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Discrete approximation of the linear Boolean model of heterogeneous materials

John C. Handley*
Xerox Corporation, 800 Phillips Road, MS 128-25E, Webster, New York 14580-9701

~Received 21 May 1999!

The Boolean model is a random set process in which random shapes are positioned according to outcomes
of a Poisson process. Two- and three-dimensional versions of the model characterize structures of certain
heterogeneous materials. Linear transects of the Boolean model produce a one-dimensional Boolean model that
summarizes some material properties. Two functions from linear transects, clump-length and lineal path dis-
tributions, provide information on material phase connectivity. Computation of these distributions is notori-
ously difficult. We provide a discrete approximation to the one-dimensional convex-grain Boolean model that
yields stable, linear-time, recursive algorithms to approximate these functions. Computer simulations demon-
strate accuracy and speed.@S1063-651X~99!03111-6#

PACS number~s!: 02.70.2c, 47.55.Mh, 07.05.Kf, 05.20.2y
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The Boolean model consists of a closed random
~shape! process~called a grain process! with an independen
point process~called a germ process!. Outcomes of the
closed random set, consisting of random shapes, are
translated to outcomes of the point process. The result
random set of possibly overlapping shapes. This model
applications in materials science, microscopy, geostatis
communications, and the theory of queues@1–4#. The Bool-
ean model is the most tractable, nontrivial random set mo
because it inherits many properties from its underlying Po
son process. In particular, the intersection of a line with
Boolean model inRd, d>2, is a linear Boolean mode
where the point process is a Poisson process on the line
one-dimensional~1D! shapes are line segments created
intersecting a line with higher-dimensional sets. If one
stricts higher-dimensional shapes to be convex, then the
duced linear model has convex shapes as well~grains are
single line segments!. This linear model is much studied be
cause of its interpretation as theM /G/` queueing system
the point process governs~memoryless! arrivals, lengths of
line segments are~general! random service times, and eac
arrival finds one of an infinite set of servers.~See@2#, Chap.
2, for a thorough discussion of the linear Boolean model.! In
materials science, quantities of the induced 1D model hel
characterize heterogeneous materials described by two
three-dimensional Boolean models.

When a line intersects a Boolean model, it produces g
and clumps where it intersects voids and shapes. Con
random shapes of the higher-dimensional model interse
line to produce random-length line segments. These are
random shapes of the linear Boolean model and every clu
is a union of these line segments. The probability distribut
of segment lengths and the intensity of the Poisson pro
completely characterize the linear Boolean model, and fr
these we wish to computeG, the probability distribution of
random clump lengths@2#. The probability that a segment o
lengthz is completely covered by shapes of a Boolean mo
is called the lineal path function,L(z). DistributionsG andL
are difficult to compute numerically@2,5#. The contribution
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of this work is to demonstrate that a discrete approximat
of the linear Boolean model provides simple recursive f
mulas to compute these functions.

Consider a Boolean model composed of a Poisson p
process with intensityr and disks with random radii~Fig. 1!.
Denote the radius probability density function byf and its
i th noncentral moment by

Mi5E
0

`

r if~r !dr. ~1!

The induced linear Boolean model has germ process in
sity l52rM1 and the segment length distribution@2,5#

C~x!5
1

M1
E

x/2

`
Ar 22x2/4f~r !dr. ~2!

Using the Steiner formula, the mean segment length is@4#

a5
pM2

2M1
. ~3!

The vacancy~proportion of space not covered! of the linear
~and thus spatial! Boolean model isv5exp$2h%, whereh
5al is called the reduced density of the model.

Following @5# we present examples where radii are lo
normally distributed,

f~r !5
1

rbA2p
expH 2

1

2 F ln~r /R0!

b G2J ~4!

FIG. 1. Random disk Boolean model with log-normally distri
uted ~dimensionless! radii, b50.25 andR051, with spatial inten-
sity r50.1 on the left andr51.0 on the right.
6150 © 1999 The American Physical Society
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with parametersR0 and b. Whenb50, we define the disk
radius to be constantr 5R0 . For examples presented her
we assumeR051. For the log-normal distribution,

Mi5R0
i exp$ i 2b2/2%. ~5!

On the line, the clump-length distributionG has Laplace-
Stieltjes transform@2#

g~s!511s/l2S lE
0

`

expF2st2lE
0

t

@1

2C~x!#dxGdtD 21

, ~6!

whereC is the segment-length distribution. A closed for
for G is known only in the special case where segm
lengths are constant.

The discrete version of the model starts with a Berno
marking process on the discrete line: a point is marked w
probability p and markings are independent. The number
points marked in an interval ofn points has a binomial dis
tribution. Segment lengths are governed by a random v
able that is independent of the marking process and has
crete distribution C. Define F(x)512p1pC(x), x
50,1,..., andC(0)[0 so thatF(0)512p5q. Let K be the

FIG. 2. Plots of approximated (n5100) and simulated clump
length distributions for random disk Boolean models with lo
normally distributed~dimensionless! radii, b50.25 and R051.
Spatial intensities arer50.1 ~a! andr51.0 ~b!.
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length of a clump in this model. A recursive formula for th
discrete probability density function ofK is @6#

P~K5m!5(
j 51

m

@F~m!2F~ j 21!#)
i 51

j 21

F~ i 21!P~K5m2 j !

