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Biaxial modeling of the structure of the chevron interface in smectic liquid crystals

N. J. Mottram,* N. Ul Islam, and S. J. Elston
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom

~Received 21 December 1998!

We have included the inherent molecular biaxiality of the smecticC phase in a model of the chevron
structure. This molecular biaxiality is related to a hindered rotation about the molecular long axis which for
chiral, polar molecules induces a spontaneous polarization. Through the coupling between biaxiality and the
smectic cone angle, continuity of the molecular distribution at the chevron interface leads to changes in the
cone angle. Under certain approximations we are able to find analytic expressions for the chevron structure and
consequently estimate the width of the chevron interface. There are in fact two correlation lengths which
govern variations in the cone angle and the biaxiality.@S1063-651X~99!06207-8#

PACS number~s!: 61.30.Cz, 61.30.Gd
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I. INTRODUCTION

Considerable effort has been expended in recent year
the development of continuum theories for smecticC (SC)
and chiral smecticC ferroelectric liquid crystals (SC* or
FLC!. This research has been partly motivated by scien
interest, but also because of the considerable potentia
exploitation of ferroelectric liquid crystals in display device
Commercial interest has largely centered on understan
the structures formed and the switching within surfa
stabilized homogeneously aligned cells. One of the m
characteristic structures found within these cells is
‘‘chevron.’’ This was first observed in surface-stabilize
ferroelectric liquid crystal~SSFLC! cells using x-ray diffrac-
tion, in theSC* phase@1,2#, and confirmed optically using a
guided mode technique@3#. The chevron structure has su
sequently been found in thicker cells@4# and in the smecticA
(SA) phase@5#. The presence of two peaks in the diffractio
trace corresponded to equal and opposite layer tilts,6d, with
a sharp transition between them. Riekeret al.@2# demon-
strated the independence of the layer tiltd from the treatment
of the cell surfaces, and its dependence on the cone angu.
Experimental studies have since estimated the chevron ‘‘t
thickness to be'1028 m @2#. In addition, high resolution
x-ray studies have shown the existence of triple peaks wi
FLC cells @5#. These are taken to come about due to
presence of a double kink chevron structure@6#.

The chevron structure is believed to form due to the m
match between the prescribedSA layer thickness at the ce
surfaces and the layer thickness within the bulk of the c
which is determined by the smectic cone angleu. This layer
thickness matching condition can be satisfied by tilting
layers away from the cell surface normal.

Clark and Rieker put forward the original theoretic
model @7# of the chevron, which explained it in terms of
kink or discontinuous change in the smectic layering. A
though this model has a discontinuity in the layer tiltd, the
n-director structure is continuous at the chevron interface

Since then a number of other models of the chevron

*Author to whom correspondence should be addressed.
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terface have been put forward@8–13#. Generally, a feature
that these models have in common is that the discontinuit
d is avoided by allowing one or more of the parameters
the system such as the layer tiltd, the cone angleu, the
azimuthal angle around the smectic conef, or the layer
thickness, to vary smoothly within the cell.

Nakagawa@8# proposed a continuous model based on
minimization of an energy consisting of terms from lay
dilation, layer bending, and variations off.

In @9#, Limat and Prost described the chevron structure
terms of the layer tilt angled, which was assumed to b
continuous across the cell. By writing the free energy
terms of d they were able to investigate the second ord
transition between the smecticA, bookshelf structure, and
the smecticC, chevron structure.

By assuming that the layer tiltd was coupled tou and
then allowingu to vary through the cell De Meyereet al.
@10# were able to remove the layer tilt discontinuity whi
preserving the layer thickness. In their model balancing
ergy contributions from layer curvature and variations inu
they found solutions for the chevron structure. The assum
tion of constant layer thickness and layer curvature lead
the necessary condition thatu is zero at the chevron inter
face, i.e., the liquid crystal is in the smecticA phase.

Limat @11# later extended the previous model of Nak
gawa to included the possibility that the layer tilt angle do
not equal the smectic cone angle.

Vaupotic̆et al. @12,13# removed the constant layer thick
ness condition and found solutions for whichu is nonzero
but small at the chevron interface where there is a sm
region of layer dilation.

