PHYSICAL REVIEW E VOLUME 60, NUMBER 5 NOVEMBER 1999

Beam coupling impedances for perforated beam pipes with general shape
from impedance boundary conditions
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An equivalent wall impedance to describe the electromagnetic boundary conditions at perforated pipe walls
is introduced. The new impedance boundary condition, together with general formulas for computing longitu-
dinal and transverse beam coupling impedances in complex heterogeneous pipes, provides a good trade-off
between computational accuracy and efS&063-651X99)11209-1
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|l INTRODUCTION Zo)(w) andZ=0¢(w) of asimple unperturbedpipe (e.g., cir-

cular, Eerfectly conducting assumed known, and those

the stainless-steel vacuum chambeold bore will be kept Z|(w), Z, (o) qf a'nother pipe differing from the former by.
at 1.9 K using superfluid helium, and protected from Syn_someperturbgtlonln the bogndary geometry and/or consti-
chrotron radiation by a beam screen cooled at some 4.5—J8tive properties, were obtained|ib2], by using the electro-
K. Gas desorption due to synchrotron radiation, and subséD@gnetic reciprocity principle, viz.,
guent surface deposition, limits the pumping efficiency of the
beam pipe vacuum system, unless many holes or slots are €0 () %, 7
drilled in the beam screen wall, allowing for a transfer of the ZH(“’)_ZOYH(“’):B cQ? Yo ﬁszwa"EOn (r,0)
excess gas to the 1.9-K cold bore, where the pumping capac- 0
ity is adequate. At the present stage of the project, the total (im ¢ —1p(sol)
number of holes or slots should be as large as 10 X[ BoEn™(r0)+ o "By, 0)]d”
—10® (10°—10° holes/slots per metgrwith typical sizes of L
~2 mm diam(holes or 1.5<8mm (slots. The effect of so - § SZ(V,O)Eﬂ”)(f,O)d/], (1)
many holes/slots on the beam dynamics and stability, e.g., in s
terms of coupling impedances, is a fundamental issue and
has been carefully investigated, both theoreticihy7], and = =
experimentally[8,9]. Z(0)=Zg,(w)= 2
In this paper we introduce @docal) impedance boundary BocQ
condition of the Leonteich type[10], to describeperforated Qv- [BEI(F 1Y)
pipe walls[11]. The latter can be used within the general rtPomn A0 T1
framework presented ifil2] and summarized in Sec. Il to
obtain analytic estimates, based on reciprocity formulas, of
the longitudinal and transverse coupling impedanceséor .
erogeneouseam pipes withcomplexgeometry, including — % Vi E&(r,Fo)
(partially) perforated walls. The rest of the paper is accord- s °
ingly organized as follows.
In Sec. Il we introduce an impedance boundary condition ®€; Eﬂ”)(rﬁ,l)d/] , 2
appropriate to a thin perfectly conducting pipe wall with !
many (noninteracting electrically small holes in free space
following altht()aunstllq argument. In Eec. (;V we Idenve gl]e where c= (eq o is the speed of light in vacuun,
same result by solving a rigorous boundary vaiue pro em'—(eol,uo)l’2 is the vacuum characteristic admittanegand

Possible model improvements are considered in Sec. V, in- beina th ittivit d bilie is th
cluding (i) holes in a thick wall(ii) interacting holes, and *0 eing the vacuum permittivity and permeabilifig is the

(iii ) perforated beam pipes in a coaxial lossy tube. In Sec. VI€lativistic factor, Q is the total beam chargg13],
we apply the above to the computation of perforated walES®,E{™ are the solenoidal and irrotational parts of the
impedances at fixed pumping capacity, for a proposed LH@lectric field in the unperturbed pipe, the unit vectors
pipe geometry. In Sec. VII we compute the related parasitiai. ,u,,,u, are defined in Fig. 17, (w) is a tensor, and one
losses(both Ohmic and due to leakage through the holes assumes an impedanéeeontovich) boundary condition to
Conclusions follow under Sec. VIII. Relevant tools and defi-hold at the pipe walbS:

nitions are collected in Appendixes A—C.

In the foreseen large hadron colliddrHC) design[1],

[Yo ﬁszwauvfoESrﬁ”*(F T0)

+Bo ERr.ry)]d/

ri=ro=0

)—1/2

—A 0 . _)— { >< 3 =
II. COUPLING IMPEDANCES IN COMPLEX PIPES | (1= Unlin) - E= Zyaltn X H 5s=0, )

