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Addendum to “Quantitative measure of folding in two-dimensional polymers”
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Recently, we introduced a measure of folding complexity for two-dimensional polyﬁetbemean radial
intersection numbefPhys. Rev. E59, 4209 (1999]. In this addendum, we expand on three aspects of the
previous work. First, we provide an analytical expressionﬁothat is valid for two-dimensional networks.
Second, we show that the power-law scalﬁg n”, with n the number of monomers, has a different critical
exponent for random and self-avoiding walks. Finally, we find that the folding features in optimized projec-
tions of experimental three-dimensior(ahtive protein backbones fall between the latter limit models.
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PACS numbsgps): 87.15.By, 05.50+q, 02.70.Lq

In addition to being a natural representation for adsorbedsiumbers in 3D chainis]. In Ref.[1], the practical algorithm
polymers, two-dimensionglD) molecular models are also to computeN was as followsii) Enclose the polymer inside
useful to test the validity of current ideas on structure andhe smallest circle centered at the chain’s centrdid);
dynamics for more realisti¢three-dimensionalmacromol-  choose a poinp; on the circle, and compute the number of
ecules.(See Ref[1] for a review on the literaturgeln this  intersectiond; between the diameter line associated vath
context, 2Dself-avoidingwalks have been used when mod- and backbone bondsii ) the descriptoN is computed from
eling protein folding dynamics[2], whereas 2Dself- the average number of intersections,
intersectingwalks occur in projected polymer knof8] or
optimal (nonlineay projections of proteins backbongg]. A
great deal of work has been devoted to understanding the
statistical properties of these models; in particular, the mean .
molecular size for the accessible conformers. Recently, w®ur choice ofN=1—1 ensures that a rodlike chain is as-
introduced a complementary tool for analysis that discrimi-signedﬁ:o both in two and three dimensiofise., no “en-
nates betwe_en conformers with S|mllgr molecular size b“{anglementsj. As shown below, the descriptdt can also
different folding featureg1]. Our descriptor of 2D folding, pq computed analytically in terms of chain geometry and
denoted byN, is an extension of thenean overcrossing connectivity.
numberused for the characterization of entanglements in 3D | et {R;} be the node coordinates of the 2D polymer back-
linear(5,6] and knotted polymeri]. The shape descriptdt  bone, andR/} the center-of-mass coordinates. Ke;} be
takes into account geometrical and topological features of ghe connectivity matrix, where;; =1 if the ith andjth nodes
chain, i.e., the atomic positions and the chain connectivityare connected, and zero otherwise. The mean radial intersec-
As a result,N characterizes features not conveyed by stantion descriptorN can be computed as a sum iofiividual
dard descriptors of molecular size; e.g., the mean radius ®ond contributionsConsider radial lines stemming from the
gyration<R§>1’2. For this reason, we refer 09 as adescrip-  chain’s centroidQ’, as in Fig. 1. All radial lines within the
tor of folding complexity The configurationally averaged two shaded areas indicated A ,j) will intersect the bond
molecular size, given bf(Ré)l’z, and the configurationally segmen®R/ —R/. The number of intersections with a bond
averaged folding complexity, given b§N), are correlated can be computed as the fraction of the circle’s area corre-
onlyin limit cases. For example, conformers with the largestsponding toA. In turn, this fractional area is determined by
size have the simplest fold®.g., a rodlike chain wittN  the angle between the position vectors for the bond in ques-
~0), whereas the smallest conformers exhibit the maximuniion. Thus, for the bon®Rj — R/, the fractional number of
compatible folding complexity. OtherwisRZ andN are not ~ intersectionsl(i,j) becomesl(i,j) = 7 tarccogR;’ R/
correlated and together provide a discriminating pair of|R{[[IR{[[}. When adding these contributions over all chain
shape descriptors. In this work, we discuss a number of progiodes €;;#0), we obtain
erties of(N) that extend our discussion in RétL]. -1 n | o

The descriptoN is computed from the intersections be- N= i 2 & arcco% ﬂ] -1 (1)
tween the molecular chain and a selected set of “reference” =S IR/ IR | '
lines. By choosing these reference lines as those containing _
the centroid of the polymer, the approach becomes the 2Wvhich gives the mean radial intersection numbfor con-

extension of the one used to calculate mean overcrossirggurations in arbitrary topologies.
In Ref. [1] we considered adsorbed polymer configura-
tions modeled by 2D self-avoiding walkSAWS). For these