II. MODELING

All the models outlined in the preceding section do n
include the inherent molecular biaxiality of the smecticC
phase. This molecular biaxiality~illustrated in Fig. 1! is re-
lated to a hindered rotation about the molecular long a
which for chiral, polar molecules induces a spontaneous
larization. Figure 1 shows the biaxial molecule, in a simpl
tic representation, as a rectangular cuboid with no equal
lengths. The macroscopic variablea is defined as the vecto
normal to the smectic layer while the variablesni , mi , u i ,
613 ©1999 The American Physical Society
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f i , andj i are defined foreachmolecule. In this paper we
will assume that the order parameters associated with
molecular distribution ofu i and f i are constant thus th
macroscopic directorn5^ni& can be defined by the macro
scopic variablesa, u5^u i&, andf5^f i&, where^ & denotes
the average value of the variable. The vectormi is in the
direction of the molecular dipole of the molecule whilej i is
the angle of rotation of the molecule about the long axis.
will assume that the average valuem5^mi& remains con-
stant and perpendicular toa and n ~i.e., tangential to the
smectic cone! while the order parameter defined by@14#

S5^cos~2j i !& ~1!

is allowed to vary. This definition implies that when all mo
ecules are perfectly aligned withm ~i.e., mi5m or j i50 for
all molecules!, S51, and when the molecules are random
oriented around the molecular long axis~i.e., mi or j i are
random!, S50. When the molecules are all perpendicular
m ~i.e., mi•m50 or j i56p/2 for all molecules! then S5
21. We can now describe the smecticC phase in terms of
the macroscopic variables, the layer normala, the nematic-
like director n, andS the biaxial order parameter. Figure
gives a pictorial representation of a chevron in a surfa
stabilized FLC cell. It is assumed that the layer normala lies
in thexzplane and thus may be described simply by the la
tilt angle d. The nematiclike directorn is described by the
cone angleu and the azimuthal anglef. These variables will
be allowed to vary along the cell normal, i.e., thez direction.
Figure 3 illustrates the importance of including the biax
order parameter in our description of the chevron. If the
axial order parameter is nonzero the molecular distribut
of the biaxial molecules will be elongated either along t
tangent to the cone or perpendicular to the tangent to
cone. In a FLC material this would result in the spontane
polarization lying tangential or perpendicular to the smec
cone. Figure 3~a! shows that on either side of the chevro
interface there exists a mismatch of the molecular distri

FIG. 1. Configuration of the biaxial liquid crystal molecule. Th
vectorsa and k are parallel to the smectic layer normal and thez
axis, respectively. The major molecular axisni is described by the
cone angleu i and the azimuthal anglef i . The intermediate mo-
lecular axismi is described by the anglej i .
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tions. It is obvious that such a discontinuity is rectified
insisting that the biaxial order parameter is zero at the ch
ron interface so that the system is uniaxial there@Fig. 3~b!#.
As we will see later, since the biaxial order parameter
coupled to the smectic cone angleu the condition thatS
50 at the chevron implies thatu will also change in this
region.

Although biaxial order is known to exist in SSFLC cel
through the existence of a spontaneous polarization non
the presently published models of chevron structures incl
it. In this paper we will extend the original model of Clar
and Rieker to include continuity of biaxial ordering.

We start with a simple model describing the bulk of
liquid crystal sample. The energy densityf bulk near the phase
transition TAC is given by the simple Landau–de Genn
expansion in terms of the cone angleu,

f bulk5 f 01
a

2
u21

b

4
u41

c

6
u6, ~2!

FIG. 2. The chevron configuration within the surface-stabiliz
FLC cell. ~a! In the regionz.0 the smectic layer is tilted by an
angle d while in the regionz,0 the layer tilt angle is2d. The
chevron interface lies atz50. ~b! At the chevron interface continu
ity of the director structure implies thatn lies on the intersection of
two smectic cones.