A simple and fairly accurate relationship between the spewhere Z,,, is the pipe-wall complex characteristic imped-
cific longitudinal and transverse beam coupling impedancegnce.
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FIG. 2. Regular 2D array of circular holes on a conducting plane
The first integral term on the right-hand side of Ef))  z=0.
accounts for the effect of the finite wall conductivity, and is
nonzero if and only ifZ,,,, is not identically zero o@S. The Zoai= — 1 ZoKo( et amn, . 8
second integral on the right-hand side of EL), on the other
hand, accounts for the effect of the geometrical perturbation Using Eq.(8) in Egs.(1) and(2) would allow us to esti-
of the boundary, and is nonzero if and only if theper-  mate the longitudinal and transverse beam impedances under
turbed axial field componeng,, is not identically zero on very general assumptions, including, e.g., pipes witi
dS[13]. evenlydistributed holes and complicated transverse geom-
For the simplest case of a circular pipe with radiuand  etries. This is indeed the ca$23], as can be seen by con-
uniform wall impedanceZ,,,, one readily obtains from sidering a pipe witlgeneraltransverse geometry carryimg
Eq. (1) (uniformly spaceg holes per unit length, located at
=/}, / being the arc length along the pipe cross-section
contourdsS, for which

FIG. 1. The unit vectorsi., U, ,u, relevant to Eqs(1) and(2).

ZHZ— = 3(ﬁxﬁx+l:|yl:|y), (4)
koD Ny=NL8(/ = /). ©
in agreement with the known exact resd]. Using Eq.(9) in Eq. (1) gives

IIl. IMPEDANCE BOUNDARY CONDITIONS Zy=—Zoko( e+ amen(/n)ex (1), (10)
AT PERFORATED BEAM PIPE WALLS: HEURISTICS

Extensive calculations and estimates for the longitudina
and transverse impedances per unit length in perforate
beam pipes have been presented by Kurenpi®] and
Gluckstern[2-5].

According to these authors, the longitudinal impedancere
per unit length of a circular beam pipe with radiusarrying
N, holes per unit length if17]

lectric field at the hole position produced by an axial beam
ith total chargeQ. Equation(10) reproduces exactly Kuren-
noy’s result valid for this most general casz24).
In the next section we shall further support the heuristic
sult(8) by solving a rigorous electromagneticenceforth
EM) boundary value problem.

ghereen(/h)=(Q/eo)‘1En(/h), E.(/}) being the normal

(et ap) IV. IMPEDANCE BOUNDARY CONDITIONS
4—2sz)\, 5 AT PERFORATED BEAM PIPE WALLS: BOUNDARY
™ VALUE APPROACH

Z” = jZ()kO

whereky=w/c is the free-space wave number adag,, are

the electric and magnetic polarizabilities8] of each hole
[19]. The result(5) does not depend on the azimuthal posi-
tion of the holes, such being the field produced by an axial
beam in a circular pipe. Thus, letting

In this section we consider@M) plane wave E(i).ﬁ(i))i
k(= ko(sin BU,+ cosou,),

H0) = Hoayejg(i).fz Hoaye—jko(z cosf+x sin 0), (11)

Ny I
Ne=5"% (6) E0=2,HDx KD = (—sing0,+ cosdu,) ZoH e ",
represent the number of holes per unit wall area,(Bpgcan  incident with an angled on a perfectly conducting plane at
be written as z=0 bearing a regular array of holes>atna,, y=mb,,
m,n=—o, ... (see Fig. 2 In Eq. (11), Zo=(uo/€g)*?
. (aetam) is the free-space impedance. Note that we use the-gxj
Z|= _IZOkOWno- (7 time dependence to comply with the particle accelerator lit-
erature.
By comparing Eqgs(7) and (4), one is led to the heuristic In the limit of near-grazing incidencé— /2, the pri-

conclusion that a perforated wall could be described by amary field (holes suppressgdhas the same local structure at
impedance boundary condition with z=0 as the field of a relativistic particle beam at a perfectly
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conducting pipe wall: the magnetic field is nearly tangent to _ R o .
the wall, and the electric field nearly normal. Thus, following Mot= > (Mt MG = > 2M o
[25], we expect to be able to deduce an approprilteal) mn mn
impedance boundary condition from the asymptotié (

— /2) form of the TM plane-wave reflection coefficient. =4H0am5(z)% S(x—nap) 3y —mby,)elkonansiney,
If the holes were absent the reflected field{,H(™) '
would be (17)

The fields produced by these sources can be quickly com-
puted using the vector potentié] and the magnetic Hertz
potentialll, which are related t®,,, and M, by

k() =Kkq(sin 6 U, —coseu,),

HM = Hoayejﬁ(f)f: Hoayejko(—zcos€+x sin 0), (12)
o (V2 +k§)A=jouoPig,
EO=7,HOXKO = (—singu,— cosdu) ZoHe " T, , (18)
V24 k)=~ My,
and the total field would be ( 0) “
as follows:
0 z>0,

' =(scat)— i A2 ¢ U A i vAYall
(B0 4 EO {04 0Oy, z<0. (13 E joC T VXVXA+jousVXIl,

(Etotiﬁtot):
- (scat) ) (19
o , H(scatl— 4, 71V x A+ V x V X1

The field in the presence of the holes, according to Bethe's o VXV
approximation[18], can be computed bgddingto the pri- | order to solve Eqs(18) it is first expedient to note that
mary field (13) above, the field= %, H(** produced by  gince B, =PU, and M =MU,, then A=Al, and Ii
elementary electric and magnetic sources radiating on a per- y

