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Decay of unstable equilibrium and nonequilibrium states
with inverse probability current taken into account
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We study the causes of noise delayed decay of unstable states in nonlinear dynamic systems within the
framework of the overdamped Brownian motion model. For the analysis, we use the exact expressions for the
decay times of unstable states, which take into account the inverse probability current in contrast to the
well-known mean first passage time method. These expressions are valid for any intensity of fluctuations and
for arbitrary potential profiles. The effect of delay is shown to arise under the decay of unstable nonequilibrium
states due to the action of two different mechanisms. These mechanisms are caused by the inverse probability
current and by the nonlinearity of potential describing an unstable $&1663-651X%99)10111-9

PACS numbes): 02.50—r, 05.40—a

I. INTRODUCTION AND FORMULATION shows that fluctuations can delay the decay of purely un-
OF THE PROBLEM stable states. The effect of NDD is very similar to that of
NES but the name NDD must be used when the state is
The decay of unstable states is related to fundamentalnstable, because one cannot consider the “stability” of an
phenomena of statistical physics. The characteristic featurdénstable state.
of this problem is the crucial role of fluctuations. Some un-  Note, that the effect of partial or even full stabilization of
stable states, namely, unstable equilibrium states or margingpStable states by noise was known before. In R8§.and
states, can decay only due to the action of fluctuations. This3€): it was shown that in this case the fluctuations must be
is the main reason for intensive investigation of this problemParametric(multiplicative), but in Refs.[16,23-30 and in
by many author§1—27]. In the present paper, our main con- the present paper, onIy_ gddmve fluptuatlons are considered.
cern is with the kinetics of the decay. It was assurfeet, It turns out that the additive fluctuations can delay the dgcgy
e.g., Ref.[11]) that the basic features of the decay of un-©Of unstable states too. These results are in a contradiction
stable nonequilibrium states can be obtained from macro\f\”th some _usual notions on the d_ecay of unstable states un-
der the action of additive fluctuations. Therefore, these con-

scopic laws. It means that one can find a deterministic tra'cepts must be corrected and supplemented, which is the main
jectory of the system evolution from the unstable state to 2im of this paper

stable one, and, then, the fluctuations are assumed to be anone may see that the NDD and NES are similar to the

insignificant correction to this macroscopic pdite., the  phenomena of stochastic resonance, since in all these cases
fluctuations constitute only a minor perturbatioin addi-  one obtains a system response which has the resonant depen-
tion, it was assumed that the fluctuations can only acceleraigance on the noise intensity. However, the difference is in
the escape from the unstable sthtd]. However, in Refs. the nature of response considered: In the case of NDD and
[16,23-34 it was found that there are systems that may dropNES the response is the decay time of unstable and meta-
out of these rules. In particular, in the systems considered igtable states, while in the case of stochastic resonance it is
Refs.[16,23—30 the fluctuations can considerably increasethe signal to noise ratio.

the decay time of unstable and metastable states. These areThe commonly accepted and simplest model of the decay
the effects of noise delayed dec@yDD) of unstable states of unstable states is the model of one-dimensional over-
and noise enhanced stabilt{ES) of metastable states, de- damped Brownian motion in the potential field of fofdg9]:
pending on the parameters of the system considered. The

NES effect was obtained in Reff23—27 for periodically dx dd(x)

modulated metastable nonlinear systems. The modulation qt ndx +&(1). 1)

was so intensf26,27] that the system was unstable in a short K
interval of time of the period of the driving force and meta- . . ) )
stable in the remaining time interval. In accordance withHere,xis the representative phase point denoting the state of
Refs.[26] and[27], the NES effect implies that the stability the systemd(x) is the potential describing the system itself,
of metastable state can be increased by the fluctuations. K{t) is the white Gaussian noisgé(t))=0, (&(t)&(t+ 7))
Refs.[16,28—3Q and in the present paper, the unstable states®2d49(7)/ 7, 20/ 7 is the intensity of fluctuationsy is the

without periodical driving are investigated. The NDD effect coefficient of equivalent viscosity, arglis the energy tem-
perature of fluctuations. In the case of thermal fluctuations,

q=KkT.
*Present address: Dipartimento di Energetica ed Applicazioni di L€t the potential be as follows:

Fisica, Universita di Palermo, viale delle Scienze, 90128, Palermo,
Italy. d(x)=—ax?/2. 2
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FIG. 1. Two potential profiles describing the same unstale state:

potential profile with two absorbing boundaries used in MFPTM |G, 2. Potential profile with one absorbing boundary used in
(thick curve and the real potential profilghin curve. MFPTM (thick curve and the real potential profiléhin curve.

