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Biaxial modeling of the structure of the chevron interface in smectic liquid crystals
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(Received 21 December 1998

We have included the inherent molecular biaxiality of the smeCtiphase in a model of the chevron
structure. This molecular biaxiality is related to a hindered rotation about the molecular long axis which for
chiral, polar molecules induces a spontaneous polarization. Through the coupling between biaxiality and the
smectic cone angle, continuity of the molecular distribution at the chevron interface leads to changes in the
cone angle. Under certain approximations we are able to find analytic expressions for the chevron structure and
consequently estimate the width of the chevron interface. There are in fact two correlation lengths which
govern variations in the cone angle and the biaxiali§1063-651X99)06207-§

PACS numbds): 61.30.Cz, 61.30.Gd

[. INTRODUCTION terface have been put forwaf8-13. Generally, a feature
that these models have in common is that the discontinuity in
Considerable effort has been expended in recent years ohis avoided by allowing one or more of the parameters of
the development of continuum theories for sme@i¢Sc) ~ the system such as the layer tdf the cone angle), the
and chiral smecticC ferroelectric liquid crystals & or ~ azimuthal angle around the smectic cogpe or the layer
FLC). This research has been partly motivated by scientifidhickness, to vary smoothly within the cell.
interest, but also because of the considerable potential for Nakagawds8] proposed a continuous model based on the
exploitation of ferroelectric liquid crystals in display devices. minimization of an energy consisting of terms from layer

Commercial interest has largely centered on understandin%'lat'on' Iayer bending, and variations ot .
o o In [9], Limat and Prost described the chevron structure in
the structures formed and the switching within surface-

stabilized homogeneously aligned cells. One of the mosierm.S of the layer tilt angle, Whlc_h_was assumed to be_
- e . ontinuous across the cell. By writing the free energy in

Sharacterlftm structures found W'th'r.] these cells IS N&erms of 6 they were able to investigate the second order
chevron.. Th|s_ was first observed |n_surface—st.ab|l|zed transition between the smecti, bookshelf structure, and

fgrroglectnc liquid crysta(SSFLQ ce_IIs using x-ray dn‘f_rac- the smecticC, chevron structure.

tion, in the Sg phase[1,2], and confirmed optically using a By assuming that the layer til§ was coupled tod and
guided mode techniqug]. The chevron structure has sub- then allowing 6 to vary through the cell De Meyeret al.

sequently been found in thicker cefl] and in the smecti&  [10] were able to remove the layer tilt discontinuity while
(Sa) phase5]. The presence of two peaks in the diffraction preserving the layer thickness. In their model balancing en-

trace corresponded to equal and opposite layer tilt$,with  ergy contributions from layer curvature and variationséin

a sharp transition between them. Rielatral[2] demon- they found solutions for the chevron structure. The assump-

strated the independence of the layerdiftom the treatment tion of constant layer thickness and layer curvature leads to
of the cell surfaces, and its dependence on the cone @ngle the necessary condition thatis zero at the chevron inter-
Experimental studies have since estimated the chevron “tip'face, i.e., the liquid crystal is in the smec#icphase.

thickness to be~10"8m [2]. In addition, high resolution Limat [11] later extended the previous model of Naka-

x-ray studies have shown the existence of triple peaks withigawa to included the possibility that the layer tilt angle does
FLC cells[5]. These are taken to come about due to thenot equal the smectic cone angle.

presence of a double kink chevron struct[6¢ Vaupoticet al.[12,13 removed the constant layer thick-

The chevron structure is believed to form due to the mis-hess condition and found solutions for whiéhis nonzero
match between the prescrib&{ layer thickness at the cell but small at the chevron interface where there is a small
surfaces and the layer thickness within the bulk of the celregion of layer dilation.
which is determined by the smectic cone an@l&his layer
thickness matching condition can be satisfied by tilting the
layers away from the cell surface normal.

