?3)T? coefficient of purityv is given by
aq 1 2
+7—§(a2+|a|2)], (6) V:ﬁ\/;' (12)

with  a al/gomplex number. If we set=0 and 7 |nequality (2) must be fulfilled actually for any states, not
=(h/12mw)~*, wherem and w are the mass and the fre- only Gaussian. Any Gaussian pure state minimizes relation
quency of the harmonic oscillator, respectively, st@ebe-  (2). For o>#%2/4 function (11) corresponds to mixed quan-
comes the usual Glauber coherent state. In Wigner represefim states, while in the case of the equality: 7%/4 it takes

tation, the staté6) has the form the form of Eq.(7) corresponding to pure correlated coherent
5 5 states.
W, ,(p,q)= —ex;{ _ M_ Zl(p_a )2 The degree of the purity of a state can also be character-
AN h 27°(1—r?) A2 P ized by the quantum entropyve put the Boltzmann’s con-
stantkg=1):

2r
T r=rA (P oy, (7) S=—Tr(pInp)=—(Inp). (13)
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2

For quantum pure states the entropy is identically equal to 3
M2D (1) oqq(t) = MDg(t) orpq(t) — 7 7p(D=0, (19

zero. It was showh12,32 that for Gaussian states with the

Wigner functions(11), the entropy can be expressed through
o only: and, by inserting expressioi$8),
v+1 v+1

7 N

v—ll v—1
2 "o

(p%) 2

2
’ V= ﬁ \/; (14) V qu(t)_ Z Yp(t)

7p(t)<p2>0'qq(t) -|M ?’q(t)<q2> -

0. (20)

Ill. GENERALIZED QUANTUM MASTER EQUATIONS

In the framework of the standard microscopic model (b) For factorizing initial conditions, that is, if the initial
[19,32-3§ for the damped harmonic oscillator, it was shown density matrix of the entire system factorizes in the density
in Ref.[17] that in general there exists no exact master equamatrix of the oscillator and the canonical density matrix of
tion for the damped harmonic oscillator, the unperturbed heat baf34,36—38, i.e., if the oscillator
and bath are uncorrelated in the initial state, then the result-
ing master equation is equivalent to the result by Haake and
Reibold[37], who derived it directly from microscopic dy-

) o o o namics and by Hu, Paz, and Zhaf8&9] from the path inte-
with a dissipative Liouville operator describing the dy- 45| representation. The condition for purity of states for
namics of the oscillator and independent of the initial stateSyyase master equations has also the form of(E@), where

For specific initial preparations the time evolution is de- 0w the coefficients are given by Eq87) and(89) in Ref.
scribed exactly by a time-dependent Liouville operator, an 17].

the resulting master equation for the damped harmonic oscil- gq, 54 pure statp(t) = | ()} ¥(t)|, from Eq.(17) we can

a
St P(O=Lp(V), (15

lator with the Hamiltonian

1

Mw(z)
Ho=om P+ 2 @

— (16
corresponding to this Liouville operatpgiven by Eq.(40)
of Ref.[17]], has the following general forrt{,} denotes the

anticommutator of two operators
't——i 2t—th2t—i t
p(t) == 5 [P p(1)]= 57 ¥a(D[A% p(1)] = 5 (1)

M
X[a,{p,p(O}]+ 72 Dg(Ip.[a,p(1)]]

2
— 2 Dy(Olala.p()]]. (17
The dependence apy, is included in the coefficients of com-
mutators.
(a) For the so-called thermal initial conditid86], which

obtain the evolution equation for the wave functigft) as
an equation of the Schdinger type:

dy(t)

i
—ar - phv. 21

Taking into account the condition for purity of statgsq.
(19)], we find the non-Hermitian Hamiltonian

. PP M , 1
H'=ou T 2 7ba +Evp(t)(quFO‘p(t)q—Uq(t)p)

iM
+ '7 Do(t)(p—op(1))(@— og(1))

2

iM ,
- =Dy (@ o), 22

which depends on the wave functigift) via the expectation
values o and o, i.e., this Schrdinger-type equation is

can be used to describe initial states of the entire systefonlinear.

(oscillator and bathresulting from position measurements,
Dy(t) andD(t) can be written as

(p?) (p%)
Dq(t):'}’q(t)<q2>_Wa Dp(t):')’p(t)W- (18
Here y,(t) andyy(t) and the equilibrium variances?) and
(p?) are given in terms of the equilibrium coordinate auto-
correlation function(q(t)q).