One usually considers this potential profile when analyzinglFPTM, the absorbing boundaries must be located in the
the decay of unstable statebs-11]. In this case, the unstable ends of the decision interval= *+L, i.e., the real potential
equilibrium state is located at the top of the parabota ( profile is replaced by another ofgee the thick curve in Fig.
=0), and the unstable nonequilibrium states are at the points).

x#0. In the initial instant, let the phase point be located in The potential profile describing the unstable state may
the locally horizontal part of the parabolic potential profile: have a different shape, similar to that depicted, for example,
Xo=0. Due to the action of fluctuations, the point begins toin Fig. 2. In this case, to analyze the decay time, one usually
move randomly. When the point is shifted by fluctuationsconsiders the following decision interv& [ —o;L]. Evi-
from the top of the parabola, it is subjected to the action ofdently, in this case the MFPTNthe setup of the absorbing
the regular force and goes away from the unstable state dowwoundary distorts the real potential profile too.

the parabola. It is the so-called effect of enhancement of Therefore the following question arises: How will the ef-
fluctuations. fect of the NDD be changed, if the absorbing boundaries are

Thus, in the case of a small intensity of fluctuations, theabsent? In this case the representative points can return into
decay process can be separated into two stéges, e.g., the decision interval after they have left it. In other words, an
Ref.[4]): the first stage is the movement under the action ofnverse probability current appears. Thus, to answer this
the random force near the top, and the second stage is tlygiestion, we need to take into account this inwardly directed
drift under the action of the regular force on the slope of thenverse probability current, which is neglected by the
parabola. In the first stagenstable region the influence of MFPTM.
the regular force is insignificant. In the second stégden- To do this we use the new method proposed in R&f].
sive region, one can neglect the random force. This concepfThis method allows one to obtain the exact expressions
is used in Refs[4-9] to obtain the approximate expression (which are valid for any intensity of fluctuations and for an
(valid underq—0) for the decay time of the unstable equi- arbitrary potential profilefor decay times of unstable states
librium states (the scaling method According to this  with the inverse probability current taken into account. In the
method, if, initially, the representative point was located onpresent paper the analysis and comparison of the exact decay
the slope of the parabolx{#0), then its further motion is times with the approximate ones proposed by other authors
defined mainly by the regular force, and the action of fluc-are presented. Various unstable states described by polyno-
tuations is insignificant. At the same time, it is shown in Ref.mial potential profiles are considered.

[30] that it is just the casexg# 0), when the fluctuations can The decay time of an unstable state is defined as follows:
delay the decay of the unstable state. It means that the influ-et us consider the probabilit(t) for the representative
ence of fluctuations on the system in the extensive region iphase point to fall within the given decision intenRl(see
significant, and there are cases when one can not ignore figs. 1 and 2 Initially the point always falls within the
Consequently, the scaling methods are not valid in each cas@terval R and we haveP(0)=1. With time, the survival
Therefore, their application range must be refined. probability P(t) decreases to some equilibrium valBéx)

On the other hand, the results obtained in RE8s.7,3Q =P¢q. The valueP., depends on the type of the potential
are also approximate because they are restricted by the meprofile. One can distinguish two types of the potential pro-
first passage time methd¥IFPTM), which requires the use files:
of the absorbing boundaries. Let us explain this situation by 1. The potential profileb(x)— +0o with x— *« (See
an example. Consider a dynamic system described by aRig. 3). In this case, at— «, the following equilibrium Bolt-
arbitrary potential profile similar to that depicted in Fig. 1. zmann distribution is established in the system:

The unstable state of the system is near0. Let the decay
time of the unstable state be the escape time from the given W, (X)=N ex;{ _ w)
decision intervalR: [ —L;L], xoe R. When one uses the ed q /)’
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FIG. 3. A sketch of the potential profile of type 1. FIG. 4. Linear potential profilé4).

whereN is the normalization factor. Therefore, the equilib- fast so that the integral converges, andPift), during its
rium valuePq in the decision interval is time behavior, does not intersect the final vaRig . In gen-
eral, the functiorP(t) does not need to be monotonic; how-
ever, for the fulfillment of the last condition, the monotonic
variation P(t) is sufficient. The intersection can appear only
if Peg>0, i.e., for the potential profiles of the first type. The

2. The potential profileb(x)— —o with x—o, or with ~ potential of this type is considered in Sec. I, where the
X——o, or with x— = (See Figs. 1,2 In this case, Problem of intersection and monotony is discussed.
Weq(X)=0 and, consequentlR.,=0.