Clark and Rieker put forward the original theoretical All the models outlined in the preceding section do not
model [7] of the chevron, which explained it in terms of a include the inherent molecular biaxiality of the smedfic
kink or discontinuous change in the smectic layering. Al-phase. This molecular biaxialitjilustrated in Fig. 1 is re-
though this model has a discontinuity in the layer #ilithe  lated to a hindered rotation about the molecular long axis
n-director structure is continuous at the chevron interface. which for chiral, polar molecules induces a spontaneous po-

Since then a number of other models of the chevron iniarization. Figure 1 shows the biaxial molecule, in a simplis-

tic representation, as a rectangular cuboid with no equal side
lengths. The macroscopic varialdas defined as the vector
* Author to whom correspondence should be addressed. normal to the smectic layer while the variables m;, 6,
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FIG. 1. Configuration of the biaxial liquid crystal molecule. The
vectorsa andk are parallel to the smectic layer normal and the
axis, respectively. The major molecular axisis described by the
cone angled; and the azimuthal angle; . The intermediate mo-
lecular axism; is described by the anglg .

¢;, and¢; are defined foreachmolecule. In this paper we

will assume that the order parameters associated with thﬁ:1r

molecular distribution off;, and ¢; are constant thus the
macroscopic directon={n;) can be defined by the macro-
scopic variables, =(6;), and¢=(¢;), where() denotes
the average value of the variable. The veatqris in the
direction of the molecular dipole of the molecule whileis

the angle of rotation of the molecule about the long axis. We

will assume that the average value=({m;) remains con-
stant and perpendicular t@ and n (i.e., tangential to the
smectic congwhile the order parameter defined ]

S=(cog2¢)) @

is allowed to vary. This definition implies that when all mol-
ecules are perfectly aligned with (i.e.,m;=m or &=0 for

all moleculeg, S=1, and when the molecules are randomly

oriented around the molecular long aXis., m; or & are

random, S=0. When the molecules are all perpendicular to

m (i.e., m;-m=0 or &= = 7/2 for all moleculey then S=
—1. We can now describe the smecticphase in terms of
the macroscopic variables, the layer norraathe nematic-
like directorn, and S the biaxial order parameter. Figure 2

gives a pictorial representation of a chevron in a surface-

stabilized FLC cell. It is assumed that the layer norabés

in thexz plane and thus may be described simply by the layer

tilt angle 6. The nematiclike directon is described by the
cone angled and the azimuthal anglé. These variables will

be allowed to vary along the cell normal, i.e., thdirection.
Figure 3 illustrates the importance of including the biaxial
order parameter in our description of the chevron. If the bi-
axial order parameter is nonzero the molecular distribution
of the biaxial molecules will be elongated either along the
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(b)

FIG. 2. The chevron configuration within the surface-stabilized
FLC cell. (a) In the regionz>0 the smectic layer is tilted by an
angle 6 while in the regionz<0 the layer tilt angle is—4. The
chevron interface lies &=0. (b) At the chevron interface continu-
ity of the director structure implies thatlies on the intersection of
two smectic cones.

tions. It is obvious that such a discontinuity is rectified by
insisting that the biaxial order parameter is zero at the chev-
ron interface so that the system is uniaxial thigeigy. 3(b)].

As we will see later, since the biaxial order parameter is
coupled to the smectic cone anghethe condition thatS

=0 at the chevron implies that will also change in this
region.

Although biaxial order is known to exist in SSFLC cells
ough the existence of a spontaneous polarization none of
the presently published models of chevron structures include
it. In this paper we will extend the original model of Clark
and Rieker to include continuity of biaxial ordering.