We now derive the necessary and sufficient condition for

p(t) to be a pure state for all timeg(t) is a pure state if and
only if Tr p?(t)=1. This is equivalent with d/dt) Trp?(t)
=0 for all times, i.e., with the condition s(t) Lp(t))=0.
With the explicit form of Lp(t) given by the right-hand side
of Eq. (17), and using the relationp?(t)=p(t) and
p(D)Ap(t)=Tr(p(t)A)p(t), we obtain the following condi-
tion for a state to be pure for all times:

The master equations considered up to now in this section
are exact. We now consider particular types of damping for
which the dynamics can be described in terms of approxi-
mate Liouville evolution operators, valid for arbitrary initial
stateq17]. Then the evolution operator is time independent,
and the master equation for the density matrix obeys Eg.
(17), whereD(t)=D4 andDy(t)=D,, read

2 2
Dq:')’q<q2>_<|8|_2>v Dp: 'Yp%a (23
with time-independent coefficientg, and y, [17].

(1) For strictly Ohmic damping,y,=v is the Laplace
transform of the damping kern¢l7,19 of the model and
Yq= 2. In this case we do not have a well-defined Liouville
operator sincép?), and, therefore, the coefficienBs, and

D, given by Eq.(23) are logarithmically divergent. The con-
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dition for purity of states for this strictly Ohmic damping is Ks
similar to relation(20), only now the coefficients are con- Keoqa(O+ - qu(t) 770 (29
stant:
and,
) ) <p2> h
7<p >qu(t) Mw0<q >_ O'pq(t) 4 y=0. hwo 3
(24) M w cot 2kgT ()= 5 (30

(2) A more realistic case is the so-called Drude dampingrespectively. The corresponding Sctlimger-type equations
For a sufficiently large Drude parametep and sufficiently  for a pure state have the Hamiltonians

high temperaturdkgT>7 vy, the oscillator dynamics can be

described by an approximate Liouville operator with the co- p? M 5 , 1
efficients H'=5y T 3 (@0t @07s)a™+ 5 vc(Ap+ap(1)a—og()p)

_ 2 2 _ :
K@= og()*= 1= (P~ 0p()(@= 0g(t) (3D
where « and » depend ony, wg, and wp, and then the 0

condition for purity of states is and
(p 2> ﬁ2 Y
2a(p?)oqq(t) —| M(a?+ 7°)(0%) — ~== | opg(t) — - @=0. H = ZpM + —w0q2+ k(qp+op(t)q—og(t)p)
(26)
hw
For a pure state, the Sclfiager equatior(21) correspond- —ikMawg COt"( ﬁ) (q—oq(1)% (32

ing to the master equation with Ohmic damping has the
Hamiltonian(22), with the coefficients given by E@23) and  egpectively.

with y,=y andyq= . A similar result holds for the Drude  (4) Al the above presented time-independent Liouville
damping, when we take the coefficier5). operators are not of Lindblad form. In R¢L.7] it is shown

(3) In Ref. [17] it was shown that in the limit of weak that in the weak coupling limit, further coarse graining will
damping the general master equation has the following formgesult in a Lindblad operator. Indeed, for weak damping, the

5 master equatiori27) simplifies and takes on the following

. P M, 2 form, written in terms of usual creation and annihilation op-
t)=— |5+ + 5 (0§+ t ’
PO==7 oy T 7 (@0t @0y d%p(D) eratorsa’ anda:
[q {P.p(O}H— 5 Mh [p [9,p(t)]] p(t)=— a)0+ >I[ata,p(t)]+ ¥ ((aTp(1),a]
Ke +[aT,p(t>a])+ v/ ([ap(t),a"]+[a,p(t)a’]),
— 7 [ala.p®]] (27)
(33

This equation is given in terms of four dissipation coeffi-\yhere
cients: y, leads to a frequency shift and may be absorbed by
renormalizingwg; v is the classical damping coefficient; the . fhwg
coefficientsK s andK . depend on the temperatuke, can be Y11= | cot 2kaT *1 (34

calculated analytically only in certain cases. One of these is

the Drude model. The master equati@T) is a generaliza-  This equation, first derived by Weidlich and Hadkd] from
tion of the Agarwal equatiof40] a microscopic model for the damped motion of a single
mode of the electromagnetic field in a cavity, is of Lindblad

. i|p? M S form, and can be obtained formally as a particular case of the
PO="F15m " 2 o%.p(t) |- [q,{p,p(t)}] general master equati@f8) for the damped harmonic oscil-
lator (see Sec. IV, if we take
Mwo hwo 28
K o 5T [a.[a.p(1)]], (28) Moy ok
Dpp=——=—(vi 7). qu—m(n"‘ Y1),

which was derived with the help of projection operator tech- (35)
nigues from the same microscopic model using the Born Dpg=0, A=(y,—y;), w=0.

approximation in conjunction with a short memory approxi-
mation. As a main difference, in Agarwal's equation the  From Eq.(33) we obtain the following condition for purity
term is absent. Here is a phenomenological damping coef- of states:
ficient.