FIG. 3. ~a! With a fixed value of the biaxial order parameterS
the molecular distributions do not coincide at the chevron interfa
~b! If the biaxial order parameter is allowed to vary,S is continuous
at the chevron interface. Since they are intrinsically coupled, va
tions in S are accompanied by variations in the cone angleu.
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PRE 60 615BIAXIAL MODELING OF THE STRUCTURE OF THE . . .
wherea5a(T2TAC). We then incorporate biaxial orderin
into this model by including an order parameterS. We can
now write down an expression for the energy density
scribing a biaxial liquid crystal in the bulk as a functio
consisting of an expansion in terms of two order paramet
the cone angleu and the biaxial measureS.

f bulk5 f 01
a

2
u21

b

4
u42

q

2
Su21

3

4
AS2, ~3!

where we have neglected the higher order termsO(u6),
O(S3). Because of the invariance of the energy under
symmetry operationu→2u but not underS→2S, the cou-
pling betweenu andS is represented by theO(Su2) term.

In order to simplify this expression, it is useful to consid
what the equilibrium values of the two parametersu and S
might be for this system. These stationary points of the f
energy are found by differentiating Eq.~3! with respect tou
andS,

05au1bu32qSu, ~4a!

052
q

2
u21

3

2
AS. ~4b!

From Eq.~4b! the equilibrium values foru andS are

u50, S50, ~5a!

u5ue , S5
q

3A
ue

2, ~5b!

u52ue , S5
q

3A
ue

2, ~5c!

where

ue5S 3aA

q223bAD 1/2

~6!

is the nonzero equilibrium value ofu. The nonzero equilib-
rium value ofS is thenSe5qa/(q223bA). Therefore, while
ue is proportional to the square root of the temperature
ference,DT5T2TAC @from Eq. ~6! with a5a(T2TAC)#,
Se grows linearly withDT. From Eq.~6! ue is imaginary in
the smecticA phase. Solution~5a! therefore corresponds t
the smecticA phase and solutions~5b! and ~5c! correspond
to smecticC phases with opposite tilt angles. These solutio
are stable if

d2F

dS2.0, ~7a!

d2F

du2.0, ~7b!

S d2F

dS2 D S d2F

du2 D2S d2F

dSdu D 2

.0. ~7c!

For the smecticA phase (u50, S50), these conditions im-
ply A.0, a.0 and for the smecticC, tilted, phase (u5
-

s,

e

r

e

-

s

6ue, S5Se) they imply A.0, a,0, b.0, q223bA,0.
The conditionsA.0 andb.0 are in fact necessary in orde
to be able to write a Landau expansion~3! for the smecticC
phase. The conditionsa.0 anda,0 are clearly equivalen
to T.TAC and T,TAC as expected. The conditionq2

23bA,0 for the smecticC phase to exist is more subtle
The b and A terms in the Landau expansion~3! tend to re-
duce the cone angle and biaxial order parameter while thq
term tends to increase bothu andS. In order for the smectic
C phase to exist these three terms must reach a balance
that u and S are nonzero and finite. If, however,q is too
large, the free energy has no minimum forany values of the
cone angle and the biaxiality. The bound onq is given by the
conditionq2,3bA.

Using the above expressions forue and Se we can rear-
range the free energy density~3! into

f bulk5 f 081
b

4 Fu22ue
2S 12

3ASe
2

bue
4 D G2

1
3

4
ASS S2

2Seu
2

ue
2 D ,

~8!

which is independent of the parametersa andq. In Eq.~8! f 08
is a constant energy term.

Equation ~8! is insufficient on its own to describe th
structure of the chevron interface. To do this we need to
able to describe how the order parameters vary in the vici
of the chevron tip.

First, we postulate that the entropic biaxiality order p
rameterS varies smoothly in the vicinity of the chevron tip
The changes in order associated with this melting can
represented by gradient terms inS:

f ent5
k

2 S dS

dzD
2

, ~9!

where k represents the entropic cost of gradients in theS
order parameter andz is the coordinate in the direction of th
cell normal.