We start with a simple model describing the bulk of a
liquid crystal sample. The energy density,, near the phase
ransition Toc is given by the simple Landau—de Gennes
expansion in terms of the cone andgle

a, b ¢ .
fbulk:f0+§0 +Ze +€0, (2)

(a) (b)

COaCC
QO OC

tangent to the cone or perpendicular to the tangent to the F|G. 3. (a) With a fixed value of the biaxial order parame®r
cone. In a FLC material this would result in the spontaneoushe molecular distributions do not coincide at the chevron interface.
polarization lying tangential or perpendicular to the smectic(b) If the biaxial order parameter is allowed to vajis continuous
cone. Figure @) shows that on either side of the chevron at the chevron interface. Since they are intrinsically coupled, varia-
interface there exists a mismatch of the molecular distributions in S are accompanied by variations in the cone argyle
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wherea= a(T—Tac). We then incorporate biaxial ordering *+6,, S=S,) they imply A>0, a<0, b>0, gq>—3bA<0.
into this model by including an order paramet&rWe can  The conditionsA>0 andb>0 are in fact necessary in order
now write down an expression for the energy density deto be able to write a Landau expansi@ for the smecticC
scribing a biaxial liquid crystal in the bulk as a function phase. The conditiors>0 anda<0 are clearly equivalent
consisting of an expansion in terms of two order parametergp T>T,c and T<T,c as expected. The condition?

the cone angle and the biaxial measur@ —3bA<0 for the smecticC phase to exist is more subtle.
b 3 The b and A terms in the Landau expansi@8) tend to re-
a q duce the cone angle and biaxial order parameter whilejthe
- el e S -y S N~
foun=Tot 5 074 7 07— 5 SO+ 2 AS, @ term tends to increase bothand In order for the smectic

C phase to exist these three terms must reach a balance such
where we have neglected the higher order te®(®°),  that ¢ and S are nonzero and finite. If, howeveg, is too
O(S%). Because of the invariance of the energy under thearge, the free energy has no minimum oty values of the
symmetry operatio®— — ¢ but not undeiS— —S, the cou-  cone angle and the biaxiality. The boundapis given by the
pling betweend and S is represented by th®(S6?) term. conditiong?<3bA.

In order to simplify this expression, it is useful to consider  Using the above expressions fég and S, we can rear-
what the equilibrium values of the two parametérandS  range the free energy densit§) into
might be for this system. These stationary points of the free

energy are found by differentiating E€B) with respect tog Cub[ o ﬁ) 2 3 S( ~ 28602)
andS fbulk_f0+4 9 06(1 bag +4A S —6er y
0=af+b6*—qSy, (4a)
3 which is independent of the parametarandg. In Eq.(8) f}
0=— a 0>+ > AS, (4b) is a constant energy term. _ _
2 2 Equation (8) is insufficient on its own to describe the

structure of the chevron interface. To do this we need to be
able to describe how the order parameters vary in the vicinity
of the chevron tip.

First, we postulate that the entropic biaxiality order pa-
rameterS varies smoothly in the vicinity of the chevron tip.

From Eq.(4b) the equilibrium values fop andS are

6=0, S=0, (5a

6= 6., szigg, (5b)  The changes in order associated with this melting can be
3A represented by gradient terms$n
q 2 K dS 2
0=— 96' S= ﬁ 66’ (SC) fem:E ( E) ’ (9)
where where k represents the entropic cost of gradients in $he
3aA |12 order parameter ardlis the coordinate in the direction of the

(6) cell normal.

In order to describe the elasticity that governs distortions
. o - in the director structure near an interface such as the chevron
is the nonzero equilibrium value @ The nonzero equilib-  or 5 cell surface, we assume that the biaxiality plays only a
rium value ofSis thenS,=qa/(q°—3bA). Therefore, while minor part in any such distortion, allowing us to write a term
0 is proportional to the square root of the temperature difthat will describe the variation in the directar(across the

ference, AT=T—Txc [from Eq. (6) with a=a(T—Tac)l.  cell thickness by a nematiclike elastic energy,
S. grows linearly withAT. From Eq.(6) 6, is imaginary in