*Electronic address: Gustavo@nickel.laurentian.ca systems, we showed that the configurational ave(ajeex-

m>1

1=(1m) > 1.
=1
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with 95% confidence intervals and a correlation coefficient
C=0.9993[A fitting to a simplem? power law gives similar
results:  IgN)=(0.58+0.02)Inn—(0.6+0.1), with C
=0.9984. A scaling lawr{—2)#, as in Eq.(2), ensures that
the exact resulN=0 holds for a two-node chaihTo assess
the quality of our sampling, we have also monitored the
mean polymer size. Using the same configurations, we find
the following asymptotic behavior for the mean radius of
gyration: I(R?)?=(0.498+0.006)Inn+(0.44+0.03), C
=0.9998. This value is in good agreement with the well-
known result for random walkgR3)"?=n"2 (Note that 2D
random walks correspond to polymers in the poor-solvent
regime. In contrast, 3D random walks, also characterized by
a size exponent=1/2, resemble polymers in an ideal sol-
FIG. 1. Geometrical interpretation of the mean radial intersecvent) Our results indicate that the folding complexity for
tion number. The areai(i,j) andA(n,m) contain the radial lines SAWSs and RWSs is characterized by different critical expo-
intersecting the bondB] —R{ andR},— Ry, respectively. The ra- nents. Our conservative estimates for the expoygeimt 2D
dial intersection descriptd¥ uses these areas to convey the folding walks are(a) for random walks gy, =0.57+0.03, (b) for
features of a two-dimensional polymer chagee text self-avoiding walks with no excluded volumedsaw
=0.40+£0.05[1]. It is worth noting that the difference i
hibits power-law scaling with the number of monomers values is significant for 2D walks, whereas the exponents for
Recent work using nonlinear projections of protein back-3D RWs and SAWsre virtually coinciden{5]. Present re-
boneq 4] shows thaself-intersectingvalks can also occur in  sults should motivate further work towards understanding the
2D biopolymers. Here, we use E() to analyze some prop- dimensional dependendand exact valugof S.
erties ofN for walks with bond-bond intersections. Random and self-avoiding walks provide a reference to
First, we have compute(N) as an average over 1@n- ~ compare the behavior of other 2D models of biopolymers. In
correlated configurations for 2D random wallNs) with n  particular, we are interested optimized2D projections re-
monomers. Figure 2 compares these results with those f&ulting from multidimensional scaling. These techniques em-
SAWs from Ref[1]. (Results for RWs and SAWs appear as Ploy @ nonlinear mapping to produce a single projection to a
black and white squares, respectivelysing polymer chains lower-dimensional space under the condition of optimally
with 10<n=1000, the scaling behavior for random walks is Preserving the shape pattern of the initial data set. One such

L7220 AG,j)

found to be technique is the Sammon algorithm, commonly exploited for
data compression and pattern recogniti8r®]. In our case,
In<ﬁ>=(o.56i 0.0DIn(n—2)—(0.5=0.1), (2)  the Sammon mapping projects a setrohodes in 3-space,

with coordinates X;}, to another set oh nodes in 2-space
with coordinategR;}. The mapping proceeds by minimizing
100 a “stress-function” E that takes into account the pattern of

distances in each space. A common choick3j9]
-1
RVL,. EI{_Z_ Wij] E Wﬁl(xij_Rij)z, 3
» g i,j<i i,j<i
N 10 ¢ Er'/gl k whereX;; =|X;— X;|| andR;;=||R;—R;| are the distances in
. a" -7 3- and 2-space, respectively, ajwi;} are statistical weights
- E _—~ 7 SAW that can be chosen according to various critégay., w;;
- 5 - e - =Xj;). The optimum set of 2D coordinates is generated from
o g” an initial set of random positionR{?)}. New positions can
$/ - be generated iteratively by using minimization techniques
14 o ; [8—10]. Here, we use a steepest-descent Sammon algorithm,
10 100 1000 as implemented by Raubet al. [11], where
n, number of monomers ,
! REFV=R® - o % , $=0,1,2,...., (4)
FIG. 2. Scaling behavior of the folding complexity descrigtbr |(9 i | Ri:RfS)