In order to describe the elasticity that governs distortio
in the director structure near an interface such as the che
or a cell surface, we assume that the biaxiality plays onl
minor part in any such distortion, allowing us to write a ter
that will describe the variation in the directorn ~across the
cell thickness! by a nematiclike elastic energy,

f elas5
K

2
@~“•n!21~“3n!2#, ~10!

whereK is an elastic constant and a one constant appr
mation to the elasticity has been used.

From Figs. 1 and 2 the directorn may be written as

n5~cosu cosd1sinu sinf sind,2sinu cosf,cosu sind

2sinu sinf cosd!. ~11!

Since all the variablesd, u, and f may depend onz, the
elastic energy~10! is complicated. In order to make the sy
tem analytically tractable we will make certain simplifyin
assumptions.

For the director to be continuous at the chevron interfa
n must lie in the plane of the cell surfaces. We will assum



ay
is

th

s

r

s

he

ge

id

e

he
th
if
o-

d
and
m

s
se
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that in a region around the interface the director st
roughly in thexy plane. In terms of the relevant angles th
condition is

sinf5
tand

tanu
. ~12!

Near to the interface we may also assume that the azimu
angle is approximately constant so thatf5f0 ~the value at
z50, the chevron interface!. Lastly we will assume that both
the layer tilt angled and the cone angleu are small. This
approximation is valid in the vicinity of the smecticA to C
phase transition~i.e., T'TAC). With the above assumption
the director may then be written as

n5~1,2u cosf0,0!, ~13!

and the elastic energy simplifies to

f elas5
K

2
cos2 f0S du

dzD
2

. ~14!

We may estimate the constant azimuthal angle using the
lationship~12! to write

cos2 f0512S tand0

tanu0
D 2

'12S d0

u0
D 2

. ~15!

Equations~8!, ~9!, and ~14! with ~15! can now be com-
bined and used to write an expression for the energy den
of the system in the vicinity of a chevron interface:

f 5 f 081
K8

2 S du

dzD
2

1
b

2 Fu22ue
2S 12

3ASe
2

bue
4 D G2

1
k

2 S dS

dzD
2

1
3

4
ASS S2

2Seu
2

ue
2 D , ~16!

whereK85K(12d0
2/u0

2).
We can simplify the above free energy density with t

following normalizations and nondimensionalization:

Q5
u

ue
, ~17a!

s5
S

Se
, ~17b!

Z5zS 3A

2k D 1/2

, ~17c!

l5
3ASe

2

bue
4 , ~17d!

a5
3AK8

2bkue
2 , ~17e!

F5
4~ f 2 f 08!

3ASe
2 . ~17f!

The nondimensionalized free energy density is then
s

al

e-

ity

F5
2a

l S dQ

dz D 2

1
1

l
@Q22~12l!#21S ds

dzD 2

1s~s22Q2!.

~18!

We minimize the energy by solving the Euler-Lagran
equations of the system to find the manner in whichQ ands
vary in the vicinity of the chevron interface. For Eq.~18! the
Euler-Lagrange equations are

05
d2s

dZ22s1Q2, ~19a!

05a
d2Q

dZ2 1Q@12Q21l~s21!#. ~19b!

Far from the chevron interface in the bulk of the liqu
crystal the structure will be uniform andd2Q/dz2

5d2s/dz250. Then Eqs.~19! give the solutions

s50, Q50, ~20a!

s51, Q51, ~20b!

s51, Q521, ~20c!

which are equivalent to the bulk solutions of Eqs.~5!. It is
also worthwhile noting that the stability condition for th
tilted smecticC phase,q223Ab,0, is equivalent tol,1.
The other stability conditions,A.0 and b.0, ensure that
l>0.

The governing equations~19! will subsequently be solved
subject to certain relevant boundary conditions. If we fix t
chevron interface atz50 then, as discussed above, smoo
changes in the molecular distribution will only take place
the azimuthal orientational fluctuations around the long m
lecular director are isotropic at the interface, i.e.,S50.

Far from the chevron tip, within the bulk of the liqui
crystal cell, it seems reasonable to expect the cone angle
the biaxial order parameter to be equal to their equilibriu
values, that is,u56ue and S5Se . In terms of nondimen-
sionalized variables, this corresponds to the conditionQ5
61 ands51. The full boundary conditions are thus

Q→61 as Z→6`, ~21a!

s→1 as Z→6`, ~21b!

s50 at Z50. ~21c!