Thus, under any type of potential profiles, the survival Il. LINEAR SYSTEMS
probability decreases frorR(0)=1 to P(x)=P¢,, Where
0=P¢y<1. We define the decay timeof unstable states as
the relaxation time of the survival probability to the equilib-
rium value:

Peqg=N f Weq(X)dX.
R

In order to understand better how the effect of NDD ap-
pears, we consider below two linear systems. Let the poten-
tial profile in Eq.(1) be a straight line with a given slopthe
regular drift forcef (x) = —®’(x) is a constant for the entire

1 - range ofx]:
5 |, Po-Puat @

T=

d(x)=—kx (4)

If the absorbing boundaries are given at the ends of the dawith unstable state at(0)=x,<L (see Fig. 4. We take the

cision intervalR, then the decay timé3) coincides with that  following decision intervaR:[ —<;L]. It follows from Eq.

obtained by the MFPTMSee Ref[37]). In all other cases, (1) that in the absence of noigé(t) =0) the decay time is

the expressiori3) takes into account the inverse probability equal to

current across the boundaries of the decision interval and

therefore it differs from the MFPT. Thus, the MFPT is a 7(X0,9=0)= n(L —Xg)/k=Tq(Xp). (5)

particular case of the decay time of unstable stég

namely, the case in which we neglect the inverse probabilityn the presence of fluctuations, this time becomes a random

current. value. Let us consider the decay time of the unstable state,
The idea to take into account the inverse probability curfirst, as the MFPT of the boundaty. In accordance with

rent is not new and the various definitions of decay and reRefs.[39-41], the MFPT is equal to

laxation times can be used, as it is discussed, for example, in )

Refs.[14] and[38]. In particular, the decayor relaxation n o | Y —awy

time (3) first proposed in Refl38] is similar to that consid- T(%0.9)= _f Oe ( )qf,me “dudv. ©)

ered in Refs[14,43, and 44 however, it is not exactly the

same. Nevertheless, following Refd4,43, and 44#further,  Using Eq.(6), we obtain

we call the timg3) the nonlinear relaxation tim@NLRT), in

order to differ it from the MFPT which does not take into T(Xg,q) = (L —Xg)/k=Tp(Xg)- (7)

account the inverse curreriChe word “nonlinear” refers to

the fact that this is not a case which involves small fluctua-Thus, for®(x)=—kx, the MFPT coincides with the escape

tions around equilibrium, where linear response theortime without noise. Fluctuations, on the average, do not af-

would be valid) fect the decay time of the unstable state. As is shown in Ref.
As is mentioned in Refl37], the definition(3) is legiti-  [30], in order to obtain the dependence of the MFPT on

mate if the variation of survival probability is sufficiently fluctuations, it is necessary to take a nonlinear potential pro-

X
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file. In that case, the fluctuations can delay or speed up the A D)
decay of the unstable state depending on the kind of nonlin-
earity.

Let us take into account that the phase point can cross th
pointx=L any number of times and in any directi@re., we
take into account the inverse probability curpefio do this,
we must remove the absorbing boundary from the end of the
decision intervalk=L. Then, one can obtain the NLRT in
several ways: Solving the Fokker-Planck equation for the
probability densityW(x,t) (see, e.g., Ref[1]), or for its -0,
Laplace transforni38], or using the above-mentioned exact
expression in the quadratures obtained in R&T]:

o0 L
7(X0,9)=T(X,q) + zf e‘b(")’qdvf e *Wagy,
qJu - ® FIG. 5. Parabolic potential profile2).