From Egs.(27) and (28), we obtain the following condi-

ﬁwo
tions for purity of states: 2 COtI‘( 2kBT) ara()=1, (36)
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or, in terms of coordinate and momentum, direct substitution op into Eq.(39), we obtain the following
system of equations satisfied by dispersions of coordinate
+
(Mwoaqq(t) M e cot PKaT

and momentum:
For a pure state, the Sclilinger-type equation correspond-
ing to Eq.(33) has the Hamiltonian

=h. (37)

dogq(t) 2

dt = M(qu(t), (42

dop,(t)
pptt) 2
y 1 y hog at =—=29p0pp(1) =2M 4o (1) +2M“D,,,
r— iz LS —g.at+ i LS
H' =H+i#% 5 | Tatd— 0a + 5 if 5 cotI—( 2kBT) (42
dapq(t) 1
X (aT—oaT)(a—aa)+§ , (39 at ~Myqoqq(D)+ 37 Tpp(D) = ¥popg(t) ¥ MDy.
(43

with the notationH =7 (w+ ys/2)a'a. Taking into account Introducing the notation
condition (37), we see that the mean values of the two
HamiltonianTHhanSH’ are equal{H)=(H"). e Cedb m\/y—ngq(t)

In general, the dissipative systems cannot be described by _
pure states or by Schdinger equations, because the environ- () Upp(t)/r?m ' (44)
ment produces transitions in any state basis. Nevertheless, Tpall)

we will show that this can happen in very limiting cases, 5 soving this system of equations with the method used in
corresponding to certain special states. In order to find in th?&efs [6,9], we obtain the solution

general Karrlein-Grabert model the states which remain pure

during the evolution of the system, we consider the equations X(t)=T(X(0) — X())+ X(), (45)
of motion for the second order moments of coordinate and

momentum. To obtain these equations, we first derive thevhere the matrixT is

evolution equatior(17) with the coefficient423) in a coor-

dinate representation: ot b1y bio byg
9 52 [ 92 52 M T=-2 02 D1 b2 bas|, (46)
p Y
e m(m‘ a—yz)'” 2 XY o bz Bas
|ﬁy p with time-dependent oscnlatlng functionts; (i,j=1,2,3)
M rp 2_
)| —— = — given by Q%=4y,— v2):
—— (X y)(&x 2y p+MDgy(x—y) 9™ ¥p
2
b% Q
Ja d b= (—p— 7q> cosQt— yp—-sinQt— 1y, (47)
X(&X &y)p ﬁM Dp(x— y)%p. (39 2 2
b1o=y,(cosQt—1), 48
The first two terms on the right-hand side of this equation 12= %o ) 48
generate a purely unitary evolutigwith a renormalized po- _ — 0 sinOt— 4
tentia). The third term is the dissipative term, and the fourth big=Vrq(¥p cOSQL - QA sinOL - yp), 49
is the so-called “anomalous diffusion” term, which gener- b= yq(COSQt— 1), (50)

ates a second derivative term in the phase space representa-
tion of the evolution equation, just like the ordinary diffusion 2
. : . L ) Yo Q
term. The last term is the diffusive term, which is responsible b= | 5 — vq| COSQt+ v, sinQt— v, (51)
for the process of decoherence. Since the considered dynam- 2 2
ics is quadratic, we consider a density matrix solution of Eq.

(39) of the form bas= \¥4( vp COSQt+Q sinQt—y,), (52
Xp(ly) = (ﬁ) v bay=— \/y—q(%cosﬂt— %sinﬂt— %) NGE)
xex;{— 8¢rq1q(t)(x+y)2+ Ziﬁip—(‘:(;i)(xz—yz) b32=—\/7—q(§cosﬂt+%sinm—%), (54)

% opp(t) '2):23) (x=y)?|, (40) bss= — 274 COSOt+ %S (55)

which is the general form of Gaussian density matriggth ~ The asymptotic values of variances and covariance have the
zero expectation values of coordinate and momenty  following expressions:
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Dp+vpDyq |\/|2Dp that the dispersions have to satisfy the equalities
Oqq(®)=—————, opp(®)=———, opy(*)=0.
qq YoYa | PP y, | pd
pYq p
(56) o (t)— ﬁMchot’ﬂ( hwo)
PR 2 2kgT)’