The first boundary condition~21a! leads to two distinct pos-
sibilities for the director structure atz50. If Q→11 asz
→1` andQ→21 asz→2` ~or equivalentlyQ→21 as
z→1` andQ→11 asz→2`) continuity of the director
structure implies thatQ50 at z50. However,Q→11 as
z→1` andQ→11 asz→2` ~or equivalentlyQ→21 as
z→1` and Q→21 as z→2`) continuity of the stress
induced by director deformations implies thatdQ/dz50 at
z50.

The first case (Q50 at z50) is similar to the model of
De Meyere et al. @10# where the liquid crystal become
smectic A at the chevron interface while the second ca
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~dQ/dz50 at z50) is similar to the model of Clark and
Rieker. However, as discussed previously, these two mo
do not include biaxiality.

Given that in the first of these cases there exist large
tortions to the smectic cone angle for which our Landau–
Gennes model may be invalid we will subsequently o
consider the second case. We will therefore use the follow
boundary conditions:

Q→1 as Z→6`, ~22a!

s→1 as Z→6`, ~22b!

dQ/dz50, s50 at Z50. ~22c!

Then due to the symmetry of the system we need only c
sider the regionz.0.

The chevron interface is therefore described by the
coupled nonlinear equations~19! together with the boundary
conditions~22!. The full equations will be solved numer
cally using the continuation packageAUTO97 @15,16#. How-
ever, it is also possible to solve the governing equations a
lytically under certain simplifying approximations.

Whenl50 Eqs.~19! reduce to

05
d2s

dZ22s1Q2, ~23a!

05a
d2Q

dZ2 1Q~12Q2!. ~23b!

For the above boundary conditions this has the trivial so
tion Q51 ands512e2Z or in dimensional variables,

u5ue , ~24a!

S5Se~12e2zA3A/2k!. ~24b!

This solution corresponds to the classical analysis of
chevron put forward by Clark and Rieker@7#. In common
with their solution, this solution also has the cone angleue
constant throughout the cell, and the directorn at the chev-
ron interface is positioned at the intersection of the sme
cones from the two halves of the chevron structure. Ho
ever, as we also introduced the need for continuity of
biaxial order across the chevron interface, this solution to
model additionally has the biaxial orderingmelting at this
internal surface. This is illustrated in Fig. 4.

An interesting feature of our solution is that Eq.~24b!
allows us to estimate the width of this melt region. Th
corresponds to an internal boundary layer thickness or
relation lengthzBL given by

zBL
S 5S 2k

3AD 1/2

. ~25!

Provided that the biaxial ordering is indeed driven by t
molecular tilt~or cone angle!, as we have assumed in deri
ing the above solutions, and we are well away from a
naturally occurring biaxial phase transition~largely a mate-
rial dependent property!, and from the cell surfaces, then th
correlation length is largely independent of temperature.
ls

s-
e

g

n-

o

a-

-

e

ic
-
e
r

r-

y

It should be noted that in practice the conditionl50
implies A50 or Se50, Eq. ~17d!, and if we assumeA.0,
the above solution~24b! strictly reduces toS50 and the
nondimensional variables is undefined. However, the form
of s found above will be useful in the following section.

When lÞ0 the equations are not very tractable to
analytic approach. For part of this regime we can make so
analytic progress using a perturbative approach whenl!1.
This condition is equivalent toSe!1, i.e., the smecticC
phase is weakly biaxial.

Thus usingl as a perturbation parameter we assume t

Q511lQ11O~l2!, ~26a!

s512e2Z1ls11O~l2!. ~26b!

Then to first order Eqs.~19! become

05
d2s1

dZ2 2s122Q1 , ~27a!

05a
d2Q1

dZ2 22Q15e2Z, ~27b!

which must be solved with the boundary conditions

Q1
250, s150 as Z→`, ~28a!

dQ1

dZ
50, s150 at Z50. ~28b!