~7!

for m51,2,..., whereP(K50)5q/p starts the recursion
Approximate a Poisson process by a binomial process in
usual way withp5l/n and approximate a segment of leng
x by @nx# pieces of length 1/n. Equation~7! can be rewritten

P~K5x!5(
j 51

@nx# FF~x!2FS j 21

n D G)
i 51

j 21

FS i 21

n D
3P~K5x2 j /n!. ~8!

As n increases, the binomial distribution converges to
Poisson distribution with parameterl, the discrete segmen
length distribution converges to the continuous version, a
Eq. ~8! approximates its continuous counterpart:

P~K5x!'
G~x11/2n!2G~x21/2n!

n
. ~9!

Equation~8! is easily implemented in software and, by sto
ing intermediate products and distribution values, it is line
in time and storage as a function ofn. Figure 2 shows graphs
of approximated and simulated clump length distributio
from the linear section of a disk model with log-normal
distributed radii. Computations for clump lengths up to
units long took 5 sec and up to length 104 units took 53
on a 200-MHz computer.

Estimating the segment-length distribution from a line
Boolean model realization is given scant attention in the
erature, perhaps because it requires the difficult inversio
the clump-length distribution@solving for C in Eq. ~6!#.
However, the segment-length distribution would aid in ch
acterizing the distribution of particle shapes, none of wh
may be completely observed due to overlapping. Equa
~7! can be inverted to provide an estimated segment-len

FIG. 3. Graphs showing approximated lineal path functions a
simulated values for random disk Boolean models with lo
normally distributed radii,R051.0.
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distribution from the observed clump-length distributio
Gap lengths are geometrically distributed with mean 1@1
2F(0)#. One could tally a histogram of clump lengths,
the resulting empirical density function with continuous de
sity f̂ K , approximate the discrete density ofK,
-
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P~K5x!5E
x21/2n

x11/2n

f̂ K~ t !dt, ~10!

and approximateF by
F̂~x!5

P̂~K5x!1( j 51
@nx#F̂S j 21

n
D ) i 51

j 21F̂S i 21

n
D P̂~K5x2 j /n!

( j 51
@nx#) i 51

j 21F̂S i 21

n
D P̂~K5x2 j /n!

, ~11!
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whereF̂(0)5121/V̄ and V̄ is the average gap length.
The lineal functionL(z) is the probability that a line seg

ment of lengthz is completely covered by a Boolean mode
For a one-dimensional model,L(z) is the probability of com-
plete coverage. From@2#, theorem 2.6, we have the ordina
Laplace transform of the lineal function

p~s!5s212S s2ealE
0

`

expF2sz2lE
0

z

$1

2G~x!%dxGdzD 21

, ~12!

wherea is the mean segment length. The difficulty of com
puting L from Eq. ~12! is discussed in@5#.

In the discrete setting, denote byHm the event that a
discrete interval of lengthm51,2,... is completely covered
Let W denote the event that the Boolean model does
cover a given point.~The probability of this event in the
discrete model corresponds to the vacancy in the linear B
ean model.! If C has finite mean@7#,

P~W!5)
i 50

`

F~ i !. ~13!

Let Dm denote the set of outcomes on a discrete interva
lengthm such that the segments cover the interval. EventDm
has probability

P~Dm!512(
j 51

m

)
i 51

j 21

F~ i !P~Dm2 j !, ~14!
ot

l-

f

whereP(D1)[12F(0) @6,7#. Assuming the probability of
an infinite-length covering is zero, the discrete version of
probability of total coverage has a recursive expression@6,7#,

P~Hm!5P~Hm21!2P~W!P~Dm!, ~15!

where the recursion is initiated byP(H0)[1. Using the dis-
crete approximation to the Boolean model,

L̂~z!512P~W! (
m51

@nz#

P~Dm!, ~16!

where

P~Dm!512(
j 51

m

)
i 50

j 21

F~ i /n!P~Dm2 j !. ~17!

Using Eqs.~16! and ~17!, Fig. 3 replicates Fig. 3 of@5# in
which lineal path functions for several random-radius d
Boolean models are plotted with values from computer sim
lations. By storing intermediate values, computation time
dominated by numerical integration of the radius probabi
density function. For eachL, whereb.0, calculations from
u50 to 20 usingn5100 took 12 sec on a 200-MHz com
puter.

This discrete approximation to the convex-grain line
Boolean model provides simple, fast recursive algorithms
compute clump-length and lineal path distributions of spa
Boolean models. These methods can be applied to lin
transects of any convex-gain Boolean model, provided
segment-length distribution can be computed.
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