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Addendum to ‘‘Quantitative measure of folding in two-dimensional polymers’’
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Recently, we introduced a measure of folding complexity for two-dimensional polymers,N̄, themean radial
intersection number@Phys. Rev. E59, 4209 ~1999!#. In this addendum, we expand on three aspects of the

previous work. First, we provide an analytical expression forN̄ that is valid for two-dimensional networks.

Second, we show that the power-law scalingN̄'nb, with n the number of monomers, has a different critical
exponent for random and self-avoiding walks. Finally, we find that the folding features in optimized projec-
tions of experimental three-dimensional~native! protein backbones fall between the latter limit models.
@S1063-651X~99!08511-6#

PACS number~s!: 87.15.By, 05.50.1q, 02.70.Lq
be
o
n

d-

t
ea
w
i

bu

3D

of
ity
an
s

d

es

u

o
ro

e-
ce
ni
2

si

of

s-

nd

k-

sec-

e

d
rre-
y
es-

in

ra-
In addition to being a natural representation for adsor
polymers, two-dimensional~2D! molecular models are als
useful to test the validity of current ideas on structure a
dynamics for more realistic~three-dimensional! macromol-
ecules.~See Ref.@1# for a review on the literature.! In this
context, 2Dself-avoidingwalks have been used when mo
eling protein folding dynamics@2#, whereas 2D self-
intersectingwalks occur in projected polymer knots@3# or
optimal ~nonlinear! projections of proteins backbones@4#. A
great deal of work has been devoted to understanding
statistical properties of these models; in particular, the m
molecular size for the accessible conformers. Recently,
introduced a complementary tool for analysis that discrim
nates between conformers with similar molecular size
different folding features@1#. Our descriptor of 2D folding,
denoted byN̄, is an extension of themean overcrossing
numberused for the characterization of entanglements in
linear@5,6# and knotted polymers@7#. The shape descriptorN̄
takes into account geometrical and topological features
chain, i.e., the atomic positions and the chain connectiv
As a result,N̄ characterizes features not conveyed by st
dard descriptors of molecular size; e.g., the mean radiu
gyration^Rg

2&1/2. For this reason, we refer toN̄ as adescrip-
tor of folding complexity. The configurationally average
molecular size, given bŷRg

2&1/2, and the configurationally
averaged folding complexity, given bŷN̄&, are correlated
only in limit cases. For example, conformers with the larg
size have the simplest folds~e.g., a rodlike chain withN̄
'0), whereas the smallest conformers exhibit the maxim
compatible folding complexity. Otherwise,Rg

2 andN̄ are not
correlated and together provide a discriminating pair
shape descriptors. In this work, we discuss a number of p
erties of^N̄& that extend our discussion in Ref.@1#.

The descriptorN̄ is computed from the intersections b
tween the molecular chain and a selected set of ‘‘referen
lines. By choosing these reference lines as those contai
the centroid of the polymer, the approach becomes the
extension of the one used to calculate mean overcros
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numbers in 3D chains@5#. In Ref. @1#, the practical algorithm
to computeN̄ was as follows:~i! Enclose the polymer inside
the smallest circle centered at the chain’s centroid;~ii !
choose a pointp1 on the circle, and compute the number
intersectionsI 1 between the diameter line associated withp1

and backbone bonds;~iii ! the descriptorN̄ is computed from
the average number of intersections,

Ī 5~1/m! (
j 51

m@1

I j .

Our choice ofN̄5 Ī 21 ensures that a rodlike chain is a
signedN̄50 both in two and three dimensions~i.e., no ‘‘en-
tanglements’’!. As shown below, the descriptorN̄ can also
be computed analytically in terms of chain geometry a
connectivity.

Let $Ri% be the node coordinates of the 2D polymer bac
bone, and$Ri8% the center-of-mass coordinates. Let$« i j % be
the connectivity matrix, where« i j 51 if the i th andj th nodes
are connected, and zero otherwise. The mean radial inter
tion descriptorN̄ can be computed as a sum ofindividual
bond contributions. Consider radial lines stemming from th
chain’s centroid,O8, as in Fig. 1. All radial lines within the
two shaded areas indicated asA( i , j ) will intersect the bond
segmentRj82Ri8 . The number of intersections with a bon
can be computed as the fraction of the circle’s area co
sponding toA. In turn, this fractional area is determined b
the angle between the position vectors for the bond in qu
tion. Thus, for the bondRj82Ri8 , the fractional number of
intersections I ( i , j ) becomes I ( i , j )5p21 arccos$Rj8•Ri8/
iRi8iiRj8i%. When adding these contributions over all cha
nodes (« i j Þ0), we obtain

N̄5
1

p (
i 51

n21

(
j 5 i 11

n

« i j arccosH Ri
j
•Rj

i

iRi8iiRj8i J 21, ~1!

which gives the mean radial intersection numberN̄ for con-
figurations in arbitrary topologies.