. ) rium statg. As was mentioned above, this case was studied
where T(Xo,q) is the MFPT (6). Evidently, any of these p many authorf1—9]. In particular, in Ref[5] the MFPTM
ways leads to the following result: was used and the absorbing boundaries were arranged at
==*L. For the symmetric potential profil®(—x)=®(x),

7(Xo,d)=To(Xo)| 1+ kq_L =To(Xo)- (9) the MFPT is equal t2,39]
T _ (" ey [V ~ WAy dy 10
It follows from Eq. (9), that if we take into account the (X0,9)= q Xoe o uav. (10)

: (11)

Tas= s

inverse probability current, the fluctuations will always delay

the decay of the unstable state: the greater the fluctuationfy Ref. [5], using scaling methods, the asymptotical expres-

the greater the NLRT, i.e., the effect of the NDD takes placesijon for the MFPT(10) was obtained foq—0, when ini-
Note, that for the considered potential the NDD appearsially the representative point is exactly in the unstable equi-

for the NLRT, while it does not appear for the MFPT. It |ibrium statex,=0:

means that the first mechanism of NDD appearance, which

was considered in Ref30] (where only the MFPTM were 1 1

used, does not function here. In this case, the effect of the In;— ‘/’( E)

NDD appears because of the second mechanism: The inverse

probability current, which is not taken into account by thewhere T,= 5/2a is the characteristic time of the system,

MFPTM. Thus, in the general case, the NDD can appear dué,=al?/2 is the value of potential at the poirt=L (See

to the action of at least two mechanisms: First, caused by thEig. 5), c=q/®, is the dimentionless temperature of fluc-

nonlinearity of the potential profile and, second, caused byuations, andy(x) is the digamma function. In Ref5] it

the inverse probability current. This example also shows thaas assumed that fop—0 the MFPT must coincide with the

the MFPTM sometimes cannot reflect the real situation.  NLRT, because under the small fluctuations the inverse
It was mentioned in Refl14] that one can neglect the probability current becomes negligible.

inverse probability current, if decay times are less than the Now we can compare these results with the exact expres-

typical time required to reach the boundary of the decisiorsion for the nonlinear relaxation time. From the results pre-

interval from the absolute minimum of the potential. It fol- sented in Ref{37], one obtains the NLRT for the symmetric

lows from the above example that it is not true. Indeed, inpotential of the second typ@ee Sec.)las follows:

this example the absolute minimum of the potential is infi-

nitely far fromxq at x—oo and the return time of the phase n(~ Lo

point from the minimum is infinitely long, i.e., the decay  7(X0:@=T(Xo, @)+ aJL eq)(v)/qdvfo e~ *Wiady,

time is always less. Nevertheless, we see that the inverse (12)

probability current caused by the fluctuations is so great that

the effect of NDD appears. Further we show that the sam#hereT(Xq,q) is the MFPT(10). The plots=(0,g), T(0,0),

situation takes place for many other linear and nonlinear sysand,¢(q) calculated in accordance with Eq42), (10), and

tems described by various potential profiles. This is becaus€l1) for the potential(2) are depicted in Fig. 6. One can

the value of the inverse current is defined not only by theeasily see that these time scales coincide des0. This

neighborhood of the absolute minimum but also by the shapeonfirms the assumptions used in R&f. As in the previous

of the entire part of the potential profile, which is beyond theexample, the NLRT becomes greater than the MFPT with the

decision interval. It is the inverse current that provides thefluctuations. The expression for the NLRT2) differs from

delay of the unstable state decay regardless of the location tiiat for the MFPT by the second term, which tends to zero as

the potential minimum. g—0 and rises withg for potential (2). Thus, the inverse
Let us return now to the classical view of the linear un-probability current always enhances the NLRT compared

stable system described by the parabolic potential pr(#jle with the MFPT forq>0. Let us note that the asymptotic

(Fig. 5). First we consider the casg=0 (unstable equilib- expression(11) gives a rather good approximation for
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FIG. 6. Dimensionless NLRT, MFPT, and
asymptotical decay time, versus the dimension-
less temperature for the unstable equilibrium state
described by parabolic potenti@) atx,=0 (see
Fig. 5.

NLRT =(o)/T,

0.25 ToEeees
2 —mzz-- ....__.___M_PLEI:.I_(E)@.

- —
8] 2 4 3 3 10

c=q¢/®,

<0.5. On the other hand, it can be shown thatdor3 the that the dependence of the MFPT on the fluctuation intensity
NLRT given by Eq.(12) is represented as was studied earlier in Ref30].
As we already noted, the above E2) differs from Eq.
1 (10) by the second term. This term is independenkgf It
7(00) =Ty V270 12— a‘1+g\/ﬂa‘3’2+ . ) means that the conclusion made in R&0] relative to the
13) dependence of the MFPT og is also true for the NLRT:
The maximum value of the function ©(q)
L _ = 7(Xg,9)/ 7(Xq,0) increases as, approaches.