e

g°—3bA

the smecticA phase. Solutior{5a) therefore corresponds to K 5 )
the smecticA phase and solution&b) and (5¢) correspond felas:E[(V'n) +(VXn)“], (10
to smecticC phases with opposite tilt angles. These solutions
are stable if whereK is an elastic constant and a one constant approxi-
) mation to the elasticity has been used.
d F>0 7 From Figs. 1 and 2 the director may be written as
ag® (7a
n=(cosf cosd+ sin d sin ¢ sin §, — sin # cos¢,cosh sin
2
§> 0, (7b) —sin#sin ¢ coss). 11
Since all the variables, 6, and ¢ may depend org, the
d?F\ [ d*F d?F \? elastic energy10) is complicated. In order to make the sys-
d</\de2) \dsw >0. 79 tem analytically tractable we will make certain simplifying
assumptions.
For the smecti& phase =0, S=0), these conditions im- For the director to be continuous at the chevron interface

ply A>0, a>0 and for the smecticC, tilted, phase ¢= n must lie in the plane of the cell surfaces. We will assume
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that in a region around the interface the director stays 24 /d®
roughly in thexy plane. In terms of the relevant angles this F= N

condition is

12

2
+o(c—20?).

(18)

2
) + %[@2—(1—>\)]2+ do

dz dz

We minimize the energy by solving the Euler-Lagrange
equations of the system to find the manner in whithnd o
vary in the vicinity of the chevron interface. For H4.8) the

Near to the interface we may also assume that the aZim“thﬁuler-Lagrange equations are

angle is approximately constant so th&t ¢, (the value at

z=0, the chevron interfagelLastly we will assume that both d%o
the layer tilt angled and the cone anglé are small. This O=gzz— ot 02, (1939
approximation is valid in the vicinity of the smecticto C
phase transitiorii.e., T=Tac). With the above assumptions d2
the director may then be written as ozad—zg—+®[1—®2+)\(a—1)]. (19b)
Far from the chevron interface in the bulk of the liquid
and the elastic energy simplifies to crystal the structure will be uniform and?@/dZ?
K 42 =d%0/dZ2=0. Then Eqgs(19) give the solutions
1:elas:ECOSz ®o E) (14) c=0, 0©=0, (20a
We may estimate the constant azimuthal angle using the re- o=1, O=1, (20b)
lationship(12) to write
tan5o 2 50 2 O':]., @I_l, (ZOC)
cof pp=1—|——| ~1—|—| . (15) _ , , _
tanéd, 0o which are equivalent to the bulk solutions of E@5). It is

Equations(8), (9), and (14) with (15) can now be com-

also worthwhile noting that the stability condition for the
tilted smecticC phase,g>— 3Ab<0, is equivalent to\<1.

bined and used to write an expression for the energy densit-yhe other stability conditionsA>0 andb>0, ensure that
of the system in the vicinity of a chevron interface:

K'(d#\? b (. B3AS\]? «(ds|?
f=fo+ o 5| +5]2—05l1-—F]|| +5| =

2 \dz) 2 bog 2\dz

3.ds 2S,6° 16

whereK' =K (1— 83/ 63).

A=0.

The governing equationd9) will subsequently be solved
subject to certain relevant boundary conditions. If we fix the
chevron interface at=0 then, as discussed above, smooth
changes in the molecular distribution will only take place if
the azimuthal orientational fluctuations around the long mo-
lecular director are isotropic at the interface, i%=0.