. =TIu, . Itis further convenient to use tiigeneralizesiFou-
= y
fectly conducting(no holg plane z=0 and placed aix rier representation of the perioditfunctions:

=na,, y=mb,, mn=—o, . . . o,
Specifically, the sources at=r ,,=nayl,+ mbhfjy have o O
moment densities: zn: S(X—nay) = a Ep: gla@m/anx (20)
|:-;nm: eoaeﬁ(F— an)EgoO(an)ap — 0,00 — 0,00

1 )
] o (14 2 S(y-mby=— 2 @Y, (2
Mnm:amg(r_rmn)(l_uzuz)H(toO(rmn)v " "

) ] S0 as to recast the source terms into the following form:
wherea, and a,, are the hole electric and magnetic polariz-

abilities [26]. . AHpare | o o
It is seen from Eqgs(13), (11), and(12) that Prot= — Tha, " 05(z) >, e?mi(PYantaybpgikoxsindy
P.q
E((z=0)=2E{)(z=0)=—ZyH, sin gel“oxsn?, (22)
(15) 0,00
Mmt:4Hoam 8(2) 2 2 (PX/an+qy/by) gikox sin ”ﬂy,
(I—0,0,) - H®)(z=0)= (1 - 0,0,) - 2HV (z=0) brap P
=2H0ﬂ elkox sin 0 and obtaining the following wave equations:
y .
. . . . 2 2 . 4H0ae .
Furthermore, the fields radiated #23<0 by the dipoleg14) (Ve+ kA= —Jw,uo—bsme 8(2)
sitting on the perfectly conducting plarze=0 are the same CanDn
as those radiateih free spaceby Eqgs.(14) and their images —o0,%0
[27]. The images are equiverse and placed exactly at the X Y, e2mi(pXaptayibygikoxsing (o3
same positions as the corresponding primary sources. Thus P.q

the superposition of the primary and image sources is just
twice Egs. (14), viz.,

— 00,00

(V2+ kg)H: _ 4Hoam 5(2) E e27'rj(pxla+qy/b)ejkox Sin(i.

apby, p.q
S5 — 5 S(image), 5
Pot %, (Pt P % 2Pmn The forcing terms in Eqs23) contain § functions atz=0,
and thus the equations must be solved in the w&alboley

sense.

The form of the equations suggests that the solutions have
' o the same,y dependence as the corresponding forcing terms,
X 8(y—mby,)elkonansindy (16)  and thus can be written as

=—4c MHoaesin08(z) Y, S(x—nay)
m.n
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— 0,00

A= E Ap qei”p.qzej[kox sin 0+27-r(px/ah+qy/bh)], 7=0,
pg
(24)
7OC’OC
= 2 Hp qeijnp'qzej[kox sin 0+2-rr(pxlah+qy/bh)], 7=0,
p.q '
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o Zz>O_Zz<0 (31)
ZZ>O+ Zz<0 ,

Hgsgatt)_l_ H(r)
TR0
H I z=0
where the last equality defines the reflection coefficiert at
=0 in terms of theobliquewave impedancel$30] Z,., and
Z,-o of the mediafilling the z<0 andz>0 half-spaces.
The scattered magnetic field can be easily computed using

wherey, 4 and 7, 4 are non-negative defined, and the choiceEas-(19), (24), (29), and(30). One readily obtain§31]

of the sign in thez-dependent exponentials corresponds to
the physical requirement that the waves produced by the
sources(22) propagateaway from the plane where they lie

(z=0).

Setting Eq.(24) into Eq. (23), for z#0, one readily gets

+kosing

2mq)\° 2mp
e {55

i

(29)

am+ @ Sint 0

jkO.r
apby, cosé Hoe (32

HEE=2ikg

and hence, substituting into E(1),

_ amtaesit e
FH:1+2JKOW%1_2

. Zz>0
Zy,cos6’
(33

Zz>0 _

1

Zz<O

where the fraction on the right-hand side of Eg{l) has been

Each term in Egs(24) is recognized to represent a plane expanded to lowest ordg82] in the ratioZ,- o/Z,,. Hence

wave propagating in thep(q) grating lobedirection, with
wave vector

20 2w

- . B T S S

k=g, Prkosing, ky=pa k==l (ketk) 12
(26)

for z=0. In particular, thep=q=0 term propagates, for
<0, in the specular reflection directip@8], with wave vec-
tor

ky=Kgsin#, k,=0, Kk,=—Kgcos6. (27

In order to determine the coefficients, , and I, 4, we
require that Eqs(24) be weak solutions of Eq923), by
integrating them across=0, viz.,

0+ 0+
jono | 0z Po= [ davzeid)A
0— 0—

0+
=f dz( 95, + 05, + kG A+[d,AIZZ0T
O,

(28)

and the like forll. The first term on the right-hand side of

. koZo .
Zyo0=—1] m(anﬁ— e Sir? 6).