Let us assume that the njl_tla_l states are shifted frpm the Thus, if the representative phase point of the dynamic
top: Xo# 0 (unstable nonequilibrium stateThe expressions  gysiem is in the unstable nonequilibrium state, the effect of
for the MFPT(10) and for the NLRT(12) remain the same. {he NDD can be so significant that the NLRT can be many
The asymptotical expressiaill) does not function in this  imes greater than in a purely dynamic case without fluctua-
case. The dependencies of the NLRT on the fluctuation temyons. The expression for the decay time obtained by the

peratureq for x,/L=0.8 (solid curvg and the MFPT  gcajing methodg11) is valid only for the unstable equilib-
(dashed curveare presented in Fig. 7. First, one can se€ijym state &,=0).

from Fig. 7 that in the cas&,# 0 the effect of the NDD
appears for both time scales. Second, the inverse probability
current enhances the NLRT compared with the MFPT, as for
the casexy=0. For the MFPT, the maximal magnification
by noise is about 25% above its value without noise, while Now we generalize the potentié?) including the satura-
for the NLRT the magnification is greater than 250%. Note,tion term (Fig. 8):

Ill. SATURATION EFFECT. NONLINEAR SYSTEMS

3
x,=0.8L

NLRT (x,,6)/T(x,,0)

FIG. 7. Dimensionless NLRT and MFPT ver-
sus the dimensionless temperature for the un-
stable nonequilibrium state described by the para-
Y bolic potential(2) at x,=0.8L (see Fig. 5.

MFPT T(x,,6)/T(x,0)

-
—
-
e i —
- -
-

u} Z 4 6 8 10
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4 O(x) than the MFPT, since it takes into account the inverse prob-
ability current, which retards the escape of representative
points from the decision interval.
Now let us consider the casg#0. The plotst(Xq,q)
andT(Xp,q) for xo=0.8L andM =0.5 are presented in Fig.
m & 10. As in the linear case, K,#0, the NDD effect appears.
7 Comparing the plots in Fig. 10 and Fig. 7, one can conclude
that the influence of the saturation term in Efi4) on the
NDD phenomena is insignificant under smallAt large q,
the NLRT for the system with saturation becomes less than
-0, the NLRT for the system without saturation. It can be ex-
plained as follows: The survival probability for the system
with saturation varies with time fronP(0)=1 to P(x)
=Pg¢g>0, but not from 1 to O, as it was for the system
without saturation(2). Therefore, under the fluctuation tem-
perature of the order of the depth of potential wells and
greater(q=®(x,,)), the equilibrium[defined by the evolu-
1 1 tion of P(t)] is attained earlier for the system with satura-
D (x)=— —ax2+ —bx*. (14)  tion, since in this cas®. is sufficiently large. That is why
2 4 the NLRT for the system with saturation is smaller. On the

I L ) other hand, it is nesessary to take into account that the NLRT
The unstable equilibrium state is still at the point0. The  yqafined by Eq.(3) can give rise to a wrong result if the

global equilibrium states of the system now are at point§nction P(t) is nonmonotonic and intersects the varg,.
Xm= % \a/b(®(xy) = —a%/4b) but not atx— = as it Was | this case, the real NLRT can be only greater than that
previously for linear systems. Therefore, the nonequmbnu_rndeﬁned by Eq(3) and obtained from Eq15). Consequently,
unstable states are everywhere excep@ these _three PoiNfRe real NDD effect can be greater. We do not know the
From the general expression presented in R&, itis ob-  nction P(t), because our method allows us to derive only

vious that in the case of the symmetrical potené®(—X)  the integral of it. Therefore, the monotony condition for this

FIG. 8. Potential profile(14) describing the unstable system
with saturation.