Introducing expression@3) for the coefficientd, andD,

we obtain the following equilibrium asymptotic values of the 2 2
dispersions: Tpp(t) =M wgoqq(t), opg(t)=0. (64)

0qq(©)=(0%), opp(*)=(p?), 0po(*)=0. (570 Relations (62) and (64) are compatible only if
cothfrwg /2kgT) =1, that is only when the temperature of the

If the asymptotic state is a pure state, then thermal bath isST=0. Then finally we obtain

ﬁ2
qu(m)ffpp(oc):<q2><p2>=z, (58 h AMwq
UqQZZMwO’ Tpp=" 5

0pq=0, (65

i.e., it is a squeezed state. Introducing the expressions of
Tqq(t) and ope(t) given by Eq.(45) in the condition for  and, therefore, in the particular case of the Agarwal model,
purity of state§Eqgs.(19) and(23)], we have shown, after a the usual coherent state is the only state which remains pure
long but straightforward calculation, that this condition is for all times, if the temperature i$=0. In this case the
fulfilled, for any timet, only if the initial values of disper- fluctuation energy of the harmonic oscillator keeps all the
sions are equal to their asymptotic values: time its minimum valueE ,,=%wy/2. Relation(61) shows

that in this case the total energy is also dissipated and
Tqa(0)=0qq(*),  Tpp(0)=0pp(),  0pg(0)= qu(oogé reache<,,,,. The same results can be obtained for the model

(59 of Weidlich and Haake, described by the evolution equation

Then it follows from Eq.(45) that X(t) =X(); that is, the ~ (33)- Indeed, this model is a particular cdsé Eqgs.(35)] of
dispersions have constant values in time, given by(gg.  the Lindblad model considered in Sec. IV, and from the pu-
Therefore, the state which preserves its purity in time idity condition (37) it follows again that the coherent state is
given by the density matrix40), i.e., it is a squeezed state, the only state which preserves its purity during the evolution
with the well-determined constant varianceg, and o,, " time of the system, for a zero temperature of the thermal

[Eq. (57)]. The fluctuation energy has also a constant valu@@th. The importance of the states which preserve their pu-
in time: rity in time will become evident in Sec. V, in the context of

a discussion of the decoherence phenomenon.
= (pd)+ Mod g2 60
S 2M {P%) 2 (@. (60 IV. PURITY OF STATES IN THE LINDBLAD MODEL

At the same time, the total energy of the open system is We now consider the condition for purity of states in the
given by the mean value of the Hamiltoni&t6), Lindblad model for the damped harmonic oscillator, based

. on quantum dynamical semigrouf3,7,§. The most gen-

1 g 1, eral Markovian evolution equation preserving the positivity,
(Ho)= 507 opp() + —— 0qq() + 57 op(D) hermiticity, and trace op can be written as
2 .
w5, dp(t) i . 1 .
5 og), (62) a9t~ plHAMmIF ﬁ; Vip(t), V]
and, since the expectation values of coordinate and momen- +[V},p(tVID). (66)

tum decay exponentially in timgl9], the energy is dissi-

pated and reaches the minimum valdeln the particular . o -

case of Agarwal model, the purity conditi¢80) shows that Here H is the Hamiltonian operator of the system, avid

the variance of coordinate must also be constant in time: andV! are operators on the Hilbert spageof the Hamil-
tonian which model the interaction with the environment. In
the case of an exactly solvable model for the damped har-

oM . wq monic oscillator we take the two possible operat@ssand
®o €O 2kgT V, linear in p and § [6,8,9 and the harmonic oscillator

_ _ g _ _ _HamiltonianH is chosen to be
Using this condition, we find, from the equations of motion

(41)—(43) written for the Agarwal model, when we have to

Jq q( t)= (62

1 Mw
take o o Paniaay O w2, 9L
b ook fhwg D -0 B Y
p=m O 2kgT)’ 9 O YT YT %o With these choices the master equati66) takes the follow-

(63) ing form [6,9]:
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dp i . i o i In order to find the Gaussian states which remain pure
==~ 7[Ho.pl= 57 N+ w)[A,pPp+Ppl+ 55 (A=) during the evolution of the system for all timéswe con-

dt h 2% 2% . " ;

sider the pure state conditidri2) and the generalized uncer-
tainty relation for pure states:

ﬁZ
Doo Tpp(1) 0gq(t) — Tpg() = 7. (74)
+57 ([6,[p.p11+[P.[9,21D- (68)

By eliminating o,,, between equalitie§72) and (74), as in

The quantum diffusion coefficien3 andD,q and Ref. [45], we obtain

pp+ Daa:
the dissipation constantsatisfy the fundamental constralnts 1 2
[6,9]: Dpp>0, Dyq>0, and D pq@pq(t) + ZﬁZ)\
,  hA? Tqq(t) ~ Dpp
DppDaq— D™ 7 (69) . ,
DpoDgq— D2 27Ny
Relation (69) is a necessary condition that the generalized L Tp) = =
uncertainty inequality2) is fulfilled. Dop DppDgq—Dpqg
By using the complete positivity property, it was shown in 1
[9] that the relation 1 DppDaq— Zq_ Zﬁz)\z
-t - . 2" bbbz DeePun
Tr(ﬁ(t)Z v}vj) = Trp(HV)HTr(B(HV) (70 PP=ad =pg
J J =0. (75)

represents a necessary and sufficient conditiop oy to be  Since the diffusion and dissipation coefficients satisfy in-
a pure state for all times=0. This equality is a generaliza- equality(69), we obtain from Eq(75) the following relations

tion of the pure state conditiopd2-44 to all Markovian  which have to be fulfilled at any moment of time:
master equation6). If p2(t)=p(t) for all t=0, then there

exists a wave functionye® which satisfies a nonlinear , hA\?
Schralinger equation with the non-Hermitian Hamiltonian DppDqq=Dpe= 4 (76)
A OO (.S Ao\
=H+i2 (P, Vid())V) = 5 (4(b), 2, ViV ) Dpp049(t) = Dpgopa(t) = —— =0, (77)
EESRAS (72) 2 A
2 7 I qu(t)(Dpquq_qu)_TquZO' (78
For the damped harmonic oscillator the pure state conditiofrrom relations(74) and (76)—(798) it follows that the pure
(70) takes the forni9] states remain pure for all times only if the variances have the
form
A2\
Dppaqq(t)+quapp(t)—Zquopq(t)zT, (72 D Dpp

D
Taq()=—1 o= o)== (79

and Hamiltonian(71) becomes e., they do not depend on time. If these relations are ful-
i filled, then the equalities72), (74), and(76) are equivalent.
A =H+\ Da— (D)D)= —| D (@ — o.(1))? Using the asymptotic values of variances for an under-

(p(Da=o4(HP) ﬁ{ (@ q(t) damped oscillatofgiven by Eqs(3.53 in Ref.[9]] and re-
lations (79), we obtain the following expressions of the dif-
fusion coefficients which assure that the initial pure states
remain pure for any(Q?= w?— u?):

+Dqgq(P— 07p(1))*~ Dpg( (B~ (1))@~ (1))
. R \A?
+@—o())P—op(1) ~ .

(73

5 AN 5 Axmw? 5 AN (0
9 om0’ PP 20 ' “PdT T o0 ¢

It is interesting to remark that the mean value of this Hamil- 2med 24 24}

tonian in the statep(t) is equal to the mean value of the Formulas(80) are generalized Einstein relations and repre-

HamiltonianH. From a physical point of view this result is sent typical examples of quantum fluctuation-dissipation re-

quite natural, since the average value of the new Hamiltoniations, connecting the diffusion with both Planck’s constant

H’ describing the open system must give the energy of thand damping constafi,46]. With Eqgs.(80), varianceg79)

open system. become
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h Emw? hu [, in this limiting case the influence on the oscillator is
9= oma TP pq 0 “pa= “5qc 8D minimal andE,,=%w/2, which is the oscillator ground state
energy; the correlation coefficie(t) vanishes, and therefore
Then the corresponding state described by a Gaussidhe correlated coherent statequeezed coherent statiee-
Wigner function is a pure quantum state, namely, a correcomes the usual coherefground state.
lated coherent stafel8] (squeezed coherent statevith the The Lindblad equation with the diffusion coefficier&0)
correlation coefficient4) r=—u/w. Givenoyg, o,p, and  Can be used only in the underdamped case, Wwhenu.
0pq. there exists one and only one such a state minimizingndeed, for the coefficiente30) the fundamental constraint
the uncertaintyo [Eq. (2)] [47]. A particular case of Lind- (69 implies thatm?(w?— u?)Dj,=%:2\?/4, which is satis-
blad model(corresponding to.=u andD,4=0) was con- fied only if o>pu. It can be showr{48] that there exist
sidered by Halliwell and Zoupas by using the quantum stat@liffusion coefficients which satisfy conditioi76) and make
diffusion method[22]. We have considered general coeffi- sense fow < u, but in this overdamped case we have always
cients\ and u, and in this respect our expressions for theo>%2/4 and the state of the oscillator cannot be pure for any
diffusion coefficients and variances also generalize the onediffusion coefficients.
obtained by Dekker and Valsakuma5] and Dodonov and If we choose the coefficients of the form of E§0), then
Man’ko [48], who used models whete=u was chosen. If the equation for the density operator can be represented in
#=0, we obtainD,,=0 from Eq. (80). This case, which the form of Eq.(66) with only one operato¥, which up to a
was considered in Ref10], where we obtained a density phase factor can be written in the form
operator describing a pure state for anis also a particular

