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Discrete approximation of the linear Boolean model of heterogeneous materials
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The Boolean model is a random set process in which random shapes are positioned according to outcomes
of a Poisson process. Two- and three-dimensional versions of the model characterize structures of certain
heterogeneous materials. Linear transects of the Boolean model produce a one-dimensional Boolean model that
summarizes some material properties. Two functions from linear transects, clump-length and lineal path dis-
tributions, provide information on material phase connectivity. Computation of these distributions is notori-
ously difficult. We provide a discrete approximation to the one-dimensional convex-grain Boolean model that
yields stable, linear-time, recursive algorithms to approximate these functions. Computer simulations demon-
strate accuracy and spe¢81063-651X%99)03111-6

PACS numbgs): 02.70-—-c, 47.55.Mh, 07.05.Kf, 05.26.y

The Boolean model consists of a closed random seobf this work is to demonstrate that a discrete approximation
(shape procesqcalled a grain processvith an independent of the linear Boolean model provides simple recursive for-
point process(called a germ processOutcomes of the mulas to compute these functions.
closed random set, consisting of random shapes, are then Consider a Boolean model composed of a Poisson point
translated to outcomes of the point process. The result is rocess with intensity and disks with random radiFig. 1).
random set of possibly overlapping shapes. This model ha@enote the radius probability density function Byand its
applications in materials science, microscopy, geostatisticéth noncentral moment by
communications, and the theory of quelizs4]. The Bool-
ean model is the most tractable, nontrivial random set model M. = fwrid)(r)dr 1)
because it inherits many properties from its underlying Pois- 0
son process. In particular, the intersection of a line with a
Boolean model inRY, d=2, is a linear Boolean model, The induced linear Boolean model has germ process inten-
where the point process is a Poisson process on the line afiy A =2pM; and the segment length distributip®, 5]
one-dimensional1D) shapes are line segments created by 1 =
intersecting a line with higher-dimensional sets. If one re- C(x)=—f JrZ=x2/4¢(r)dr. 2
stricts higher-dimensional shapes to be convex, then the in- My Jx2
duced linear model has convex shapes as Vgghins are ) ) )
single line segmentsThis linear model is much studied be- Using the Steiner formula, the mean segment lengf#lis
cause of its interpretation as ti/G/> queueing system: M
the point process goverrimemoryless arrivals, lengths of a= 77 2
line segments aréeneral random service times, and each 2M,
arrival finds one of an infinite set of servefSee[2], Chap.
2, for a thorough discussion of the linear Boolean mgdal. _ _
materials science, quantities of the induced 1D model help t§2nd thus spatiaiBoolean model is/=exp(—7}, where 7
characterize heterogeneous materials described by two- or @\ iS called the reduced density of the model.
three-dimensional Boolean models. Followm_g [_5] we present examples where radii are log-

When a line intersects a Boolean model, it produces gap°rmally distributed,
and clumps where it intersects voids and shapes. Convex

()

The vacancy(proportion of space not coveredf the linear

random shapes of the higher-dimensional model intersect a B(r)= 1 exp{ _ 1 In(r/Ro)r} (4)
line to produce random-length line segments. These are the rlg\/ﬂ 2 B

random shapes of the linear Boolean model and every clump

is a union of these line segments. The probability distribution )

of segment lengths and the intensity of the Poisson process q

completely characterize the linear Boolean model, and from . ‘ 0,

these we wish to comput8, the probability distribution of ®

random clump lengthg2]. The probability that a segment of ’ ®

lengthzis completely covered by shapes of a Boolean model ..’ l ‘

is called the lineal path functiol,(z). DistributionsG andL
are difficult to compute numericallj2,5]. The contribution -
FIG. 1. Random disk Boolean model with log-normally distrib-
uted (dimensionlessradii, 3=0.25 andR,= 1, with spatial inten-
*Electronic address: John.Handley@crt.xerox.com sity p=0.1 on the left angh=1.0 on the right.
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FIG. 3. Graphs showing approximated lineal path functions and
simulated values for random disk Boolean models with log-
normally distributed radiiRy=1.0.

length of a clump in this model. A recursive formula for the
discrete probability density function &f is [6]

cummulative probability

m ji—1
P(K=m)=2} [F(m)~F(-D]L] Fi-1PK=m-j)

(7)
o] 20 40 60 80 100 120
clump length for m=1,2,..., whereP(K=0)=q/p starts the recursion.
(b) Approximate a Poisson process by a binomial process in the

usual way withp=\/n and approximate a segment of length
FIG. 2. Plots of approximatedh=100) and simulated clump- X bY [nX] pieces of length I. Equation(7) can be rewritten
length distributions for random disk Boolean models with log- )
normally distributed (dimensionless radii, 8=0.25 and Ry=1. P(K=x)= E i—1
Spatial intensities arp=0.1 (a) andp=1.0 (b). o _j=1 n
with parametersR, and 8. When =0, we define the disk XP(K=x—j/n). (8)
radius to be constamt=R;. For examples presented here, ) ) ] o
we assumeR,= 1. For the log-normal distribution, As n increases, the binomial distribution converges to the
Poisson distribution with parametar the discrete segment