(3) is as follows: Let us now refer to another case of potentidiy. 11):
-~ 7 Ca(q) b
00100074 E (g 19 O(x)= —kx— 5= x*"" n=123.... (17

where I .
All the states of that system are nonequilibriunki#0, b

L >0. The global equilibrium state is only at-o. In Ref.
Cz(Q)IJ e?af2(v)dv [7], the exact and approximate expressions for the MFPT
0 were investigated fok=0 whenxy,=<0. As in the above
Pe % cases, the NLRT and the MFPT for potential) coincide
g f e®Ma(1—f(v))2dv, for q—0 if the initial state of the system is that of unstable
1-P
ea’l equilibrium (i.e., if x,=0 andk=0). The asymptotical ex-
. « pressions are knowfY]. Recently, in Ref[30] it was shown
Cl_lzf e *Wiagy, f(x)zclj e~ PWiagy, that the NDD appears for these potentials as well. In accor-
0 0 dance with Ref[30], it takes place ik=0 and 0<x,<L or
if k>0 and —L<xy<L. However, in Ref[30] the decay
Peg=f(L), time was obtained by the MFPTM, i.e., by an approximate
) o method, which does not take into account the inverse prob-
where =L are the boundaries of the decision intenrl ability current.
[—LiL], xoeR, andT(x,q) is the MFPT(10), which, as Now we can obtain the exact NLRT, using the above-
in the linear case, represents the decay time approximately g{antioned result$8) of Ref. [37]. Let x,=0 and the deci-

q—0. In addition, in Ref[5] for —0 andxo=0, the fol-  gjon interval beR: [—=;L]. In the absence of fluctuations,
lowing asymptotical expression for the MFPT was obtainedine “dynamic” decay time is equal to

2M2d 1
=T o 3. 9 S 1o
Xo F,(X),

where M=L/X,,, ®,,=—D(x,,) is the depth of potential

wells. The plotsr(0,g), T(0,0), and7,(q) are presented in whereF(x) = —®(x).

Fig. 9. As expected, all these three times coincide dor To analyze the influence of fluctuations on the nonlinear
<P(xy). Forg>d(x,,), the asymptotic formulaglé) is not  relaxation time, let us expand the NLR®) into a power
correct. As it follows from Fig. 9, the NLRT is always more series ing. To fulfill this program, we need to find an as-
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x,=0
L=05x,

FIG. 9. Dimensionless NLRT, MFPT, and
asymptotical decay time versus the dimensionless
temperature for the unstable equilibrium state de-
scribed by potential14) at x,=0 (see Fig. 8.

NLRT z(c)/T,
u} 2 4 6 -] 10
c=q¢/@,

ymptotical expansion of the typical integrals involved in the K(u,q)=qz—q%zZ,

general formula8). Let us present the typical indefinite in-

tegral as follows: etc. It is evident that in the obtained equations the derivatives

! of all approximations tend to zero gt—0. It confirms the
f eF(v)/qu:eF(u)/qK(u,q), (19 initial assumption. . _ _
As a result, we find the following expansion of the sought

function K into th ies iq:
whereF(v)>0, F’'(0)#0, the small parameteg has any unctionK(u,q) into the power series ig

sign, andK(u,q) is the unknown function, which is to be

K — 1— "4 2 NI ~3 AVAY
found for smallg. Differentiating Eq.(19) with respect tay, (ua)=azl-az +qzz) ~a"(x(2z)")

one can easily find that +9Yz(z(zZ)")' ]+ --}. (21
K(u, i
K!(u,q)=1— ( Q), (20) By doing so, forA,B=0 and for smallg we have
qz(u)
B
wherez(u)=1/F'(u). We assume that for smai| the right- J; efWiady =eF(BVIK (B,q) — " (V/IK(A,q). (22)

hand side of Eq(20) is also small. Then, using E20) as

an iterative equation, as the first approximation, we obtain . . .
! Ve equat ! pproximation, w ! The expressions obtained are validz{u) = 1/F'(u) and

K(u,q)=qz(u). all derivatives ofz(u) do not tend to infinity, i.e., if the
derivative F'(u) does not tend to zero in the integration
One can easily find the second approximation, substitutingnterval. For the considered potentidl7), this refers to the

this value into the left-hand side of EO): conditionk>0.
3
‘ x,=0.8L
NLRT =¢x,,6)/T¢x,,0) L=0.5x,
zZ.5
2
1.5 FIG. 10. Dimensionless NLRT and MFPT
MFPT T¢x, 0)/T(x,,0) versus the dimensionless temperature for the un-
__,.._—..._____"’ ” stable nonequilibrium state described by the po-
1" Te— tential (14) at x,=0.8L (see Fig. 3.
0.5 T
0 0.2 0.4 0.8 0.8 1
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FIG. 11. Potential profil€¢30) describing the unstable state con-
sidered in Ref[14].

