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Multiparticle breathers for a chain with double-quadratic on-site potential
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We investigate the existence and properties of multiparticle breathers for a one-dimensional model with
harmonic nearest neighbor interactions where a grouppairticles ¢=1,2,3 . . .) perform interwell oscilla-
tions between both wells of a double-quadratic on-site potiential. We find two types of such breathers. For the
first type the breather frequend€y is within the single-particle oscillator spectrum, and the “residence” time
of each breather particle in the left and right well is about the same. For the second bfeashieelow that
spectrum, and the ratig /7 of the residence time in the left and right wells is different from zero, and takes
approximately rational values Iikh %%% etc. This second type of breather occurs for two and more breather
particles only[S1063-651X99)07411-5

PACS numbd(s): 45.05+X, 63.20.Pw, 63.20.Ry

[. INTRODUCTION i.e., Q,=0, n#¥m but the mth particle is oscillating with
Q,=Q>0. Turning on the interaction one can prove that
Very often, the classical dynamics of macroscopic sys{under rather general conditiorthe orbits for small but non-
tems like crystalline and amorphous materials can be underero C continuously develop from this special situation for
stood by a knowledge of their elementary excitations. TheC=0. This means that all the particles perform periodic os-
most prominent example are tharmoniclattice vibrations. cillations with frequency) and amplitudes decaying expo-
For a periodic lattice these aextendecplane waves. Intro- nentially with distance from particle numben. Hence the
ducing disorder, as present in glassy systems, part of thegistence ofperiodic breathersis proven, providedC is
harmonic excitations may become localized, a phenomenosmall enough.
called Anderson localization. It is interesting that such local- If the on-site potential has a multiwell structure, two dif-
ized vibrations can also occur in periodic latticegthout  ferent types of NLE's may exist: first, where all particles are
disorder, due tanharmonicity In recent years a lot of ac- oscillating within one of the wells for all times, and, second,
tivity has been devoted to studying the existence and propahere one particle or a group of particles are oscillating be-
erties of such nonlinear localized excitatiofféLE’s), also  tween, e.g. two wells, and the others stay in their well for-
called “discrete breathers” or just “breathers” in the fol- ever. This second type of breather was recently obsdd/ed
lowing. Rather different approache@umerical, rotating for a one-dimensional version of Hamiltoniéh with Vq(u)
wave approximation, local ansatz, gthave given strong a symmetric, double-quadrati®Q) potential:
evidence of the existence of NLE’s, mainly in one-
dimensional systems but also in two-dimensional systems. Vo(u)=3u—o(u))?, (29
For more details, the reader is referred to the reviews b)ovhere
Flach and Willis[1] and Sievers and Pagg].
A physical understanding of why discrete breathers may

. o(u)=sgnu (2b)
occur comes from the exact existence proof by MacKay and
Aubry[3] (see also Ref.1]). Since we will come back to this gnd
point below, let us briefly describe the main idea. Consider-
ing a classicaN-particle Hamiltonian for particles with mass
m of the form Va(Ug, - U =32 (Upeg =) (20
H(p1, ... .PniUL, -2 UN) are harmonic, nearest neighbor interactions. This molecular
N g dynamics simulation at finite constant energy, which corre-
_ 2 [_pﬁJrVO(un) +CVy(Uyg, ... Uy (1) sponds to a flr_1|te temperature, has _sh(_)w_n that groups of
A=1[2m about 3-5 particles perform such periodic interwell oscilla-

tions at intermediate temperaturgd. However, their life-
for the displacementas, from the lattice siten of a  time is finite, due to nonzero temperature.
d-dimensional lattice and their conjugate momemta these It is the main motivation of this paper to study the exis-
authors started from the so-called anti-integrable li@it tence and properties of such interwell breathers made up of
=0, where the interaction potentigl; is turned off. In that particles ¢=1,2,3 . ..) for potentials(2) and for zero tem-
limit the dynamics is determined exclusively by the on-siteperature. The reader should note that NLE's of the first kind
potentialV,, leading to independent periodic orbits for tle  do not exist for this model due to the complete harmonicity
particles. For the generic case of an anharmonic poteévigial of V, [cf. Egs.(28) and(2b)] within each well. The particles
the corresponding frequenci€s, may be different for all  “feel” the anharmonicity only when crossing the local bar-
particles. Now take the case where all particles are at restier of Vy(u) at u=0. Despite the rather simplified choice
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(B) ' ' ' ' where u,(t) has to fulfill the self-consistency condition