(34)
We are thus led to conclude that, folose-to-grazingnci-
dent fields, a perforated perfectly conducting wall acts like
the surface of a homogeneous medium withlique wave
impedance

. "N040
Zyo=—] m(am"' ae). (35

Note that the spatial distribution of the holes appears in Eq.
(35) only through the factordyby,) ~*, which represents the
number of holes per unit areg,. Hence

Zy0= — jkoZo(amt ae)n,, (36)
which reproduces our heuristic ans&8s.

As a matter of fact, the impedand¢86) is usually very
small and thus provided the further conditiésee Appendix

A)
Zy
‘ (_) Kopg|>1 37

Zz>0

Eq. (28) is zero, because the integrand is continuous andf Satisfiedps being the(local) smallest radius of curvature

limited acrossz=0. The second is nonzero, becausA is
discontinuousacrossz=0, due to thedifferentsigns of the
z-dependent exponential fa>0 and z<0 in Egs. (24).
Hence, using Eq922) and(24) in Eq. (28) one gets

A, = _KeHo_ O (29)
sin e,
p.q ahbh')’p,q 0&e
11 i 2Ho (30
= —|—Fan.
p.q Jahbhnp,q m

of the surfaceS, then a Leonteich boundary conditior(3)
with Z,,; given by Eq.(36) can be used even forreonpla-
nar, perfectly conducting, perforated surface.

This provides a rigorous justification of our heuristic an-
satz(8). In the following we shall denote the wall impedance
of a perforated pipe wall in free space Bff), .

V. POSSIBLE MODEL IMPROVEMENTS

It is conceivable and relatively straightforward to improve
the model by, e.g(i) including the effect of a nonzero wall
thickness;(ii) describing the effect of electromagnetic cou-

The reflection coefficient of the perforated wall can nowpling among the holedjii) taking into account the presence

be defined with reference to tlpecularcomponent p=q
=0) of the scattered fielfR9]:

of a further (imperfectly conducting tube surrounding the
perforated beam pipe.
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described by usingnodifiedpolarizabilities in Eqs(7) and

be gauged consistently against the omission of terms of8). The modified polarizabilities have the simple fofal—

higher order ink X (hole size) in the standar@ethe’s for-
mulas for e, ,,. These terms have been discussed38—
35].

In this section we shall briefly review points)—(iii)
above.

A. Holes in a thick wall

A nonzero wall thickness is useful to reduce radiation

43]
agm=aSl +Fal) (44)

e,m:

where for a circular liner in a coaxial circular cold bgrt],

leakage through the pumping holes. A general formalism for )
computing electric and magnetic hole polarizabilities forOf. equivalently,

thick walls has been set up [B6—38. For circular holes one

has, with good accurady9]:

(el +a)~05Tal+al), wire=2, (39
(e) 2 3

a :groexﬁ_fTEW/ro), (39
(e) 4 3

am' =~ 3o &XA(— &mW/To), (40

where the superscripts)( (e), and(0) identify the internal,
external, and thin-wall polarizabilities, is the hole radius
and w the wall thickness, andg=2.405 andéq,=1.841

are the damping constants of the dominant transverse-electric

(TE) and transverse-magne(itM) cutoff modes of a circu-
lar waveguide having the same radius as the holes.

B. Coupling among holes

Electromagnetic coupling among the holes can be ac-

counted for by using in Eq.36) the effectiveelectric polar-

izabilities a, ,, of each holejn the presence of the others

VIZ.,

, dem
Fem™ 1- Ce,mae,m' 4D
where the coupling constan®, ,, are given in Appendix B.
For a relativistic beam, the inducedectric dipoles arenor-
mal to the perforated wall, while thenagneticones ardan-
gentand, for circular holesparallel to the magnetic field.
Thus, Egs.(B5)—(B7), under the further assumptica=b
=s, specialize to

12
Co=C, =53 —§+1677K0(27r)}, (42)
4 6
CmZCHZS 5—77—87TK0(2’7T) , (43)

whereK, is a zeroth-order modified Bessel function of the

second kind. Equation@2) and (43) imply a quasistatic §
<\) assumption, which could be removed in principd@].

C. Perforated beam pipe in a coaxial lossy tube

The influence of an external imperfectly conducting tube
(e.g., a cold borg coaxial to the beam pipe can be simply

a(e)-i-alsr?)
F=—— TR -1 , (49
at(al)—’_aETll)_'—] Sgr‘(k)b‘*na (1+b/a)
(e) (e) (1) (i)y—1
ay’+ay)(ay’+ay)
F=—( e m e m (46)
(1+b/a)Zq,
T

In Egs. (44), (45), and (46) the superscriptge) and (i)
denote the external and internal polarizabilitieﬁ
=(]kolZo) "t Z%, is thecomplexEM penetration depth into
the cold-bore wallgboth walls atr =b+ andr=a assumed
lossy, with finite conductivityo ), andZ, the correspond-
ing (complex wall impedance:

(47)

L [kolZo)
=17 sgrie)]| 527
Hence, Eqs(7) and (8) become

Zokon
27b

Z=-] (af’+af)

(af+af)*(a+af)
(1+bla)Zg
0
Zo.