The solutions are

Q15
1

a22 F S a

2 D 1/2

e2ZA2/a2e2ZG , ~29a!

FIG. 4. Analytic solutions for the normalized cone angleQ and
biaxial order parameters whenl50.
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FIG. 5. Comparison between
analytical ~dashed lines! and nu-
merical ~solid line! solutions for
~a! Q and ~b! s, when l50.01
anda50.5,1.0,1.5,2.0,3.0,4.0,5.0
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s15
A2a3

~a22!2 ~e2Z2e2ZA2/a!1
Z

~a22!
e2Z, ~29b!

whenaÞ2 and

Q15 1
4 ~11Z!e2Z, ~30a!

s152
~3Z1Z2!

8
e2Z, ~30b!

whena52. These solutions are illustrated in Figs. 5–7. F
both l50.01 andl50.1 ~Figs. 5 and 6! large values ofa
give larger regions ofQ variation, whereas variations ofs
are governed by the first order term of Eq.~26b! which, in
the nondimensionalized coordinateZ, does not vary asa
varies. We have therefore found two distinct correlati
lengths. In terms of dimensional variables, variations inSare
governed by the length scale given by Eq.~25! and variations
in u are governed by two length scales,zBL

S and

zBL
u 5

1

ue
S K8

2bD 1/2

. ~31!
r

For a.2, zBL
u .zBL

S while for a,2, zBL
S .zBL

u .
Figure 7 shows the analytic solutions for larger values

l ~whena52). For large values ofl, while the region over
whichQ varies does not change significantly, there is a mu
larger reduction in the value ofQ(5u/ue) at the chevron
interface. Thes profiles in Fig. 7~b! show a slight increase in
the chevron interface region for larger values ofl. At this
point it should be stressed that the above analysis is o
valid whenl!1 and consequently asl increases the accu
racy of the approximate analytic solutions diminishes.

For the case whenl is not small we employed a numer
cal approach using the continuation packageAUTO97 to solve
the governing equations~19! with the boundary conditions
~22!. The solutions are also illustrated in Figs. 5–7. It c
clearly be seen from Fig. 5 that the analytic and numeri
solutions are very similar forl50.01. As we would expect
the differences between the two solutions are growing w
l50.1 ~Fig. 6!. Figure 7 shows that asl increases the dif-
ference between the analytic and numerical solutions gr
considerably.
FIG. 6. Comparison between
analytical ~dashed lines! and nu-
merical ~solid line! solutions for
~a! Q and~b! s, whenl50.1 and
a50.5,1.0,1.5,2.0,3.0,4.0,5.0.
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FIG. 7. Comparison between
analytical ~dashed lines! and nu-
merical ~solid line! solutions for
~a! Q and~b! s, whena52.0 and
l50.01,0.1,0.2,0.4,0.6,0.8.
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III. DISCUSSION

We have proposed a model for the chevron interface
is based on the requirement for continuity in the smecticC
biaxial order parameterS, across the chevron tip. In order t
make the problem tractable we assume a simple twist de
mation in the directorn. We balance this against the ene
getic cost of changing the cone angle and the biaxial or
around the molecular long axis.

For weakly biaxialSC materials it was possible to find a
analytic expression for the chevron structure. From this
lution we determined two characteristic length scales,zBL

S

andzBL
u , associated with the thickness of the regions of d

tortions to the order parameter and cone angle, respectiv
It was found that, while changes in the two system para

eters,a and l, may significantly affect distortions of th
cone angleu they have little effect on the region of distortio
of the order parameterS.
J

at

r-

er

-

-
ly.
-

The continuity of biaxial ordering at the chevron interfa
has an important consequence for chiral smecticC materials.
In the bulk of aSC* liquid crystal there exists a spontaneo
polarization due to a permanent molecular dipole. Howev
the rotational symmetry of the stateS50 implies that there
is zero polarization at the chevron interface. This result m
be extremely important when considering ferroelectric d
vices, which switch through the coupling between the sp
taneous polarization and an applied electric field.

In the future we hope to include biaxial ordering in
more complete model of the chevron interface.
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