In Ref. @1# we considered adsorbed polymer configu
tions modeled by 2D self-avoiding walks~SAWs!. For these
systems, we showed that the configurational average^N̄& ex-
6206 © 1999 The American Physical Society
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hibits power-law scaling with the number of monomersn.
Recent work using nonlinear projections of protein ba
bones@4# shows thatself-intersectingwalks can also occur in
2D biopolymers. Here, we use Eq.~1! to analyze some prop
erties ofN̄ for walks with bond-bond intersections.

First, we have computed̂N̄& as an average over 103 un-
correlated configurations for 2D random walks~RWs! with n
monomers. Figure 2 compares these results with those
SAWs from Ref.@1#. ~Results for RWs and SAWs appear
black and white squares, respectively.! Using polymer chains
with 10<n<1000, the scaling behavior for random walks
found to be

ln^N̄&5~0.5660.01!ln~n22!2~0.560.1!, ~2!

FIG. 1. Geometrical interpretation of the mean radial inters
tion number. The areasA( i , j ) andA(n,m) contain the radial lines
intersecting the bondsRj82Ri8 andRm8 2Rn8 , respectively. The ra-
dial intersection descriptorN̄ uses these areas to convey the foldi
features of a two-dimensional polymer chain~see text!.

FIG. 2. Scaling behavior of the folding complexity descriptorN̄
for a number of model 2D polymers.@Black squares correspond t
random walks, RWs, whereas white squares correspond to
avoiding walks, SAWs. Gray bars correspond to the span oN̄
values for the Sammon projections of protein backbones having
following numbers of amino acid residuesn531 ~10 proteins!, n
575 ~6 proteins!, n5129 ~9 proteins!, and n5269 ~11 proteins!.
See text for details.#
-

or

with 95% confidence intervals and a correlation coefficie
C50.9993.@A fitting to a simplernb power law gives similar
results: ln̂N̄&5(0.5860.02)lnn2(0.660.1), with C
50.9984. A scaling law (n22)b, as in Eq.~2!, ensures that
the exact resultN̄50 holds for a two-node chain.# To assess
the quality of our sampling, we have also monitored t
mean polymer size. Using the same configurations, we
the following asymptotic behavior for the mean radius
gyration: ln̂Rg

2&1/25(0.49860.006)lnn1(0.4460.03), C
50.9998. This value is in good agreement with the we
known result for random walks,^Rg

2&1/25n1/2. ~Note that 2D
random walks correspond to polymers in the poor-solv
regime. In contrast, 3D random walks, also characterized
a size exponentn51/2, resemble polymers in an ideal so
vent.! Our results indicate that the folding complexity fo
SAWs and RWs is characterized by different critical exp
nents. Our conservative estimates for the exponentb in 2D
walks are~a! for random walks,b~RW!50.5760.03, ~b! for
self-avoiding walks with no excluded volume,b~SAW!

50.4060.05 @1#. It is worth noting that the difference inb
values is significant for 2D walks, whereas the exponents
3D RWs and SAWsare virtually coincident@5#. Present re-
sults should motivate further work towards understanding
dimensional dependence~and exact values! of b.

Random and self-avoiding walks provide a reference
compare the behavior of other 2D models of biopolymers
particular, we are interested inoptimized2D projections re-
sulting from multidimensional scaling. These techniques e
ploy a nonlinear mapping to produce a single projection t
lower-dimensional space under the condition of optima
preserving the shape pattern of the initial data set. One s
technique is the Sammon algorithm, commonly exploited
data compression and pattern recognition@8,9#. In our case,
the Sammon mapping projects a set ofn nodes in 3-space
with coordinates$X i%, to another set ofn nodes in 2-space
with coordinates$Ri%. The mapping proceeds by minimizin
a ‘‘stress-function’’E that takes into account the pattern
distances in each space. A common choice is@8,9#

E5H (
i , j , i

wi j J 21

(
i , j , i

wi j
21~Xi j 2Ri j !