: (48)

Zyai= —iZokon,| (al’+al)

B (a(ee)-i- aﬁﬁ))z(ag)ﬂ- ag))_l
(1+ b/a)ZCb
0
z0,

(49

In the limit of an infinitely thin liner's wall, Whermf;?n

=—a) | Eq. (49 admits a simple physical interpretation.

em?

The complex propagation constant and characteristic im-
pedance of the lossy coaxial cold-bore waveguide can be

equivalently computed by assuming that the inner §—)
cold-bore wall is aperfect conductoras assumed ih43])
and placing arequivalentwall impedance:

Zeq: Zgy (50)

b
14—
a
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FIG. 3. Rounded corner square liner cross section.

on the outer liner wall (=b+) alone [45]. Then, it is

readily seen that Eq49) is nothing but the parallel combi-

nation ofZ{%), given by Eq.(8) andZ, (50),

(51)

BEAM COUPLING IMPEDANCES FOR PERFORATED BEAM PIFE ..
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As a result, the coupling coefficien42) and(43) and hence
the wall impedance become functions @fa, as shown in
Figs. 4a)—4(d) and Ha)—5(d) for several values of the ratio
wlw., w.=(mcla) being the(lowes) pipe cutoff angular
frequency[48]. To draw these figures we used the param-
eters collected in Table |, taking into account wall thickness
via Eq.(38), and the presence of the cold-bore via Edg)
and (45).

In Figs. 4a) and 4b) the wall resistance and reactance for
a thick liner surrounded by @irculan coaxial cold bore are
shown. Those of the same liner in free space are shown in
Figs. 4c) and 4d) While the effect of the cold bore is quite
visible, it is seen that for thick liners including or neglecting
hole coupling does not make any sensible difference.

In Figs. 5a) and 8b) the wall resistance and reactance for
a thin (zero thicknesswall liner are displayed. Those of the
same liner in free space are shown in Fig&)&nd 5d).
Here we used Kurennoy’s resuy]:

2 2, 2 3
m° asta )
= e T —] a3 (53)

‘ Rd: Zwall]
Im[ ZWall]

in Eq. (8) together with Eqs(41) and (43). As for the thick

6 aetan|w.

The power lost in the coaxial waveguide between the linefiner, the effect of the cold bore is quite evident, while hole

and the cold bore has been predicted and measurgt]9dh
and confirms the validity of the above analy§i$].

VI. PERFORATED WALL IMPEDANCES AT FIXED
PUMPING CAPACITY

In this section we shall refer to the pipe geometry de-

coupling becomes visible dsapproaches. .
By comparing Figs. 4 and 5, it is seen that the effect of
wall thickness cannot be neglected.
VIl. PARASITIC LOSSES

The parasitic losgenergy lost by the beam per unit pipe

picted in Fig. 3: a rounded corner cross-section stainlessength), is given by[14]
steel pipe copper-plated on its straight sides, which has been

proposed for LH(1].

1 [+
We shall assume that the holes are confined within the T:Zf, I()]?ReZ(w)dw,

AE
(54)

rounded corners of the beam pipe contours, where the leak-

ing fields would be at a minimum.

The size of the holes is determined by the requirement

0Yvherel(w) is the beam current frequency spectrum and

preventing excessive radiation loss through them, while theil(«) iS the longitudinal impedance.

number is dictated by requiring an adequate pumping capac-

ity. Typical numbers are accordingly shown in Table I.

Each rounded corner has a surfaeg4)(a—d) per unit
length of liner, thus there are 4(4) (a—d)n, holes per unit
length of liner. Hence, for a regular two-dimensioriaD)
lattice of circular holes with spacing one hag47]

-1
(52)

TABLE |. Model parameters relevant to Fig. 3.

Stainless-steel resistiviy,s 51077 QOm
Copper plating resistivityc,, 5510 Om
Number of particles per bunch %o

Number of bunchesl, 2835
Revolution frequency, 11.245 kHz
Hole radiusr g 0.75 mm
Wall thickness 0.75 mm
Liner diametera 3.48 cm
Bunch lengtho, 7.5 cm

In the following we shall again refer to the stainless-steel

rounded-corner square cross-section beam-pipe with copper-

plated side walls, sketched in Fig. 3 and described in Table I.
For Gaussian bunches of rms length and total charge

Q, the current frequency spectrum is

|(w)=Qe K2 (55)

A. Ohmic losses

The pure Ohmic power losse®Y)+ P in the unperfo-
rated copper-plated and stainless-stéiglterna) beam-pipe
surfaces, can be writtd@9]