(SCO
o, (t)=sgnup(t). (4b)

0.75 f 1 Let us assume for a moment that all of the particles remain
within their well (left or right) forever, i.e., it iso,(t) =0,

for all t, whereo,= =1 can be chosen arbitrarily. Laf (o)

be the stationary solution of Eq(4) for given o
=(oq, ...,0n). It has been showf5] that a one-to-one

0.25 1 correspondence exists between all stationary, metastable
configurationsu(o) = (uy(o), . .. uy(o)) and all Ising spin
configurationso, provided the modulos of

0.5

0 2 4 6 8 10
E,

n:%(1+2c—\/1+40) (5)

FIG. 1. Dispersion relation for the uncoupled oscillator.

) ~_are smaller tharg [5]. The metastability holds provide@d
for Vo(u), we expect that the existence and characteristic. —1 \yith the ansatz

features of its interwell NLE can be carried over to more
general on-site potentials with a multiwell structure. Un(t)=up(o) +en(t), |en(t)|<1,

The outline of our paper is as follows. In Sec. Il we will )
present the formal solution for arparticle breather. In Sec. from Eq. (4a) we obtain
[l the discussion of the self-consitency condition singles out .
the physical breathers, the properties of which will be inves- ~ €n(D)+(1+2C)en(t) = Clen-1(t) +&042(1)]=0. (6)
tigated separately far=1 andr=2. Section IV contains a

summary and some conclusions, Its solutions are plane waves,(t) =gy exdi(w(q)t—qn)]

with phonon frequencies

_ 1/2
IIl. NONLINEAR EXCITATIONS: FORMAL SOLUTION o(q)=[1+2C-2Ccosq]™, qe[-m 7], (7)

Before we come to the solution of the full equation of which are within the phonon barfdvie,(C), wy,(C)]. The
motion in order to search for breathers, we briefly discuss théower and upper phonon band edge are given by
antiintegrable limitC=0. Since the one-particle ener

=(1/2m)pﬁ+vo(un) is a conserved quantity, it is an easy 1, C=0
task to calculate the frequen€y of the periodic motion as a ©Iw(C) = 1
function of Eo. One obtains V1+4C, —7<C<0,
L E 1 y1+4C, C=0
1 <_
0 S R T ©
Eo=17 5 [ 1\ ) T mC=0
1+ — arcsi , Eo>z=,
m V2E, 2 Since we are looking for periodic breathers with an exponen-

tially decaying amplitude it is obviousee also Ref.1]) that

which is illustrated in Fig. 1. Note that we use dimensionlesghe breather frequency) and all its higher harmonics
units throughout this paper. For instance the frequeiddg ~ K{,k=2 must be outside the phonon band. For a gi@&n
measured in units of/C,/m and the energy in units dZ,. this condition restrict$) to the finite number of nonresonant
Here C, is the coupling constant of the on-site potential, PaNds  {Q}= (wup/ (kK+ 1), (@iow/K)). k=12, . .. Kina(C)
which in Eq.(2a) has been set to 1. F&, smaller than the Shown in Fig. 2. Itis easy to prove that
barrier heightv,(0)= 3 the frequency is constant, and equal @1(C)
to 1, due to the harmonic intrawell motion. At,(0) the Ka C) = low

wup(C) — ow(C)

frequency makes a jump to the valgeand increases mo-
where[x] denotes the largest integer less than or equal to

notonously withE, toward its asymptotic valu€) (=) =1.
Application of the argumentation of MacKay and AUiBl ¢ o0 /e iciedn above the phonon band trivially fulfill the
nonresonant conditions for all harmonics. This part is not

would imply the existence of breathers for frequencies

1
Qel3.1]. ) . _depicted in Fig. 2. But in our investigations we have not
Now we turn to the full equation of motion. For potential found breathers Witk > w,,,(C). We will come back to this
(2) and choosingn=1, this reads: point in Sec. IV.
In addition to this, two further observations can be made
Un(t) + (14 2C) Uy (t) — Cluy_ 1 (1) + Upr 1 (1) ]= a(1), from Fig. 2. First, the nonresonant baf@d}, is only a sub-