2, ~3!

whereXi j 5iX i2X j i andRi j 5iRi2Rj i are the distances in
3- and 2-space, respectively, and$wi j % are statistical weights
that can be chosen according to various criteria~e.g., wi j
5Xi j ). The optimum set of 2D coordinates is generated fr
an initial set of random positions$Ri

(0)%. New positions can
be generated iteratively by using minimization techniqu
@8–10#. Here, we use a steepest-descent Sammon algori
as implemented by Rauberet al. @11#, where

Ri
~s11!5Ri

~s!2aF ]E/]Ri

u]2E/]Ri
2uG

Ri5R
i
~s!

, s50,1,2,...., ~4!

with a a coupling constant~or ‘‘learning parameter’’! taken
between 0.15 and 0.45. In our case, we test the robustne
the final set of projected coordinates by repeating the pro
dure with different initial randomizations of the 2D data a
a values. Whenever multiple solutions appear, we choose
one with the lowest minE error. This technique yields a se
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of 2D coordinates$Ri% that can be used, together with th
initial chain topology, to compute the shape descriptor in
~1!. Until now, this method had only been used as a graph
tool for displaying 3D protein backbones@4#. Here, we have
generated the Sammon projections for proteins of vari
lengths, in order to understand some general properties o
resulting ‘‘optimized’’ 2D conformers.

Figure 3 illustrates the results for the backone of Ch
protein, containingn5129 amino acid residues.@All 3D co-
ordinates correspond to experimental structures deposite
the Protein Data Bank~PDB! @12#.# On the right, we show
the optimized Sammon projection. On the left, a ribbon tra
of the 3D backbone indicates how the projection indeed p
serves the overall shape.

Figure 3 gives also the value for the folding descriptorN̄
in CheY protein~PDB code 1cye!. Among all distinct pro-
teins with n5129 residues found in the PDB, 1cye has t
smallest radius of gyration and the largestN̄ value. This
result suggests that compactness in 3-space may tran
into a maximum folding complexity for the correspondin
2D Sammon projection. In order to analyze the significan
of this observation, we have computed the Sammon pro
tions for families of unrelated proteins~with complete back-
bone coordinates in the PDB! sharing the same chain lengt
With these data, we have made an estimate of therange of
folding complexityaccessible to small- and medium-size pr
teins. The followingn values provide sets with large dive
sity in molecular shapes:n531 ~10 proteins!, n575 ~6 pro-
teins!, n5129 ~9 proteins!, n5269 ~11 proteins!. For these
proteins, we have computed optimized nonlinear 2D proj
tions and shape descriptors. Illustrative cases appear in
4. In this figure, 3icb and 1tib have the most ‘‘entangle
folds for proteins with lengthsn575 and 269, respectively

Our main observation appears in Fig. 2, where the sh
descriptors for all the proteins considered are contrasted
the results for 2D walks.~The walks in Fig. 2 have a constan
bond length of 3.8 Å, in order to allow a proper comparis

FIG. 3. Example of a 2D nonlinear projection of a protein bac
bone obtained using the nonlinear Sammon mapping.~This protein
has the largestN̄ value among all proteins with 129 residues.!
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with protein backbones with the samen value.! In Fig. 2,
gray bars indicate the span ofN̄ values over all protein native
states withn531, 75, 129, and 269. Our results indicate
clearcrossover behaviorin the folding complexity:~a! short
protein chains are projected onto 2D structures that are
maximally compact and exhibit the folding complexity o
SAWs with the same length;~b! protein chains withn
.100 residues are projected onto 2D structures whose f
ing features are similar to those of compact RWs with
same length.

The above change in folding features may reflect essen
differences in the 3D native states; e.g., the fact that lon
proteins consist of multiple folding units~‘‘domains’’!. It is
possible that the pattern of inter-residue distances in mu
domain proteins can only give rise to 2D nonlinear proje
tions with a large number of self-intersections. Pragma
cally, one can exploit this behavior as one more piece
information to be used when designing tentative folds fo
given protein. Our results establish constraints to the ran
of N̄ values that are consistent with two- and thre
dimensional backbones in native states. Accordingly, th
provide a criterion to decide whether some folding featu
are reasonable for the native state of ann-residue protein.

I would like to thank T. W. Rauber~Vitória, Brazil! for
making available the program Tooldiag for pattern recog
tion. This work was supported by grants from NSER
~Canada!.
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FIG. 4. Illustrative examples of folding complexity in the Sam
mon projections for proteins with variable length.~Proteins 3icb
and 1tib have the largestN̄ values among proteins with their sam
chain length.!
.:
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