AE Q%cZ,
ngou),ss: Npv; L =Npv,
8m°a

(56)

whereN, is the number of bunches in the ring, the revo-
lution frequency,a the (rounded square side lengthQ the
bunch charge, the functiod. (), Gs{ ) are defined in Ap-
pendix C, and the function&/?() andw{®)() depend only
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0.020 - 10 ™3
Thick Liner w, Cold Bore w
] 10 73
0.015 E
= 10 -t_:‘//,f/fc{
] T ]
Eomo 3 )
@ 3 0: 10 =7
: Thick Liner in Free Space.
0.005 3 - Solid: Holes Uncoupled.
1073 Dashed: Holes Coupled.
/———”f/fc{
10 "+ TTT T TTTToT TT T TTTT 7Ty TTTTTrrroroy
0.50 0.60 0.70 0.80 0.90
(©) d/a

X [Q/m]

1 Thick Liner in Free Space.
-1.20 3 Thick Liner w. Cold Bore ] Solid: Holes Uncoupled.
3 Dashed: Holes Coupled.

0.50 0.60 0.70 0.80 0.9 ) ! 0.70 0.80 0.9
© d/o @ d/a

(=]
o
8 ]
o
o
23
o
o

FIG. 4. (a) Rounded-corner square line&ee Fig. 3 and Table.I Thick liner with coaxial circular cold bore. Perforated wall resistance
vs d/a at various values of/f.. (b) Rounded-corner square lingsee Fig. 3 and Table).I Thick liner with coaxial circular cold bore.
Perforated wall reactance dga at various values dof/f. . (c) Rounded-corner square lingsee Fig. 3 and Table.IThick liner in free space.
Perforated wall resistance a at various values of/f.. (d) Rounded-corner square linésee Fig. 3 and Table.I Thick liner in free
space. Perforated wall reactanced/a at various values of/f.

on the bunch length and th@ocal, spectral impedances wall. Accordingly, the power leaking through the holes, and
Z{CW - 7(59 of the stainless-steel and copper-plated surfacedissipated in the stainless-steel inner and outer walls of the
and are[49] coaxial region, can be written &%)+ p{n°'es) ‘\where

+ o0 QZC 0 (0 d
Wéi’)c< ~|=2 fo e‘”imz)(yz/ﬁ(ﬁ)R%Y Z(Saﬁ.c“(y dy, PEY =Ny, . W(hmes)( = GcU( a)’ 8
(57)
2cz d
wherey = 7w/ v, w,=mcla being the already defined cut- pholes)— NbvrQ . ;’wg;"'%{oz GSS( . (59
off frequency of the first waveguide mode in tkequare 8ma a a

liner, and the wall impedance& S refer to the unperfo- o _

rated (stainless-steel, coppechamber walls. In Fig. 6 we 'epresent the contribution of the holes drilled on the
plot W9 (o, /a), using the parameters in Table I. The cor- Stainless-steelrounded cornesand copper-platedstraight
responding values oiv)(c,/a) are easily deduced since sides portions of the liner's wall. In Eqs(58) and (59),

ng)/W(Ou) = \pss! pcy~30.

+ o
ngocl:eus)< % =2 f e (o2182)(y21 BY)
’ 0

B. Power loss through the holes

Here we discuss the most general case where holes are (holes) VC)
also drilled on the flatcopper-platef portions of the liner XR% YoZuall (ss.cu dy. (60
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0.16 7 10 -.é
] Thin Liner w. Cold Bore _’____—/”/f/fc{

Thin Liner in Free Space.
Solid: Holes Uncoupled.
Dashed: Holes Coupled.

104
f/fc=0 1 ] f/fc =0.1
0.50 0.60 0.70 0.80 0.90 .50 0.60 0.70 0.80 0.90
(a) d/a (©) d/O
0.0
-0.00 7 —
] 3 /f =0T |
—0.04 _f f/f.=0.1 -05 ';
3 Thin Liner w, Cold Bore 9 0_
_.—0.08 3 - 1.0
3 : :
é f/fc =0.5 §
X< _0.12 > -1.51
E\_____/ k
-0.16 ] f/f,=0.9 -20] Thin Liner in Free Space.
] 3 Solid: Holes Uncoupled.
Dashed: Holes Coupled.
20.20 e 2.5 Frrrrrr e
02045 0.60 0.70 0.80 0.90 0.50 0.60 0.70 0.80 0.80
(b) d/a @ d/

FIG. 5. () Rounded-corner square linesee Fig. 3, Table)l Thin liner with coaxial circular cold bore. Perforated wall resistancd/es
at various values df/f . (b) Rounded-corner square lingee Fig. 3 and Tablg.IThin liner with coaxial circular cold bore. Perforated wall
reactance vsl/a at various values of/f.. (c) Rounded-corner square line@ee Fig. 3 and Table.IThin linear in free space. Perforated
wall resistance vd/a at various values of/f . (d) Rounded-corner square lingsee Fig. 3 and Table.IThin liner in free space. Perforated
wall reactance vsl/a at various values of/f.
where Z{3% o, is the appropriate wall impedandd9),
which depends on the number of holes per unit surface:

200 -
1/2 N(CW g\ 2
] We, =(ogs /o) ¥s n570u):4>\7 = (61)
15.0 J a4
5 w N(ss) - d -1
v;u, (ss)— _* ( - — (62
J o !
.‘, 100 ] 4a | 4 a
o ] _ .
- N{c"S9) being the number of holes per unit length on the

] copper-plated and stainless-steel portions of the liner's wall.
5.0 9 The Ohmic power losses in the perforated pipe can be
] approximately written as

0.0 e T T PCu,ss: (1- a’Cu,ss) PE:Ou),ssv (63

where P(COJ’SS are computed using Eg$56) and (57), and
FIG. 6. The functionV%(o,/a) for the unperforated rounded- ¢y ss@re the hole-covered copper and steel surface fractions,
corner square linefsee Fig. 3. respectively.
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60.0 3 TABLE II. Parasitic losses. Case I: Holes confined to copper-
3 plated straight sides in Fig. 3.

d/0=0.5,0.7.0.9 d/a=0.5 d/a=0.7

Pcy 54 mW/m 63 mW/m
Pss 326 mW/m 72 mW/m
p{holes) 30 mW/m 19 mW/m

(holes)

Cu

107 W

Potal 410 mW/m 154 mW/m

proximate boundary conditiop the proposed approach in-
cludes in a remarkably simple fashion several nonobvious
.0 3 features which are not as easily included in the standard ap-
1.00 2.00 3.00 4.00 5.00
0./a proach. . . .
@ ! We suggest that the combined use of reciprocity formulas
E [Egs.(1) and(2)] and impedance boundary conditions such
E as Eq.(36) provides a powerful tool to obtain analytical es-
25.0 § timates of the beam coupling impedances in realistic, com-
] 4/0=0580.7.09 plex, and heterogeneous geometries.

As hints for future work, we mentiofi) the possibility of
deriving more accurate variational formulas for beam cou-
pling impedances(ii) the statistical characterization of the
beam coupling impedances for randomly placed hdiés,
the extension to ideally more accurate higher-order imped-
ance boundary conditions, as discussed2b,53-58, and
finally (iv) the inclusion of pipe wall roughness.

(holes)
sS

0% w

APPENDIX A: IMPEDANCE BOUNDARY CONDITIONS

“1.00 2.00 3.00 4.00 5.00 In this appendix we summarize a number of issues about
(®) 0./ impedance boundary conditions. No explicit derivations are
provided, but pertinent references are given.

Impedance boundary conditions were introduced and ex-
tensively studied by the Russian Sch¢b6B-57, and are
usually credited to Leontach [10]. They relate the tangen-
tial electric and magnetic fields on the exterior boundary
dV~ of a given domairV, thus allowing to solve an electro-

In order to check whether it is really more convenient tomagnetic boundary value problem by solving Maxwell equa-
place the pumping holes on the rounded corners only, in théons in the exterior domain only. In the simplest form, they
following we shall focus on the special cases where there
pumping holes areitherconfined to the copper-plated strips

FIG. 7. (a) Rounded-corner square lingree Fig. 3 and Table.l
Holes confined to the straight sides. The functigfi®*$ o, /a) for
several values ofi/a. (b) Rounded-corner square lin&ee Fig. 3
and Table ). Holes confined to the rounded corners. The function
WX &, /a) for several values of/a.

(case |, N{*¥=qa.= ngo'es)=é)) or to the stainless-steel |(1=Uplly) - E = ZyiitinX H| - =0, (A1)
rounded cornergcase II, N{®¥=ac,=PU®9=0) of the
beam pipe. whereZ,, is the(local) characteristic impedance of the me-

In Figs. 7a) and 7b) we plot the functiondVid&yo,/a)  dium inV, and the fields are computed &~
for different values ofd/a, for case | and case Il, respec- These conditions can be applied at the surfadeof a
tively [50], as functions of the ratiar,/a, assumingN, homogeneouysisotropic body with refractive index and
=2660 holes/m and circular holes of 1.5 mm digfixed  smallest curvature radius or dimensidd provided that
pumping capacity [53-57
As a result, we get the values summarized in Tables Il and
. TABLE 1ll. Parasitic losses. Case II: Holes confined to
In the limiting case whered/a=0 (all-steel circular stainless-steel rounded corners in Fig. 3.
chambey, we getPY~2.06 W/m, P{I°®~14.4 mw/m ,

ss

whereas in the other limiting caséa=1 (all-copper square d/a=0.5 d/a=0.7
i (0) (holes)
cNhambe} /We obtain [51] Pg/~68 mW/m, Pg, P 58 mW/m 66 mwim
=10 mw/m. Pes 298 mW/m 62 mW/m
VIIl. CONCLUSIONS p{holes) 7.2 mW/m 3.3 mW/m

While relying on several simplifying assumptiotgertur- Piotal 363 mW/m 131 mW/m
bative computation of beam coupling impedances apd
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n>1, Im(n)kR>1. (A2)

For anopensurfacedV (limiting a medium of infinite extent

for which no inward normal intersects the surface more than

once, the second condition in E@\2) can be relaxed into a
milder one:
In|kR>1. (A3)

For aflat open surface, the first condition in EGA2) is

sufficient. These equations admit simple physical interpreta-

tions.
For a plane open interface, the first of E§2) implies

via Snell's law that the transmitted field is a plane wave, and

Eq. (A1) follows from the continuity of the field components
tangent tooV.