Doing so, one can easily show th@(v)>0,L=0) for
smallg>0,

J e FWady = —e FaK (L, —q), (23
L
where
K(L,—q)=-0qz[1+09z +9%(z.Z)' +9*(z.(z.Z])")’
+---1, (24

andz =z(L)=1/F'(L), z, =[(d/du)z(u)],=. , etc.
Substituting the obtained Eq&2) and (23) into Eq. (8),
we find that for smallj andx,>0,

L v L
f e“’(")va e*“’(”)du=j K(v,q)dv,
. .

Xo X

o L
f ego(wd\,f e *Mdu=—K(L,~q)K(L,q).
L — 00

Thus, forxy>0
n [t 7
r=—| K(v,q)dv— —K(L,—q)K(L,q). (25
q X0 q

Expanding functiorK in accordance with Eqg21) and

(24), and performing the partial differentiation, we find the

following expansion of the NLRT into the power seriesgn
for 0<xo<L:

L
7(Xo,0) = ﬂfx z(u)du+ 3 nq[A1(Xe) +Aq(L)]

0

L
002 [ 222) dut § 90 A L)]
0

L
-~ f A2(2(27)")'] du+ 3 g5 As(x0)
Xo

tAs(L)]+ -, (26)

where

. V. AGUDOV AND A. N. MALAKHOV
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Ay(u)=2%Ag(u)=27—(2')*+2(zZ)'],

As(u)=242[2(2(2Z)")']' —22' (2(zZ)")' +(zZ)")?},
(27
z=z(u)=1/F'(u).

One can easily see that the first term coincides with the
“dynamic” decay time(18) as it must be. The second term
is proportional toq and is always positive. This indicates a
rise of the NLRT 7(qg) with g from the point7= 7, (for g
=0). Thus, if the first derivative of the potentidi’(u) is
negative and is not zero, the fluctuations acting in dynamic
systemsalways increas¢he decay time of the unstable state
under small intensities. The linear systdd) considered
above corresponds to the particular case of expreg&én
Indeed, substituting Eq4) into Eqgs.(26) and (27), we ob-
tain the series with two terms, E@9). For the nonlinear
potential profiles the serig26) is infinite.

If xo=0, the expansion of the NLRT into the power se-
ries inq is as follows:

L
7= ﬂfo z(u)du+ 3 7q[Ay(L)+A(0)]

L
+ 792 f 2(27)'du+B,(0) |+ 3 743 As(L) — Ag(0)

0

+2B3(0)]+ na* JOLz[z(z(zz’)’)’]’du+ B4(0) [+ ---.

(28)

Here, the function®\,(u) are defined by Eq(27), and the
functionsB(u), are equal to

Ba(u)=22°2", Bs(u)=22(2Z)"+(2')?],

By(u)=2[2(z(zZ)") +27'(zZ)'], (29

z=1/F'(u).

Thus, wherx,=0, the second term in EQR8) is the same as
in the casexy>0, i.e., it is positive and the NLRT increases
for smallg.

The series for the NLRT iig for some different and more
general cases of potentidl(x) is obtained in Ref[42].

The decay times of unstable equilibrium and unstable
nonequilibrium states described by potentidl) for n=1,

1
®(x)=—kx— 3 bx3, (30)

were considered in Refl4] in detail, and the NDD effect
was not revealed. Therefore, we consider this case again and
show that the decay time of the unstable state can increase
with noise. Letk>>0 andb>0. As is mentioned in Ref14],

this case corresponds to the majority of experimental results.
It follows from the general expressid@8) that forx,=0
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X =

FIG. 12. Dimensionless NLRT and MFPT
NLRT 1(c)/T(0) versus the dimensionless temperature for the un-
1 ~ stable nonequilibrium state, described by the po-
- tential (30) at x,=0, k>0, andm=1 (see Fig.
Sl 11).

u] 0.5 1 1.5 2 2.5 3

c=q/D(L,)