case of our present results. Far=0, expression$81) be- R 2 \YA I\t . . S
B h B Aimw o 82 (86)
7997 2 TPPT 2 v TpaT The correlated coherent staf&sy. (6)] with nonvanishing

. . ‘momentum average can also be written in the form
which are the variances of the ground state of the harmonic
1\ 1 . 2i
2704q ex 40qq % pa

oscillator; the correlation coefficient is=0, corresponding
: (87)

to the usual coherent state. ¥ (x)=
The fluctuation energy of the open harmonic oscillator is

i
><(X—0'q)2+ %O'pX

1 1
E(t)= %app(tw Emwzaqq(twﬂapq(t). (83

veﬁnd the most general form of Gaussian density matrix com-

If the state remains pure in time, then the variances are gi . . : ; o)
b 9 npatlble with the generalized uncertainty relati@ is

by Egs.(79) and the fluctuation energy is also constant i

time: 1 |12 1 (x+y 5
L L I L
-t tp il +uDogl. (84) 2moqq 2049\ 2
X\ 2m PPT o qq Pq _ ,
10pq x+y_ _y)— i Opq

Minimizing this expression with the conditiofr6), we ob- hogg| 2 7q| (XY 272\ Tpp aq
tain just the diffusion coefficient480) and E,,=%)/2. )
Therefore, the conservation of purity of state implies that the o2, b _
fluctuation energy of the system has all the time the mini- XXyt h Tp(X=Y) |- (88)

mum possible valu&,,,. The total energy of the open sys-
tem is given by the mean value of Hamiltoniésv): These matrices correspond to the correlated coherent state
(87) if 0qq, opp, @andoyq in Eq. (88) satisfy equality(2), in

. 1 Mo? yn i i i -
_ sy Mo o particular if the variances are taken of the fo(81). Con
(H)= 2m<p I 2 @9+ 2 (ap-+pa)= 2mapp(t) sider now the harmonic oscillator initially in a correlated
1 1 . coherent state of the form of E(B7), with the correspond-
T2 -2 ) ing Wigner function(7). For an environment described by
* pme Tad 1) TR opg(t) 2m 7p(OF pme 74t the diffusion coefficient$80), the Wigner function at timé
is given by
+po(t)og(t), (85
and, since the expectation values of coordinate and momenyp, q,t)= L
tum decay exponentially in timgs,9], the energy is dissi- mh
pated and reaches its minimum valgg;,, . 2
_ If the asymptotic state is a Q!bbs ;tétﬁgl, t.hen concﬁ— Xexp{ — ?[gpp(q_gq(t))u qu(p—ap(t))2
tion (76) on the diffusion coefficients is satisfied only if

=0 and the temperature of the thermal batiis0. As in
the Agarwal and Weidlich-Haake models, discussed in Sec. —20p4(q—og())(p—op()] ], (89
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with the constant variance@1). The correlated coherent

i . 1 dv fi [dogq(t) dopp(t)
state(squeezed coherent statemains a correlated coherent  S(t)= — qi . %ep t)+ T Tqq(t)
state with variances constant in time and wit}j(t) and v dt 4g\o t t
o,(t) giving the average time-dependent location of the sys- oo o(t)

Pq

tem along its trajectory in phase space. In the long-time limit _2—0pq(t)} (95)
a4(t)=0, op(t)=0, and then we have dt

1/2 From the system of equatiorig1)—(43) for the Karrlein-
(X|p()|y)= p— Grabert model, we obtain
v
m 2002\ 1 2,2 ¢ h 2
X ex —%[Q(X Ty Hipn(x*—y9)];. S(t)=—=[M Dp(t)o'qq(t)_MDq(t)qu(t)_'}’p(t)o']-
20'\/;
(90) (96)
The corresponding Wigner function has the form Suppose at the initial moment of time=0 the state is pure.