For nonplanar open interfaces, HE&3) implies that the
surface is planar at the level of the leading Fresnel 6ig
which makes Eq(A1) asympotically valid in [n|kR) L.

For acompactbody, or an open bueentrantsurface, the
second equation in EgA2) essentially ensures that the field
penetration is much smaller th&) so that the waves aret
transmitted beyond the body.

For nonhomogeneousodies, it can be shown thE8]

|(|__ l’:Inan) ’ Ig_zwallanx H-)|L9V

:o(

Equations(Al) therefore do applyocally, providedZ,, is
uniform over scales of the order of the wavelength\in
Higher-order boundary conditions have been introduced b
several author§26,58—61, For locally plane stratified me-
dia, simple transmission line formulas are sufficiently accu
rate for all practical purposes.

i d ZwaII

kZ, dn +O

1 2
k_ZO|VtZwaII|) .

APPENDIX B: EFFECTIVE POLARIZABILITY
IN A PLANE REGULAR HOLE ARRAY

In this appendix, for the reader’s convenience we summa-

rize the approach developed i62—64 to compute the ef-
fective (electrical or magneticabolarizability o’ of a single
hole (possibly noncircularin a plane regular array. The in-
duced dipole momerttis related to the pertinent field com-
ponent by

f=a(Fo+Fin, (B1)

where« is the polarizability of a single holez—,o is the inci-

dent field, andfint is theinteractionfield acting on each hole
due to the presence of all other holes. These latter are due

the very existence of the induced dipoles, and can thus be

written as

F.=CH, (B2)

BEAM COUPLING IMPEDANCES FOR PERFORATED BEAM PIFE ..
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15.00
Square Liner w. Rounded Corners
. Gcu
10.00 -
GCu,SS
5.00 -
] Gss
0.00 rrrrrrrr S RARRRARE, B RAARARARE, e SRARARRRA
0.00 0.20 0.40 0.60 0.80 1.00
d/a

FIG. 8. The function$s ¢, s{d/a) for the rounded-corner square
liner (see Fig. 3.

P B3
" 1-aC’ (B3)

a

The interaction constant depends on the direction of the di-
poles. It is convenientsuperpositionto solve for the sim-
plest cases where each induced dipole parallel to one of
the coordinate axes. For the canonical problem sketched in
Fig. 2, showing a plane regular array pdirected dipoles

placed atr,,= (na,)ux+(mby)u,, the interaction constant
will be denoted a<C, .

The general solution of this problem, which implies
restriction about the ratio between the dipole spacing and the

YWavelength, has been obtained by Col(ji64], problems

12.7 and 12.8 He also provides complete results for the
simplest quasistatic caglole spacing< wavelength, ap-
propriate for our present purposes, which are reported here-
after for the reader’s convenience:

6 8

C— 2’7Tah
Y 5abd b

by (B4)

0

More or less obviously, if the induced dipoles were directed
along thex direction, one should interchangg, and by, in
Eqg. (B4). Hence

27Tbh
ap

6 8
C,~

~ (BS)
5ral a?

Finally, for zdirected dipoles the interaction constant can be

written as
to

C,=—(C,+C)). (B6)

APPENDIX C: THE FUNCTIONS G, <{d/a)

The general formuldl) can be applied to estimate the

whereC depends only on the dipole orientation and the arrayeal part of the longitudinal impedance of the rounded-corner

geometry,not on the type of fieldelectric or magnetic
According to Egs.(B1) and (B2), the effective polariz-
ability is given by

square cross-section liner sketched in Fig. 3, using the exact
solution E, for the field produced by a relativistic unit-
charge particle traveling along the axis of a perfectly con-
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ducting square-section pipe reported 49], yielding whereZ$S),z(CW are the wall impedances for the unperfo-
rated stainless-steel and copper-plated chamber walls, re-

€ spectively, and

RelZ ()= Yo b RAZ,llEa(T 00/
(1

- ds
GCu,ss: § |5n(r,0)|2?, (C3

u,ss

For the geometry of Fig. 3, the pipe wall cross-section con-
tour S can be written a®S.st+ dS¢,, the first term repre-
senting the stainless-steel rounded corners and the second
one the copper-plated flat sides. Thus, Egl) can be fur-  With

ther written as

R Z(SS) R Z(CU)
Re[ZH(w)]=M634d/a)+MGCu(d/a),
41°a 4

7728.
(C2

E(r,0)=(2mepa)Eq(r,0). (C4)

The functionsG¢, ¢sare shown in Fig. 8.
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