(48  set of the single-oscillator spectrUrh,1] for C#0. Second,
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Q 1_ ' ' ' ' ] c¥=0, n#01,...7-1, (119
—1+(2|ay—1)sgne,, k=0
ng): . l n| " n=0,1,...r—1.
@}, 4(sinkmap)/(7k), k=1, (11
11
12 ¢ - 1 For convenience we have introduced the dimensionless times
2
3 r an=1olT (12)
- Substituting Eqs(10) into Eq. (43 leads to
0 . . . .
—0.25 0 0.25 0.5 0.75 1
c (AL +AR + AL = — ol (13)
FIG. 2. Nonresonant frequency ban@®unded areas
with
if breathers will exist withQ e {Q},, k=2, they cannot be
obtained from the single-oscillator behavior f&=0 by 1 )
continuation. ri() = G L(kQD)*=(1+2C)]. (14)

Now we turn to the investigation of breathers. Due to the
simple form ofVo(u) the type of breather can be specified Thjs equation can be solved fo<—1 andn=r due to Eq.
by the pseudospin functions,(t). Let us assume that par- (115, which gives, for the amplitudes,
ticlesn=0,1,2 ... r—1 perform periodic interwell oscilla-
tions, whereas all the others remain in their ground state well A |n! ns-1

. k

[6], i.e., Al = ORI — (15)
o,(t)=—1, n#01,...r—-1 (99
with

for all t. The behavior ofr,(t) for n=0,1, ...y —1 during
a period— T/2<t<T/2 can be rather complicated, e.g., more ()= =3[ Kk (Q) — sgnk () V(K (Q))>—4]. (16)
than one transition—1—+1——1 may occur. To make
progress we will consider breathers characterized by It is easy to see thak,(Q)|>2 for kQ outside the phonon
band. Then Eq(16) yields | 7,(Q)|<1, consistent with our
requirement of exponentially decaying breather amplitude.

1
sgn 7, [tl=5|m| POT ;
2 We note thatyp, coincides withz from Eq. (5).

on(t)= 1 1 n=01,...r For Osn=<r—-1 a finite set of inhomogeneous linear
—sgn 7, Slmlslti=5T, equations forA¥ results,
(9b) 1
. (k) _ K
where |7,|<T. If 7,>0, the “breather particle” n(n ZOM“”'A“'__EUE)’ (17
n'=

=0,1,...r—1) is in its ground state well«,=—1) for
te[ — ,/2,7,/2], and resides in the right well ofy(u) (op
=+1) forte[ — 7,/2,7,/2]. The reverse holds it,<0. The
r-particle breather is then characterized by its frequecy

with the tridiagonalr-dimensional matrix

and the interwell transition timegy, 7y, .. . ,7,_1. fckme 10 0
The restriction to periodic breathaug(t), which also im- 1 ke 1
plies the periodicity ofo,(t), allows one to represent both M=(M,,)= 0 0
by Fourier series. If in addition we also require time inver- nn 1 1
sion symmetric breathers, i.el,(—t)=u,(t), we have Kk
L O e 001 ket el
- (18)
up(t)=—1+ >, A¥coskOt (10a
k=0 Then the remaining amplitudes follow from
and 1 -t
- APV=-2 2 (M Yoy, (19
on(t)=—1+ >, oMcoskOt. (10b) n'=0
k=0

with o from Eq.(11b). The inverse oM can be calculated
Our choice[Eq. (9)] yields, for the coefficients{¥ , analytically:
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M sgnd @) (sgnkdl md R A o /
= = . 104

T ) -4 -2 s ot s
(20) 1/2 - 1/2
1/3 - 1/3

] ] ) 1/4 .: N 1/4 B
Equations(10)—(20) yield the formalr-particle breather so- o BN 0

lution u,(t), which still has to fulfill the SCG4b). o om s om 1 o om o5 om 1

(a) (b)

Ill. PHYSICAL BREATHER SOLUTIONS

FIG. 3. Parametewr as a function of the breather frequenQy
for (a) C>0 and(b) C<0. The vertical lines mark the lower pho-
non band edge.