for a number of model 2D polymerfBlack squares correspond to

random walks, RWs, whereas white squares correspond to seltith « a coupling constantor “learning parameter) taken
avoiding walks, SAWs. Gray bars correspond to the spamNof between 0.15 and 0.45. In our case, we test the robustness of
values for the Sammon projections of protein backbones having ththe final set of projected coordinates by repeating the proce-
following numbers of amino acid residues= 31 (10 proteing, n dure with different initial randomizations of the 2D data and
=75 (6 proteing, n=129 (9 proteing, andn=269 (11 protein. a values. Whenever multiple solutions appear, we choose the
See text for details. one with the lowest mii error. This technique yields a set
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A representative 3D view Optimized 2D projection obtained
I

of the CheY protein backbone with the nonlinear S pping Calcium binding

protein (3ich, n=75)
N =6227

Lysozyme (1hel, n=129)
_ N =9.197
(Minimum error = 0.052747; N =11.295)

FIG. 3. Example of a 2D nonlinear projection of a protein back-
bone obtained using the nonlinear Sammon mapifigis protein
has the largesil value among all proteins with 129 residyes.

Lipase (1tib, n=269)
of 2D coordinateR;} that can be used, together with the N =16.171
initial chain topology, to compute the shape descriptor in Eq.
(2). Until now, this method had only been used as a graphical
tool for displaying 3D protein backbong4]. Here, we have

generated the Sammon projections for proteins of various

lengths, in order to understand some general properties of the

resulting “optimized” 2D conformers. o ) . X . )
Figure 3 illustrates the results for the backone of Chey™on projections for proteins with variable lengiiroteins 3ich
protein, containingi=129 amino acid residueBAll 3D co- and 1tib have the largest values among proteins with their same
’ ) clpain length.

ordinates correspond to experimental structures deposited |

the Protein Data BankPDB) [12].] On the right, we show with protein backbones with the sammevalue) In Fig. 2,

the optimized Sammon projection. On the left, a ribbon traceyray bars indicate the spanfvalues over all protein native

of the 3D backbone indicates how the projection indeed prestates withn=31, 75, 129, and 269. Our results indicate a

serves the overall shape. __ clearcrossover behavioin the folding complexity{(a) short
Figure 3 gives also the value for the folding descrigior protein chains are projected onto 2D structures that are not

in CheY protein(PDB code 1cyk Among alldistinct pro-  maximally compact and exhibit the folding complexity of

teins withn=129 residues found in the PDB, 1cye has theSAWs with the same length(b) protein chains withn

smallest radius of gyration and the largdstvalue. This >100 residues are projected onto 2D structures whose fold-

result suggests that compactness in 3-space may transldfl§ features are similar to those of compact RWs with the

: : ; ; ; length.
into a maximum folding complexity for the corresponding same . . .
2D Sammon projection. In order to analyze the significance The above change in folding features may reflect essential

of this observation, we have computed the Sammon projecq#ferences in the 3D native states; e.g., the fact that longer

tions for families of unrelated proteir{gith complete back- proteins consist of multiple folding unitsdomains”). It is

. . ) ) possible that the pattern of inter-residue distances in multi-
bone coordinates in the PDBharing the same chain length. domain proteins can only give rise to 2D nonlinear projec-

With these data, we have made an estimate ofré@e of iong with a large number of self-intersections. Pragmati-
folding complexityaccessible to small- and medium-size pro- ¢4y one can exploit this behavior as one more piece of
teins. The followingn values provide sets with large diver- jiormation to be used when designing tentative folds for a
sity in molecular shapest=31 (10 proteing, n=75 (6 pro-  given protein. Our results establish constraints to the ranges
teing, n=129 (9 proteins, n=269 (11 proteins. For these ot N\ yajues that are consistent with two- and three-
proteins, we have computed optimized nonlinear 2D projeCgimensional backbones in native states. Accordingly, they
tions and shape descriptors. Illustrative cases appear in Figride a criterion to decide whether some folding features

4. In this figure, 3icb and 1tib have the most “entangled” ;¢ reasonable for the native state ofraresidue protein.
folds for proteins with lengthe=75 and 269, respectively.

Our main observation appears in Fig. 2, where the shape | would like to thank T. W. Raube¢Vitoria, Brazil) for
descriptors for all the proteins considered are contrasted witmaking available the program Tooldiag for pattern recogni-
the results for 2D walkgThe walks in Fig. 2 have a constant tion. This work was supported by grants from NSERC
bond length of 3.8 A, in order to allow a proper comparison(Canada

FIG. 4. lllustrative examples of folding complexity in the Sam-
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