1 The analysis of expression(§) and (8) shows that the
7= ——[arctamm-+ o’E;(m) — o>E,(m) +0(c®)], difference between the MFPT and the NLRT increases with
Jab a decrease in parameter The dimensionless parametar
(3D characterizes the relative value of the nonlinear term com-
pared with the linear one inside the decision interval Xor
where >0. The decrease im means that the potential profile be-
comes closer to the linear one within the decision interval. In
Ei(m)=1+1/(1+m?)?, the purely linear casenf=0), the difference between the
MFPT and the NLRT is maximal: the NLRT coincides with
m 5 m Eqg. (9) and increases linearly wit), while the the MFPT is
Eao(m)= 35 arctamm+ =5 75+ 74 (11 m?)2 a constant value equal tgL/k. As m—x, the NLRT be-
comes closer to the MFPT. The NDD also appears in this
1 m 3 m case, however, it is smaller than for—0. Finally, form
17 (11 m?)3 ts5 1+ m?)? = (k=0), when the considered unstable nonequilibrium
state becomes equilibriurtthe decay time without noise is
infinite), the NDD disappears. As was mentioned above, it is
m=y3L/L,, o=2y30/®(Lo), Lo=13K/b. this case which is well studied in the literatusee, e.g., Ref.
. ) o [7]). However, if fork=0 we takex,>0, then the NDD
'I_'he quantityL _characterlze_s the relative mfluence of th_e appears again and increases as the distance Xgto the
Ilnegr and nonlmear.terms in the expression for potentiahoundaryL of the decision interval decreases.
profile (30). At the pointx=L,, these terms are equal. The  The above dependence of the NDD on the parantatier
plots of the NLRT(8), the MFPT(6), and the approximate explained by the fact that the noise delayed decay appears
expression31) are presented in Fig. 12 versus the fluctua-due to the action of two different mechanisms. The first
tion temperatureg. Thus, one can see that the NDD appearsmechanism(which was studied in detail in Ref30]) is
in this case as well and it is the main correction to the analycaused by the nonlinearity of the potential profile. The sec-
sis carried out in Ref[14] where the authors contend the ond one is caused by the inverse probability current across
reverse, namely, that fé&e>0 the fluctuations will accelerate the boundant. The first mechanism leads to the increase in
the decay process. both MFPT and NLRT(8) (where the MFPT is involved as a
The asymptotical formul&31) at m<1 (in this caseE, term. The action of the second mechanism cannot be ac-
~2m) allows us to estimate the temperatagg,, for which ~ counted for by the MFPTM. An— 0, the NLRT and MFPT
the NLRT is maximal: differ greatly and the NDD appears only for the NLRT. It
means that asn— 0, the NDD appears only due to the action
0 of the second mechanism. Indeed, far=0, the potential
Umax™ ﬂfq’(l—o)- profile becomes linear and in this case the first mechanism
does not acfsee Sec. )l With increasingm, the difference

; ; N : between the NLRT and MFPT disappears. It means that the
The expressiori31) itself atq—qmay gives a greater value first mechanism of the NDD comes into effect, while the

than the exact Eq8). Evidently, it is because we have taken ~ .

into account only the three first terms of the infinite seriesction of the second one becomes weaker.
(26). Estimation of the decay time by the
MFPTM leads, as in the above examples, to a reduced quan-

tity, because it does not take into account the inverse prob- The above analysis shows that the effect of NDD is typi-
ability current. cal of all kinds of the considered nonequilibrium unstable

IV. CONCLUSION
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states. In other words, the NDD phenomenon exists for @to the decision interval. The latter one can not be ac-
wide range of parameters and initial conditions of the non-counted by the MFPT method. That is why the estimation of
linear systems. The asymptotical expressions such as Eqge decay times by the MFPT method gives a reduced value.
(11) and (31) obtained earlier in Refd4,5,7, and 14are  Both these mechanisms are activated by fluctuations. There-
valid only for the specific values of the parameters and initiaffore, one can not contend that in the process of decay of
conditions for which the unstable state becomes equilibriumunstable nonequilibrium states the action of fluctuations is
The shift from the unstable equilibrium state to the unstablensignificant: The effect of the NDD shows that we can both
nonequilibrium state by changing the system parameters accelerate or slow down the decay of unstable nonequilib-
initial conditions, leads to the appearance of NDD. rium states when varying the intensity of fluctuations.

The NDD phenomenon appears due to the action of two
different mechanisms. One of them is caused by the nonlin-
earity of the potential profile describing the unstable state
within the decision interval. This mechanism is responsible The authors are grateful to Dr. B. Spagnolo for fruitful
for the resonant dependence of MFPT on fluctuation temdiscussions and useful comments. This work has been sup-
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