In this section we will determine conditions for the
breather frequenc$) and the dimensionless transition times
ag,aq, . ..,x,_1, such that the SCQEq. (4b)] is fulfilled.

Let Q e {Q}=[wyp/ (k+1)],(wow/K)) for fixed k. For
near to the edges of the nonresonant bgig,, which im-

For r=1, Egs.(10)—(20) yield the explicit but formal plies that k+1)Q andk(} is a bit above and a bit below the
breather solution phonon band, respectively, it follows from E¢21) and(22)
thatug(t) can be well approximated by

A. One-particle breathers

Up(t)=—1+AP(a)+ > AR(Q,a)coskOQt, (213
k=1

(t) 1+ 2a N 2 sinka Kt
Up(t)=—1+ ——+ —| ——co0s
with Vit+4ac  7C| [k (Q)[-2
2a sin(k+1)7ra
A )= [n] , 21b + ———-co9k+1)Qt/|, (25
n () Jitac T (21 VK1 (Q)] =2
4 sinkma sgn k(Q) such that Eq(24) leads to
AV(Q,a)=~— 5 (m )", k=1,
™ K Cyii(Q)—4 . .
(210 sin 2wk N sin27(k+1)« _@C ( 1 2a
- ==2 |\ )
where we have set,=a>0. The reader should note that I @)=2 - Nl (Q)] -2 1+4c (26)
7170 does not depend o). Inspection of Eq(21) shows that,
for k=1, . . s
or The right-hand side of Eq26) is finite for all « andQ. In
4 sinkmra 1 order that this is also true for its left-hand side, we must
k()| —2=ANQ, a)— — choose
| ki (Q)] n (Q,a) 7 K 2cyai0)] 2
(22) v+1 Oyp
and 2(k+1)’ T k+1
a(Q)EaS/k)= (27)
1 1 . Wiow
k—>oo:>A§1k)(Q,a)~Ek’2|”‘. (23) 2k’ k

The asymptotic behavidEq. (23)] of A®(Q, @) guarantees Where »=0,1,2....X%. To determinea(Q}) for all Q
the absolute convergence of the infinite series in ®4a. = @iow(C), we have calculatedy(t) from Egs.(21) numeri-

L o L . cally. For this we have introduced a cutdff=50 in Eq.
Forn=0 it follows thatug(t) and its first derivativeliy(t) is (21a. A change fromk, =50 toky=100 has not changed the

continuous for allt, whereasuy(t) discontinuously changes agyit forug(t) more than 108. The numerical calculation

at t==*7/2. With increasing|n| the solutions become f y (= /2) then yields[with Eq. (24)] «((), which is
smoother. Equatioi22) just describes what happens when shown in Fig. 3. We see that within each nonresonant band
the kth harmonics approaches the phonon band from belowq), the necessargondition(24) leads to(X+ 1) solutions

or above.  Since w (Q)——2(+2) for kQ KOy for a(Q) which converge to the limiting values

— wiow(C) (wyp(C)) the corresponding amplitud&,”(Q, @) (27) at the edges. However, we have found that the $@
diverges. In addition,(€2)| converges to one such that the o4, only be fulfilled fora(Q)=a*=D(Q)~1.

amplitudes decay very slowly witn|. Result(22) demon- Writing vt
strates that fok() outside the phonon band but near to the
band edges it is thkth harmonic which governg,(t) (see
also Ref[7]). In that case it is rather easy to fix A nec-
essarycondition that the SCC holds is

a(Q)=3+45(Q), (283

an approximate, analytical expression can be derived for
Ug(E1/2)=ug(£aT/l2)=uy(=7alQ)=0. (24) 8(Q) [71:
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FIG. 4. Analytical approximation ofr~3+ 5(Q) (lines in
comparison to numerical resultsymbols for different values ofC.