When conditiong(19) and (20) for purity of states are ful-
p2 filled for all t, the expression of the rate of linear entropy

m
o262 becomes
2m+ 5@ q +MPQ) .
©n 4 12
S(t)=p MZDp(t)oqq(t)—MDq(t)opq(t)—Zyp(t)

1 2
W..(p,q) = s ey

V. ENTROPY AND DECOHERENCE

=0, (97)
Besides the von Neumann entropyEgs.(13) and(14)],

there is another quantity which can measure the degree ofyq then the entropy production has its minimum vaSje
mixing or purity of quantum states. It is the linear entropy —_For the thermal initial condition with coefficientas),

S, defined as the rate of entropy production is given by

S=Tr(p—p*)=1-Trp% (92 5
S(t)= m { Yo(1)(P?) ogq(t)

For pure state§=0 and for a statistical mixtur&>0. As

is well known, the increasing of the linear entropy(and of (p?)

the von Neumann entrop$) due to the interaction with the — ( M 7q(t)<q2>— —) o) = yp(Do|;
environment is associated with the decoherence phenomenon M

(loss of quantum coherencgiven by the diffusion process (98)

[23,24). Dissipation increases the entropy, and the pure states
are converted into mixed states. The rate of entropy produgyy strictly Ohmic damping it is
tion is given by

S(H)=—2Tr(pp)=—2Tr(pL(p)) (93) ' t)——ﬁ 2y orgq(t) = | Mg 7y &
S(t)= (pp)= r(pL(P)), Si( = 20le (P ogq wo(d%)~

where/ is the evolution operator. According to the theory of
Refs.[23,24], the maximally predictive states are the pure Xopg(t) —vyo
states which minimize the entropy production in time. These

states remain least affected by the openness of the system, _ S
and form a “preferred set of states” in the Hilbert space of FOr Drude damping the rate of entropy production is also

the system, known as the “pointer basis.” Decoherence ig!VeN E’y an expression like E(P8), where nowy, =2« and

the mechanism which selects these preferred states—ti =@+ 7°. When the condition for purity is fulfilled for

most stable ones under the evolution in the presence of tHY . the values of the rate of linear entropy given by Egs.

environment. (98) and(99) also become 0. According to the results of Sec.
For the models of the damped harmonic oscillator consid!!l if the condition for purity of states is fulfilled for anyin

ered in this paper, we can obtain expressions for the rate dhe Karrlein-Grabert model, then the Gaussian state will be a

entropy production given by Eq93). For Gaussian states PU'® squeezed state, with variances that are constant in time.
the linear entropy92) becomes At the same time the rate of linear entropy production van-

ishes and, therefore, according to Zurek and co-workers’
theory of decoherence, the most stable states are the pure
1 2 . i
S(t)=1-=, v=-1o, (94)  squeezed states, with constant variances. The same conclu-
4 h sion is valid for the weak damping model, given by the mas-
ter equation(27), for which the rate of entropy production
and then the time derivative of the linear entropy is given byhas the expression

. (99
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_ 52 K o Grabert and Lindblad models, generalize previous results
S(t)= ——=|Keogq()+ M—Squ(t)— %ﬁ}, whic;h a_sserted_that for many m9d<_als of guantum Brownian
20\o “o motion in the high temperature limit typical coherent states

(100 correspond to minimal entropy production and, therefore, are
the maximally predictive states. As we have seen, such co-
herent states can be obtained in the Lindblad model as a
particular case of the correlated coherent states by tgking
o 20 =0, so that the correlat.ion coefficie() is.r=0. .Zurek and
M w, cot)-( _°> Taq(t) — _} co-workers[23,24 considered a harmonic oscillator under-
2kgT h going quantum Brownian motion in the Caldeira-Leggett
(101) model, and concluded that minimizing states, which are ini-
- tial states generating the least amount of von Neumann or
Analogously, for Eq(33) of Weidlich and Haake, the rate of i ooy entropy(and, therefore, the most predictable or stable
entropy production is given by states under evolution in the presence of an environnazat
the ordinary coherent states. Using an information-theoretic
Mo Tpp(t) hwo _ 4_" measure of uncertainty for quantum systems, Anderson and
00qq(t) + M cot KT Pl . . A
(o5 B Halliwell showed in Ref[25] that minimizing states are cer-
(102  tain general Gaussian states. Anastopoulos and Halliwell
) [26] offered an alternative characterization of these states by
and, according to the results of Sec. Ill, for Agarwal andnoting that they minimize the generalized uncertainty rela-
Weidlich-Haake models, the usual coherent states are thgyn. According to this assertion, we can say that in the Lind-
most stable ones under evolution in the presence of the efljad model the correlated coherent states are the most stable
vironment. Using Eq(93) for the Lindblad equatiot68), we  ones which minimize the generalized uncertainty relation
obtain the following rate of entropy production: (2). Our result confirms that of Ref26], where the model
4 for the open quantum system consists of a particle moving in
h