Far from the chevron tip, within the bulk of the liquid
crystal cell, it seems reasonable to expect the cone angle and

We_ can simpllify Fhe above freg energy d‘?”sity with theye biaxial order parameter to be equal to their equilibrium
following normalizations and nondimensionalization:

4(f—fg
__ A1)

3AS

(17a

(17b

(179

(17d

(17¢

(a7h

The nondimensionalized free energy density is then

values, that isg==* 6, andS=S,. In terms of nondimen-
sionalized variables, this corresponds to the conditibn
+1 ando=1. The full boundary conditions are thus

®—*+1 asZ—=*om, (219
c—1 asZ—*ow, (21b
oc=0 atZzZ=0. (210

The first boundary conditiof21g leads to two distinct pos-
sibilities for the director structure &=0. If ®— +1 asz
—+ow and®——1 asz— —o (or equivalently® ——1 as
Zz—+o and®— +1 asz— —x) continuity of the director
structure implies tha® =0 atz=0. However,0 —+1 as
z—+o and® — + 1 asz— —« (or equivalently® — —1 as
z—+w and ®— —1 asz— —) continuity of the stress
induced by director deformations implies th#®/dz=0 at
z=0.

The first case @ =0 atz=0) is similar to the model of
De Meyereet al. [10] where the liquid crystal becomes
smecticA at the chevron interface while the second case
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(dO®/dz=0 at z=0) is similar to the model of Clark and )
Rieker. However, as discussed previously, these two models L0
do not include biaxiality.
Given that in the first of these cases there exist large dis-

tortions to the smectic cone angle for which our Landau—de 0.8
Gennes model may be invalid we will subsequently only : G
consider the second case. We will therefore use the following
boundary conditions:

0.6
0®—1 asZ—z*oo, (229
o—1 asZ— *o, (22b 0.4
d®/dz=0, o=0 atZ=0. (220
Then due to the symmetry of the system we need only con- 0.2
sider the regiorz>0.
The chevron interface is therefore described by the two
coupled nonlinear equatiori$9) together with the boundary 0.0 2 2‘ 6 é 1:0

conditions(22). The full equations will be solved numeri-

cally using the continuation packageT097 [15,16. How-

ever, it is also possible to solve the governing equations ana-

lytically under certain simplifying approximations.
When\=0 Egs.(19) reduce to

Z

FIG. 4. Analytic solutions for the normalized cone an@leand
biaxial order parameter when\=0.

d?o It should be noted that in practice the conditiar=0
0= qzz—o+ 02, (233  impliesA=0 or S,=0, Eq.(17d), and if we assumé>0,
the above solutior(24b) strictly reduces toS=0 and the
d20 nondimensional variable is undefined. However, the form
0= ad_zz_+@(1_@2)_ (23b) of o found above will be useful in the following section.

When A #0 the equations are not very tractable to an

. . o analytic approach. For part of this regime we can make some
Eor the above bounda[yZ condlthns th!s has th_e trivial solu-analytic progress using a perturbative approach whed.
tion ®=1 ando=1—e"“ or in dimensional variables,

This condition is equivalent t&.<1, i.e., the smecticC
=0 (249 phase is weakly biaxial.
e’ Thus using\ as a perturbation parameter we assume that

S=S,(1—e 23A2%), 24D

e ) (240 O=1+\0;+0(\?), (26a
This solution corresponds to the classical analysis of the
chevron put forward by Clark and Riekgr]. In common o=1—e %+ ro;+0O(\?). (26b)
with their solution, this solution also has the cone angle
constant throughout the cell, and the direatoat the chev-  Then to first order Eqg19) become
ron interface is positioned at the intersection of the smectic

cones from the two halves of the chevron structure. How- d?o;
ever, as we also introduced the need for continuity of the 0=—472~ 01—204, (2739
biaxial order across the chevron interface, this solution to our
model additionally has the biaxial orderingelting at this 5
internal surface. This is illustrated in Fig. 4. _ d ®1_ a2
. . I 0=« 20,=¢e" 4, (27b
An interesting feature of our solution is that EQ4b dz

allows us to estimate the width of this melt region. This
corresponds to an internal boundary layer thickness or cowhich must be solved with the boundary conditions
relation lengthzg, given by

2_ _
o (2« 12 01=0, 0,=0 asZ—wx, (289
%L 3_A) 9 40,

o7 =0 =0 atz=o. (28b)

Provided that the biaxial ordering is indeed driven by the
molecular tilt(or cone anglg as we have assumed in deriv- ]
ing the above solutions, and we are well away from any!he solutions are
naturally occurring biaxial phase transitidlargely a mate-
rial dependent propertyand from the cell surfaces, then this 1 ( a
correlation length is largely independent of temperature.