1 J1+4C-1
5(0)=5 . : ,
1-2\1+4C sl((z)+k22 (—1)ksk(9)}
' (28b)
with
1
sk Q)= = (ki(Q)—4) "2 (280)

|C|

Comparison of the numerical exact result tof(2) with the
analytical resul{28) is made in Fig. 4 for different values of
the coupling constar@. Note that the edges ¢f)}, depend

FIG. 5. Phase diagram for single-particle breathers. Thick solid
lines indicate the analytical approximations to the limiting frequen-
ciesQ ;,in(C) and Q,.(C) (cf. texy).

Again, the agreement between the numerical exact and
the analytical phase boundaries is remarkably good. For
|C|<1, the allowed breather frequencies are betweamd
1 which is the range of the single-oscillator frequencies. The
range of allowed frequencies shrinks with increadi@f

The results we have found demonstrates that only one-
particle breathers exist which can continuously be derived
from the single oscillator excitation fa€=0. This also is
consistent with the fact that breather solutions@at 0 only
exist for a~ %, because for the single oscillator the time
where the particle is in the right well is just half of the period
T, i.e., it isa=3. That no breathers exist f@ < {Q}, and
a(Q)=ajy(Q) or a(Q)=ai(Q) can at least be understood

on C. The agreement between both results is remarkablyor () at the edges which implies, e_gaé(g)mo and
good. The deviation is less than 1%. Therefore we can conzl(0)~1, respectivelya}(Q) ~0 means that particle zero

sider result(28) as almost exact.

The final step now is to check whether the SCC is fulfilled
for all C with —%<C=2, for which {Q}, exists(cf. Fig.
2). Both limits for C follow from the conditionw,(C)/2
= wou(C) for C<0 andC>0. The answer is no. The nu-
merical investigation of the SCC yields that one-particle
breather exist only for

Crin=—0.13681)<C=<0.41261) = C .
and that their frequencies are restricted to
Qin(C)=0=0,.(C).
This region in the() — C plane, where physical one-particle

breathers existwhich is only a subset df(}},) is presented
in Fig. 5. The solid lines(boundary lines of the hatched

is in the right well for a very short timeré(Q)T/Z, only.

Therefore,uy(t) andug(t) can be made arbitrary small for
— a}(Q) TI2<t<aT/2 by decreasing(2). On the other
hand, the breather amplitude is decaying With Therefore
u4(t) andu_(t) must also be small. Consequently, the left-
hand side of the equation of motigda) for uy(t) can be
made arbitrarily small, which is in contradiction with the fact
that its right-hand side(t) is equal to 1 in that time inter-
val. For a(Q)=a%(Q)~l the proof is quite similar. One
has just to notice that particle zero is in the left well for a
short time only. The nonexistence of breathers wh
e{Q} for k=2 can also easily be understood at least at the
edges off Q)},. At these edges it is thkth harmonic with
k=2 which dominates the solutiony(t). Since their time
dependence is given by cosf/T) there will bek=2 oscil-
lations within the period —T/2,T/2] which leads to a viola-

region in that figure represent approximate, analytical re-tion of the SCC. Figure 6 illustrates this situation fOr

sults for the phase boundari€k,;,(C) and Q,,2{C). Since
these expressions are not quite simj@é we do not repre-
sent them here explicitly, but just mention tHat,;,(C) fol-
lows from the condition that fo) e {Q}; it must be
>w,(C)/2. ForQ) near tow(C) it is the second harmonic
in Eq. (218 which is dominant. Taking fouy(t) only the
terms withk=0 and 2 into account() ,,,(C) follows from
the SCC(4) for this approximate result foug(t). QmadC)
follows similarly from the SCC fou_.{(t)which is u.4(t)
<0 for all t.

€{Q}, andC=0.1. In Fig. §a) and 8b), the SCC is violated
within the time interval Gs|t|<7/2 and 7/2<|t|<T/2, re-
spectively.