while for the Agarwal model, given by the master equation
(28), we obtain

ﬁZ

c “)—___f_
S __ZUJ;

hz?’c

Si(t)= 8o

Si(t)= 73| Dpp TH(H?G%— pAPA) + D oq Tr(H2P>— pPPP) a harmonic oscillator potential and linearly coupled to an
environment consisting of a bath of harmonic oscillators in a
N thermal state. We remind the reader that the Caldeira-Leggett
— Do Tr(P2(aP+ p&) — 2paHp) — TTr(f,Z) model considered in Ref$23,24] violates the positivity of
the density operator at short time scdlé9,50, whereas in
(103 ;E-T'e dLindblad model the property of positivity is always ful-
illed.
or, using Eq.(94) for Gaussian states, The rate of predictability loss, measured by the rate of
linear entropy increase, was also calculated in the framework
. h of Lindblad theory for the damped harmonic oscillator by
S(t)= 20c Paraoanu and Scutaf@7], who have showed that, in gen-
eral, the pure or mixed state which produces the minimum
X[Dppogq(t) +Dgqopp(t) = 2D pqorpg(t) — 2N o). rate of increase in the area occupied by the system in the
(104) phase space is a quasifree state which has the same symme-
try as that induced by the diffusion coefficients. For isotropic
If the initial state is pure, then according to the completePnase space diffusion, coherent statsmixture of coherent
positivity property of the Lindblad model, we have states are selected as the most stable ones. In order to gen-
eralize the results of Zurek and co-workers, the entropy pro-
) 4 K2\ duction was also considered by Gallz8] within the Lind-
S(0)= ﬁ[Dppqu(o)_l— D4q0pp(0) = 2D pqopg(0) — T} blad theory of open quantum systems, treating environment
effects perturbatively. Gallis considered the particular case
=0, (105  with D=0, and found that the squeezed states emerge as
the most stable states for intermediate times compared to the
which means that the linear entropy can only increase, s@lynamical time scales. The amount of squeezing decreases
that the initial pure state becomes mixed. When the statgiith time, so that the coherent states are most stable for large
remains pure, Eq(104) becomegcf. Eq.(72)] time scales. FoD,,#0 our results generalize the result of
Gallis, and establish that the correlated coherent states are

. 4 72\ -
- _ _ the most stable ones under the evolution in the presence of
= +
S ﬁz{Dppoqq(t) Dagpp(t) = 2Dpgpel 1) = 73 } the environment.
=0, (106 VI. SUMMARY
and, therefore, the entropy production will Be=0. Since In the present paper we have considered the generalized

the only initial states which remain pure for abyare the  gquantum master equations derived by Karrlein and Grabert
correlated coherent states, we can state that in the Lindblgd7] for the microscopic model of a harmonic oscillator
theory these states are the maximally predictive states. Theoupled to a harmonic bath. We have obtained conditions for
present results, obtained in the framework of Karrlein-purity of states for different initial conditions and different
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types of damping, including strictly Ohmic, Drude, and weakZurek and co-workers, in Karrlein-Grabert and Lindblad
coupling cases, and the Agarwal and Weidlich-Haake modmodels, as well as in the particular models considered, these
els. We have shown that the states which remain pure all thetates are the most stable ones under the evolution of the
time are the pure squeezed states with well-determined varsystem in the presence of the environment. In a future work
ances that are constant in time. For pure states, we have algp the framework of these theories we plan to discuss in
derived corresponding generalized Schingier-type nonlin-  greater detail the connection between uncertainty, decoher-

ear equations. We have also studied a one-dimensional hagnce and correlations of open quantum systems with their
monic oscillator with dissipation within the framework of environment.

Lindblad theory, and have shown that the only states which

stay pure during the evolution of the system are the corre-

lated c_oherent states, yqder the condition of a special choice ACKNOWLEDGMENTS
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