M, =R} exp{i’B%/2}. (5)  length distribution converges to the continuous version, and
Eq. (8) approximates its continuous counterpart:

[nx] -1

ITF

i=1

=
F(x)—F|—=

n

On the line, the clump-length distributidd has Laplace-

Stieltjes transfornj2 G(x+1/2n)—G(x—1/2n
elies transiomz] e T
o0 t
V(s)=1+s/h— ( )\fo exr{ _St_)‘Jo[l Equation(8) is easily implemented in software and, by stor-
. ing intermediate products and distribution values, it is linear
—c(x)]dx|dt ©6) in time and storage as a functionmfFigure 2 shows graphs
' of approximated and simulated clump length distributions

from the linear section of a disk model with log-normally
where C is the segment-length distribution. A closed form distributed radii. Computations for clump lengths up to 8
for G is known only in the special case where segmentnits long took 5 sec and up to length 104 units took 53 sec
lengths are constant. on a 200-MHz computer.

The discrete version of the model starts with a Bernoulli Estimating the segment-length distribution from a linear
marking process on the discrete line: a point is marked wittBoolean model realization is given scant attention in the lit-
probability p and markings are independent. The number oferature, perhaps because it requires the difficult inversion of
points marked in an interval af points has a binomial dis- the clump-length distributioffsolving for C in Eq. (6)].
tribution. Segment lengths are governed by a random variHowever, the segment-length distribution would aid in char-
able that is independent of the marking process and has discterizing the distribution of particle shapes, none of which
crete distribution C. Define F(x)=1-p+pC(x), X may be completely observed due to overlapping. Equation
=0,1,..., andC(0)=0 so thatF(0)=1—p=g. LetK be the (7) can be inverted to provide an estimated segment-length
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distribution from the observed clump-length distribution. X+ 1/2n.

Gap lengths are geometrically distributed with meajil 1/ P(K=x)=J f(t)dt, (10
—F(0)]. One could tally a histogram of clump lengths, fit x=1/2n

the resulting empirical density function with continuous den-

sity T, approximate the discrete density Kf and approximaté& by

. e (171} i1 _
P(K=x)+Zj21F T i Z;F| — | P(K=x—j/n)
F(x)= 7 , (11)
i1
EJEEX}H{:}F(T) P(K=x—j/n)
|
whereF(0)=1—1A andV is the average gap length. whereP(D;)=1-F(0) [6,7]. Assuming the probability of

The lineal functionL(2) is the probability that a line seg- an infinite-length covering is zero, the discrete version of the
ment of lengthz is completely covered by a Boolean model. Probability of total coverage has a recursive expresgion,
For a one-dimensional modél(z) is the probability of com-
plete coverage. Froii®2], theorem 2.6, we have the ordinary P(Hm) =P(Hp-1) = P(W)P(Dy), (15

Laplace transform of the lineal function L . .
P where the recursion is initiated B(Hg)=1. Using the dis-

o z crete approximation to the Boolean model,
w(s)zsl—(sze“f exp{—sz—)\f {1
0 0 [nz]
-1 L(2)=1-P(W) 2, P(Dp), (16)
—G(x)}dx dz) , (12) m=1
where

wherea is the mean segment length. The difficulty of com-
puting L from Eq.(12) is discussed inf5]. m -1

In the discrete setting, denote By, the event that a P(Dm)zl—Z H F(i/n)P(Dpy-j). (17)
discrete interval of lengtim=1,2,... is completely covered. J7h 0

Let W denote the event that the Boolean model does ”OEJsing Eqgs.(16) and (17), Fig. 3 replicates Fig. 3 of5] in
cover a given point(The probability of thls_ event in the  which lineal path functions for several random-radius disk
discrete model corresponds to the vacancy in the linear BOogo1ean models are plotted with values from computer simu-
ean mode). If C has finite meai7], lations. By storing intermediate values, computation time is
o dominated by numerical integration of the radius probability
p(W):H F(i). (13)  density function. For each, where3>0, calculations from
i=0 u=0 to 20 usingn=100 took 12 sec on a 200-MHz com-

. . uter.
Let D, denote the set of outcomes on a discrete interval oP This discrete approximation to the convex-grain linear
lengthm such that the segments cover the interval. E@gt  Boolean model provides simple, fast recursive algorithms to

has probability compute clump-length and lineal path distributions of spatial
m j-1 Boolean models. These methods can be applied to linear
_1_ ; transects of any convex-gain Boolean model, provided the
P(D,=1 F(H)P(Dpy-i), 14 S
(D) jZl |1:[1 ()P(Dm-) (4 segment-length distribution can be computed.
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