Finally, it is instructive to investigate the energy(},C)
of the one-particle breather with frequenQyfor given cou-
pling constantC. It is easy to prove that it® dependence is
given by

E(Q,C)=Q%E;n(C)+Epof( C), (29)
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uq(%) u(t) ously disprove their existence, but we are convinced that
their nonexistence is related to the fact that the single-
/ \ \ / oscillator frequencies foE=0 are either below or within the
-1 -1 phonon band, depending on the sign®f
S|/ \ LS \/

-T/2 —T/z 0 off2 TS -T/2 —oT/20 oT/2 /2 B. Multiparticle breathers
t t . - . .
@) (b) Having studied the existence and properties of one-

FIG. 6. Two formal solutions foug(t) as a function of time for pa_rticle breat_hers, we will now investigate_breathers W_Inere
Q in the second nonresonant frequency band(&ra=0.51046 ad]acent particlesr& 2)_ perfqrm coherent |_nteryvell oscilla-
and (b) a=0.310319. tions. As already mentioned in Sec. Il multiparticle breathers
can have a rather complex time dependence, particularly due

= = to their “internal dynamics.” For instance, the particles may
where Eyin(C) and Bpo(C) follow from Egs. (1), (2), and oscillate in phase, antiphase, or may even have arbitrary

(21) by taking into account thatiy(t) =un(t/T) with Uuy(X  phase relations. Here we will restrict ourselves to in-phase
+1)=u,(x). The one-particle breather we consider corre-and antiphase breathers, which are specified by the pseudo-
sponds to a periodic motion between the two metastable corspin oscillations fom=0,1, ...y —1,
figurations characterized by, with o,=—1 for all n and
o' with o,=—1 for alln#0 andoy=+1, i.e., both pseu- t+to o teo———
dospin configurations differ from each other by a single spin
flip at n=0. The barrier heighE,, which has to be sur- and
mounted when passing from the metastable configuration
{un(0)} to {u,(co’)}, can be calculated similarly as was
done for a double spin flip in Ref5], just by adding a force res : . .

. : : pectively. Of course, the times 7,,/2=* «,T/2 where
term F 4,0 on the right-hand side of Eq4a), where in ad- the nth breather particles crossas=0, still depend om.

dition u,,(t) must be set to zero. Then we obtain the station- The r_narticle breathers have been obtained by numerical
ary c_:onfigurations{un(F)}, from whichE;, follows. The re- .5 culation ofu,(t) from Egs.(10a), (15), and (19) taking
sultis Egs.(11), (12), (14), (16), and(20) into account. The neces-
sary condition

——— 0 30
21-10(C) 30 up(*a,T/2)=0, n=0,1,...r-1 (31

where 7o(C)=7(C) from Eq. (5. Since E(Q,C)  yigds, for a,(Q), a qualitatively similar result as for
>E(Qmin(C).C)=Emin(C), we compare the minimum — 1 gshownin Fig. 3. Let us first discuss the in-phase breath-
breather energmi, with Ey,, which is done in Fig. 7. EX- 15 The detailed discussion of the SCC reveals that in-phase
cept for C=0, the case of the single oscillator, it iS preathers can only exist fode{Q}; and a,~%n
Emin(C)>EL(C), i.e.,. the dynamical barrieg,, is always =01,...r—1, as we have found for=1. The Q—C
larger than the static one, as one would expect. Their devigsnase diagram for the existence of multiparticle breathers is
tion is largest forC— Cpyjp and C— Cryax- shown in Fig. 8 for =2, 3, and 5. The solid lines which are
Let us finally comment on one-particle breathers With e approximate border lines for the region whesgarticle
above the phonon band. In contrast tg‘apotential we have pyeathers exist can analogously be obtained as the corre-
not found such breathers. We have not been able to rig0sponding lines (C) and Q) ,(C) for r =1 [8]. From Fig.
8 we see that the region of existence does not depend sensi-
tively onr, but slightly shrinks with increasing
B , The result for antiphase breathers with a,~3, n
P =0,1, ... r—1 does not differ much from the results for the
Iy in-phase breathers. The phase diagram shown in Fig 8 for
o =2, 3, and 5 exhibits qualitatively the same structure as that
o in Fig. 8. We note that again no such multiparticle breathers
1 ¥ . with a,~ 3 exist forQ e {Q}, with k=2. However, the situ-
5 ul T ation changes significantly if we search for antiphase breath-
i ers with a,, quite different from 3. For r=2 and Q
0.5 * e{Q},, with k=2 and 3, we represent the allowed values
/— ag(Q) versusa,(Q) in Fig. 10. Two features are remark-
able: (i) a,(C) are close to rational numbers, e.g,3,3,
0 and 2, which shows that,({) is close the limiting value
—0.2 0 0.2 04 oM [cf. Eq. (27)] and (i) ao(Q)+a1(Q) is about 0 or 1.
¢ The() — C phase diagram represented fer 2 and restricted
FIG. 7. Minimum energy of the single-particle breather in de-t0 {Q}, and{Q}5 in Fig. 11 is qualitatively different from
pendence o (symbold. The solid line represents the static barrier the corresponding diagrantBigures 5, 8, and)%or breath-

