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Forward and backward stimulated Brillouin scattering of crossed laser beams
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The simultaneous forward and backward stimulated Brillouin scattéd@®Bf5 of crossed laser beams is
studied in detail. Analytical solutions are obtained for the linearized equations governing the transient phase of
the instability and the nonlinear equations governing the steady state. These solutions show that backward SBS
dominates the initial evolution of the instability, whereas forward SBS dominates the steady state. The analysis
of this paper is verified by numerical simulatidi$1063-651X99)02711-7

PACS numbse(s): 52.35.Mw, 52.35.Nx, 52.40.Nk, 42.65.Es

[. INTRODUCTION SBS of crossed beams. Thus, many results of this paper also
apply to the SBS of an isolated beam.
Stimulated Brillouin scatteringSBS in a plasma is the
decay of an incidentpump light wave into a frequency- Il. GOVERNING EQUATIONS
downshifted(Stoke$ light wave and an ion-acoustisound
wave[1]. It is important in direcf2] and indirec{ 3] inertial-
confinement-fusioflCF) experiments because it scatters the
laser beams away from the target, thereby reducing the en-
ergy available to drive the compressive heating of the
nuclear fuel. or the electromagnetic potential, together with the sound-
The SBS of an isolated beam has been studied in detaiﬁ. o1 g P » 109
Backward SBS was studied in numerous early papers, and2V/e equatiorj1]
near-forward, sideward, and near-backward SBS were stud- 2 2u2yn — 1272/ A2
ied in some recent papefd—8|. However, because beams (G CsVIM=2C VAR @
overlap in the coronal plasma surrounding the nuclear fuel,
is also important to analyze SB8nd other parametric insta-
bilities) driven by two (or more crossed beams. For some
scattering angles, the SBS geometries allow the pump wav

o share daughter wavgs—11]. Because the growth of these sity fluctuation associated with the sound wave divided by

daughter waves is driven by two pump waveather than : L
one), the growth rates associated with these scattering anglé[gn?yk;ﬁgkl?)wg‘redqféiigigszigssléy{omz g:)?] d(salg)r:;]f())/tit/r]ealt‘orce
are higher than the growth rates associated with other sc Jas retained
tering angles. Such is the case for forward and backward The geométry associated with forward SBS is shown in
SBS, in which the Stokes wave vectors bisect the angle bqfig 1(a). The forward SBS of beam 1 is subject to matching
tween the pump wave vectors. oﬁditioﬁs of the form

In this paper we study the simultaneous forward and”
backward SBS of crossed beams. The outline of the paper is
as follows. In Sec. Il we derive the equations governing for-
ward and backward SBS. In Sep. Il we solve the !|near|;§there @1,ky) and (; k) satisfy the light-wave dispersion
equations governing the transient phase of the 'nStab'"tyequatioan:w2+czk2 and (v ,ky) satisfies the sound-
These equations differ from the linearized equations govern- di € :[i 2_ 2s|1(é Séimil ¢ matchin -
ing the SBS of an isolated bedm] because the forward and wave dispersion equation™=ceK . ar matening co

backward SBS of crossed beams each involve one Stokégt'ons apply to_the forward SBS of beam 2. Because the
wave and two sound wavégather than one In Sec. IV we sound frequencies depend on the magnitudes of the sound

solve the nonlinear equations governing the steady state df2V€ VECIOrs, but not on their directionss,= ws, = ws.
the instability. These equations describe the nonlinear com- By substituting theAnsaze
petition between forward and backward SBS. In Sec. V we
discuss the entire evolution of forward and backward SBS
and describe numerical simulations that verify our analysis. +A; expliks-x—iwst)]+c.C. (4
We summarize the main results of the paper in Sec. VI.

In the Appendix we show that, in steady state, the equaand
tions governing the simultaneous near-forward and near-
backward SBS of an isolated beam are equivalent to the nj=N; exp(ikg; - X—iwgt) + N, explikg - X—iwgt)+c.C.
equations governing the simultaneous forward and backward (5)

The SBS of crossed beams is governed by the Maxwell
wave equatior1]

(95+ 03— c?V2) A= — win/A, 1)

The electromagnetic potential,= (v,,/cs)(me/m;)¥?is the
quiver speed of electrons in the high-frequency electric field
edivided by a characteristic speed that is of the order of the
Slectron thermal speed, is the low-frequency electron den-

01= it ws;,  Ki=KitKg, (3

Ap=[Aexpiky-X—iwgt) + A, exp(iks- X—iwgt)