—-Z

: (293
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0.9985 analytical (dashed linesand nu-
merical (solid line) solutions for
0.9980 0.4 (@ ® and (b) o, whenA=0.01
and«=0.5,1.0,1.5,2.0,3.0,4.0,5.0.
0.9975 Y
0.2
0.9970
0.0
0 2 4 6 g8 10
V4
S z For a>2, z, >z5, while for a<2, z5 >z, .
T1= = 2)2 (e “—e 79+ (@2 e % (29 Figure 7 shows the analytic solutions for larger values of
N (Whena=2). For large values aof, while the region over
whena+#2 and which O varies does not change significantly, there is a much
L _, larger reduction in the value dd(=6/6,) at the chevron
0,=3(1+2)e"%, (303 interface. Ther profiles in Fig. Tb) show a slight increase in

(32+72) the; chevron interface region for larger values)\ofAt_ th_is
- T e 2 (30  point it should be stressed that the above analysis is only
8 valid when\<1 and consequently asincreases the accu-

racy of the approximate analytic solutions diminishes.

For the case wheh is not small we employed a numeri-
cal approach using the continuation packaggo97 to solve
are governed by the first order term of H@6b) which, in € governing equationel9) with the boundary conditions
the nondimensionalized coordinale does not vary asx (22). The solutions are_also illustrated in F_|gS. 5-7. 1t can
varies. We have therefore found two distinct correlationcléarly be seen from Fig. 5 that the analytic and numerical
lengths. In terms of dimensional variables, variationSare ~ Solutions are very similar fox=0.01. As we would expect,
go\/erned by the |ength scale gi\/en by Bﬁ) and variations the differences between the two solutions are growing when

o,1=

whena=2. These solutions are illustrated in Figs. 5-7. For
bothA=0.01 and\=0.1 (Figs. 5 and b large values ofx
give larger regions of) variation, whereas variations of

in ¢ are governed by two length scaleg, and A=0.1 (Fig. 6). Figure 7 shows that as increases the dif-
ference between the analytic and numerical solutions grows
,  L1(K\¥ considerably.
0.\ 2b
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06 FIG. 6. Comparison between
0.985 ' analytical (dashed linesand nu-
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1. DISCUSSION The continuity of biaxial ordering at the chevron interface

. has an important consequence for chiral smeCtinaterials.
We have proposed a model for the chevron interface thaltn the bulk of aSt liquid crystal there exists a spontaneous
is based on the requirement for continuity in the sme€tic larization d 5[3 q y t molecular di ||O 4
biaxial order parametes, across the chevron tip. In order to pho aniat_lon Iue 0a tpern;at?]en tmo e(():q ar i Ipotr?.t tﬁwever,
make the problem tractable we assume a simple twist defof'® rotational symmetry of the sta& Implies that there

is zero polarization at the chevron interface. This result may

mation in the directon. We balance this against the ener- ; o X
getic cost of changing the cone angle and the biaxial ordetl).e extremely important when considering ferroelectric de-

around the molecular long axis vices, which switch through the coupling between the spon-

For weakly biaxialSc materials it was possible to find an tanleotjhs pfol;arlzatlon rz}and a{w a_pp:|e(;j etI)e_ctr_lcl f|el(<jj. L
analytic expression for the chevron structure. From this Sof'norne csm ulgt:aerr\:vo%elocﬁethg clrr:g\tjroi ir:?exrlfaa Cgr erng in a
lution we determined two characteristic length scalg, P '

andz§, , associated with the thickness of the regions of dis-
tortions to the order parameter and' cone angle, respectively. ACKNOWLEDGMENTS
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