E, (cf. texd, and the dashed line is a guide for the eye. ers with «(Q)~3%. In contrast to the latter, there are no

2
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FIG. 8. Phase diagrams for in-phase multiparticle breatliars. o ) ) )
no=2, (b) ny=3, and(c) ny="5. The hatched region represents the _ FI_G. 9. Similar to Fig. 8, but phase diagrams for antiphase mul-
numerical result, and the thick solid lines are analytical approximaliParticle breathers@ no=2, (b) no=3, and(c) no=>5 (cf. texy.

tions for Q in(C) and Q ,,{C). o ) )
m " the remaining part of the chain has been turned on continu-

) ) ) ) N ously.
antiphase breathers with,, quite different froms for C

—0. This result is obvious sinc€E—0 converges to the
single-particle oscillator for which it must he=3. Hence it
is interesting that we have found breather solutions rfor For a one-dimensional model with double-quadratic on-
>1 with « different from about3 and Qe{Q},,k=2, site and harmonic nearest neighbor interactions, we have in-
which cannot continuously be obtained from those of thevestigated the existence and propertiep@fiodic multipar-
single-particle oscillators fo€E=0. However, a generaliza- ticle breathers where adjacent particlesr&1) perform

tion of MacKay and Aubry’s approach to independent two-anharmonic oscillations between both local wells of the on-
particle, three-particle, etc. oscillators coupled to each othesite potential. Although simple, this model has the advantage
via the nearest neighbor interaction may serve as a basis tbat the breather solutions can be found in a closed analytical
generate these multiparticle breathers after the coupling dbrm. This form parametrically depends &h=2=/T, the
these two-particle, three-particle, etc. particle oscillators tdoreather frequency and,,n=0,1,...r—1 where =37,

IV. SUMMARY AND CONCLUSIONS
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FIG. 10. Parameters, Vs «, for a two-particle breather witR

in the (a) second andb) third nonresonant frequency bands. Small

points indicate negativ€, larger points markC>0. Vertical and
horizontal lines are a guide for the eye.

=q,l fixes the time at which thenth breather particle

crosses the local barrier of the on-site potential. In order tha®"dN=
this analytical form describes a physical solution it must ful-

fill a self consistency conditiofSCQ. This SCC, which was
investigated both analytically and numerically, fixes and
thereforer, for fixed Q) and finally yields for given coupling
constantC the frequency rangé),n(C)<Q=<Q,,(C) for
which breathers existC itself is restricted toC,,;,<C
gcmax-

We have not found breathers with abovethe phonon
band, as they exist for @* model, but only below. The

MULTIPARTICLE BREATHERS FOR A CHAIN WITH . ..
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FIG. 12. Solutionau,(t) for a very slow two-particle breather
-1,0,1, and 2.