1063-651X/99/6(5)/59789)/$15.00 PRE 60 5978 © 1999 The American Physical Society



PRE 60 FORWARD AND BACKWARD STIMULATED BRILLOUIN . .. 5979

() K \ The geometry associated with backward SBS is shown in
2 ' Ko Fig. 1(b). The backward SBS of beam 1 is subject to match-
\ ing conditions of the form
K¢ '
> w1=0pt g, Ky=KptKey, (12
]
[ Ket where (q,k;) and (wp,kp) satisfy the light-wave disper-

: sion equation, andd; ,K;) satisfies the sound-wave disper-
sion equation. Similar matching conditions apply to the
backward SBS of beam 2. As in forward SB&,,= wg;

= wg.

By adding toAnsatz(4) the term

Ay expliky-Xx—iwpt) +c.c. (13

and toAnsatz(5) the terms

N; explikgy - X—iwgt) + Ny explikg - X—iwgt) +c.c.

14

FIG. 1. Geometry associated with the SBS of crossed laser 14
beams.(a) Forward SBS(b) Backward SBS. associated with backward SBS, one can show that

in Egs.(1) and(2), and making the slowly varying envelope —&ZAbzi(wg/Zwovo)(AlN’{ +A,N3), (15

approximation, one can show that

, (9+ v )NF = =i (022w ) AX Ap+vgn*,  (16)
9,A1=1(0200v0) (AN +AN3 ), () v SR T

_ (9+ )N = —i (022w AS Ap+veon*. (17
(0t va)N] =~ (0220 AT A+ vgn*,  (7) v soTeTER e

As in forward SBS,v,=vg=vs. In its transient(linearn
(0 + vs)NF = —i (022w A3 A+ veon*. (8)  phase, backward SBS is independent of forward SBS.

In steady state, the backward-scattered intendity
In keeping with standard practice, we omitted the time de—=|A,|? satisfies the equation

rivative from Eq.(6) because the time taken by the scattered

light wave to cross the plasma is short compared to the time —d,B=2u,(P1+P5,)B, (18
taken by the sound waves to respond to the ponderomotive

forces that drive them. We also made the approximation thavhere uy, is given by Eq.(10) and the values ofys and vg

the frequency and group speed of the scattered light wavassociated with backward SBS. Apart from a factot/*
equal the frequency and group spagdof the pump waves, Or |A,|%, wp is the spatial growth rate of backward SBS in
respectively. In Eqs(7) and(8), v, N¥ andvg,N3 are phe- the strongly damped regini€].

nomenological terms that model the Landau damping of the In the high-gain regime, the intensities of the scattered
sound wave$12,13, andvg;n* andvg,n* are phenomeno- light waves as they exit the plasma are comparable to the
logical terms than maintain the density fluctuations associlntensities of the pump waves as they enter the plasma and
ated with the sound waves at their common noise la¥eih ~ One must account for the depletion of the pump waves within
the absence of instability. Because the Landau-damping raté8e plasma. In steady state, the pump intensities satisfy the
depend on the magnitudes of the sound wave vectors, but ngfgluations

on their direction,ygp=vg = vs.

Equations6)—(8) describe the initialtransient evolution d;P1=—2pFP1—21,BPy, (19)
of SBS. In steady state
y d,Py= — 24iFPy— 21u,BP;, (20)
d A= wi(|AL %+ |AL %) A, 9 N :
Ar= i [Al™H A Ay © " \where we made the approximation that the evolution of the
where pump waves is one-dimensional. One can verify HG$)
and(20) by applying the principle of power conservation to
= w§w§/4w0wsvsv0. (10 Egs.(11) and(18).
Apart from a factor of|A;|? or |A,|?, s is the spatial ll. LINEAR ANALYSIS OF THE TRANSIENT PHASE

growth rate of forward SBS in the strongly damped regime
[7]. The forward-scattered intensitly=|A|? satisfies the
equation

The forward SBS of crossed beams consists of two
mirror-image processes that share the same Stokes wave and,
hence, are governed by the coupled equati@)s(8). By

dF=2u¢(P1+Py)F, (1) making the substitutionsng®Aj—A¢, iwN}/wl*~Ny,
iweN3 /0 —N,, iwn*/w?—n, and z/vy—z, one can
whereP;=|A;|?> andP,=|A,|? are the pump intensities.  rewrite these equations as
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9 A+=v1IN1+ v52N2,
(9 +vg)N1= y1Ar+wan,
(i + vs)No= viAs+ vgn,
where
Y12