tegrable limit[3]. Since this case occurs foe2 only, one
probably has to start with the anharmonic oscillation of an
independent-particle cluster, or it may be possible to obtain
them from an analytical continuation fro@=0 by fixing,

e.g., the energy or action. One may ask why the second type
of breather occurs for two and more particles only. The an-
swer can be seen from Fig. 12 which showg(t), n
=-1,0, 1, and 2, for a two-particle breather in antiphase and

reason for this is that the double-quadratic on-site potentiak# 3. For instance, the breather particie=1 performs an
has a so-calledofteningcharacter which means that its an- oscillation during its time ¢ 7{/2<t<7,/2) in the right well
harmonic oscillations have lower frequencies than its lineawithout leaving it, which could violate the SCC. Breather
counterpart, the phonons. For such potentials it is generiparticlen=0 does the same in the left well for T+ 74/2

that breathers above the phonon band do not ¢8ist

<t<-—171/2. We have found that these kinds of intrawell

Below the phonon band we have found two types ofoscillations are characteristic of breathers of the second kind.

r-particle breathersy=1,2,.... One, for which its fre-

Such modulations may also occur for the formal solution

quency is within the spectrum of the single-particle oscillator(21) for r=1, but there they always violate the SCC. That
for C=0 and where the length of stay of each of the breathethis is not the case for>1 is related to a subtle energy
particles in the left and right well is about the same, i.e.,exchange among the breather particles which is not possible

a,~% forn=0,1,...r—1, and another type for whicf
is below the single oscillator spectrum ang is different

for r=1, i.e., a breather particle may oscillate for a while
within one of the wells and may gain energy from its adja-

from about3. In contrast to the first type, the latter cannot cent breather particle in order to be able to cross the local
continuously be obtained from the independent singlebarrier. In the course of this process this latter particle loses

particle oscillator by keepin@) fixed, i.e., from the antiin-

Q

1/2 | ' ' i i _

1/3 |

1/4 |

—0.1 0 0.1 0.2 0.3
C

energy and starts to perform intrawell oscillations, etc.

The question which naturally arises is the following: How
generic are the results for the DQ potential? Since the single-
particle oscillator spectrum for, e.g., @ model is also
partly below the phonon band we expect similar type of be-
havior as for the DQ potential. Particularly for a symmetric
double-well potential there should be multi-breathers for
which one, two and more particles may cooperatively oscil-
late between both wells. It would be interesting to check this
numerically.

Our results also establish an explanation for the dynami-
cally cooperative clusters of about 3—5 particles which were
observed in a molecular dynami¢sID) simulation of the
DQ potential model for finite intermediate temperaturék
In this respect we mention that a MD simulation of a one-
dimensional¢* model has also shown the existence of co-
herent interwell[10] as well as intrawell oscillationf11].
Unfortunately it has not been studied in detail how the size

FIG. 11. Phase diagram for very slow two-particle breathersof the clusters change with temperature. Particularly interest-
(shaded area Solid lines indicate the bounds of the nonresonanting is the question of whether the number of particles which

frequency bands fok=2 and 3.

perform coherent interwell oscillations increases with in-
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creasing temperature, or whether there exists only a certaitions within a local potential well there should exist multi-
temperature range where interwell oscillations with about @reathers where a cluster ofparticles performs coherent
fixed number of particles exist. For the latter case one maynter-well oscillations This type of breather should be ge-
ask what determines the size of dynamically cooperativeneric because ani-particle potential in any dimension is
clusters. In this respect let us mention that neutron- and lightexpected to have expl) (« is a constant of order)local
scattering experiments on strongly supercooled liquids yielaninima [13], [14]. For finite temperatures they should be
spectra which exhibit a so-called boson peak about one delamped leading to a finite lifetime.
cade in frequency below the ordinary phonon peak. Since
this boson peak does not possess a significant dispersion, it
must originate from local vibrations. Whether their existence
is mainly due to the disorder or may also be influenced by We would like to thank S. Flach for his critical comments
anharmonicity, as recently speculatét?] is not clear. on this manuscript, and we also gratefully acknowledge the
To summarize, we may say that besides breatherlike mdinancial support of the SFB-262.
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