Y= wews|A1|/2( WoWg

Yi2= wews|A2|/2( wows) v,

A; is proportional to the action amplitude of the Stokes
wave, andN; and N, are proportional to the action ampli-
tudes of the sound waves. In the absence of dampjng,
and y;, are the temporal growth rates of the forward SBS of

beams 1 and 2, respectively, in an infinite plasma.
By using the combined amplitudes

Ny = (N1 + yi2N2) s,

N_=¥:(Ny/y1—Nao/ys2),

where y¢=(v%,+ v%,) Y2, one can rewrite Eqg21)—(23) as

A= YN,
(9 + v N = yiAr+wan,

(di+vg)N_=wn_,

(21)
(22

(23

(29)

(29)

(26)

(27)

(28)
(29

(30

where n,=n(ys+ vi2)/ye and n_=nyy(Uys—ys,).

Equations(28) and(29) are equivalent to the equations gov-

erning the forward SBS of an isolated befriand Eq.(30)

is simple. Consequently, the solutions of E@@8)—(30) can

be written in the form

t (z

Af(z,t)=j f v, Gi(z—2',t—t")dzZ'dt’,
oJo
t [z

N+(z,t)=f f vn, G (z—2',t—t")dZ'dt’,
oJo

t [z
N,(z,t):fofo vsn_G_(z—2't—t")dz'dt’,

where the Green functions
Gi(z,) =yl o[ 2y5(zt) Y2]exp( — v4b),

G (2.1) = y1(t/2) 2 [ 2¢(zt) Y] exp( — veh)
+ 6(z)exp( — vgt),

G_(z,t)=4d(z)exp — vgt).

In Egs.(34) and(35), |, is the modified Bessel function of

(31

(32

(33

(39

(39

(36)

the first kind, of ordem. The original amplitudes!; andN,

are determined by Eg932) and (33), and the inversion

equations

Ny=(ysa/vo) [Ny + (Y2l ¥2IN_],

(37)

No=(ys2/ ¥) [Ny — (v5/ yHN_]. (39)

Solutions(31)—(33) describe the growth and linear satu-
ration of forward SBS. By analyzing the time dependence of
the Green functions, one can show that the linear saturation
time

to~ vzl v2. (39

The steady-state limits of solutiori81)—(33) are

A(z,%)= (N, vl yp)lexpl yizlvg) — 1], (40)
N.(z,%)=n. exp(y{z/v), (42)
N_(z,©)=n_. (42

Notice thaty?/ vevo=us(|A1|?+|A,]?), in agreement with
Eq. (9). If the interaction length exceeds a few gain lengths,
one can model Stokes generation as Stokes amplification
with an incident amplitudé\;(0)=(n, v¢/ys).

When the gain distancefzz/vs>1, the pump waves are
depleted and forward SBS saturates in a time that is short
compared to the linear saturation time. One can deduce a
scaling law for the nonlinear depletion time from the condi-
tion that the intensity amplification factor associated with
solution(31) is comparable to the ratio of the incident inten-
sities of the pump and Stokes waves. The result is

td0<1/7f22. (43)

The backward SBS of crossed beams also consists of two
mirror-image processes that share a Stokes wave and are
governed by Eqgs(21)—(25), with f replaced byb andz re-
placed byl —z. Thus, Egs.(26)—(43), and the conclusions
drawn from them, also apply to backward SBS. Equations
(21)—(23) apply to other parametric instabilities driven by
crossed pump waves, provided that one type of daughter
wave is strongly damped.

IV. NONLINEAR ANALYSIS OF THE STEADY STATE

The simultaneous forward and backward SBS of crossed
beams is governed by Eqg&ll) and (18)—(20). By making
the substitutiorP, + P,— P, one can rewrite these equations
as

dZFZZIU'fPFl (44)
—d,B=2u,PF, (45)
d,P=—2(u(F+ yB)P. (46)

Henceforth, the total intensity of the pump waves will be
referred to as the pump intensity. EquatidAg)—(46) apply

to other simultaneous parametric instabilities driven by
crossed pump waves, provided that one type of daughter
wave is strongly damped. For SB&,= u;=u [7] and one

can use the substitutionuZz— z to rewrite Eqs(44)—(46) in

the simple form

d,F=PF, (47)
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—d,B=PB, (48)

d,P=—(F+B)P. (49

The substitutions~/P(0)—F, B/P(0)—B, P/P(0)—P,
and P(0)z— z nondimensionalize Eq$47)—(49), but leave
them unchanged in form. Because the solutions of EB-
(49 are complicated, it is intructive to review the limiting

solutions that apply to forward and backward SBS sepa-

rately.

A. Forward SBS
In the absence of backward SBS, E@s?)—(49) reduce to

d,F=PF, (50
d,P=—FP. (52)

It follows from these equations that
P+F=1+N;s, (52

whereN;=F(0) is incident(noise intensity of the forward-
scattered wave. Sinde=0, it follows from Eq.(52) that

Si=1+Ng, (53

where S;=F(l) is the output (signa) intensity of the
forward-scattered wave ardis the gain length of forward
SBS. Equation(53) reflects the fact that the signal intensity
cannot exceed the total input intensity.

By substituting Eq(52) in Eq. (50), one can show that

F

(1+ Nf)z=ln m

. (54)

Equation(54) determines the interaction distanzeequired
to produce the forward-scattered intensity By inverting
this equation, one finds that

N¢(1+Ny)

F(():m, (55)

where {=(1+N;)z. Solution (55) is consistent with Eqg.
(53).

The normalized intensities of the pump and Stokes wave

in a semi-infinite plasma are plotted as functions of the gai

distancez in Fig. 2, for the case in whicN;=10"%. As the
Stokes intensity increases, the pump intensity decreases,
accordance with Eq(52). For future reference, notice that

the initial growth of the Stokes wave from noise is driven by

undepleted pump waves.

B. Backward SBS
In the absence of forward SBS, Ed47)—(49) reduce to

—-d,B=PB, (56)
d,P=—BP. (57)

It follows from these equations that
P-B=1-S,, (58

FORWARD AND BACKWARD STIMULATED BRILLOUIN . ..
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FIG. 2. Normalized intensities plotted as functions of the gain
distance for forward SBS in a semi-infinite plasma. The solid line
represents the pump waves and the dot-dashed line represents the
Stokes wave. For forward SBS the output intensities from a finite
plasma depend on the plasma length in the same way that the in-
tensities within a semi-infinite plasma depend on the distance from
the plasma boundary.

where S,=B(0) is the output(signa) intensity of the
backward-scattered wave. SinBe=0, it follows from Eq.
(58) that
Sp=<1+Ny, (59

where N,=B(l) is the incident(noise intensity of the
backward-scattered wave ahds the gain length of back-
ward SBS. Equatiori59) reflects the fact that the signal in-
tensity cannot exceed the total input intensity.

By substituting Eq(58) in Eq. (56), one can show that

(1-S,)z=In[S,(1—S,+B)/B].
The signal intensity is determined by E®O) and the con-

dition B(I)=N,,. By inverting Eq.(60), with S, known, one
finds that

(60

_S(1-%)
exp)— S’

where{=(1-S;)z. Solution(61), which was first obtained
by Tang[14], is consistent with Eq(59).

The normalized output intensity of the Stokes wave is
plotted as a function of the gain lengtliin Fig. 3(a), for the
case in whichN,=10"%. The normalized intensities of the

ump and Stokes waves within the plasma are plotted as
nctions of the gain distancein Fig. 3(b), for the case in

B({) (61)

WWhich N,=10" ¢ and|=30. Because the pump and Stokes

waves propagate in opposite directions, the initial growth of
{fle Stokes wave from noise is driven by depleted pump
waves|[Fig. 3(b)]. Consequently, when pump depletion is
important (>10), the rate at which the Stokes output inten-
sity increases with gain length is slower for backward SBS
[Fig. 3@] than for forward SBSFig. 2). Backward SBS
scatters the pump power less efficiently than forward SBS.

C. Simultaneous forward and backward SBS

When forward and backward SBS occur simultaneously,
it follows from Eqgs.(47)—(49) that
P+F-B=1+N;—S, (62

and
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FIG. 3. (a) Normalized output intensity of the Stokes wave plot-

ted as a function of the gain lengtifor backward SBS(b) Nor-
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FIG. 4. (a) Normalized output intensities plotted as functions of
the SBS gain length The forward and backward noise intensities

malized intensities within the plasma plotted as functions of theare equal. The solid line represents the total output intensity for the
gain distance fot =30. The solid line represents the pump wavescombined instability. For comparison, the dot-dashed and dashed

and the dashed line represents the Stokes wave.

FB=N;S,. (63)

lines represent the output intensities when forward and backward
SBS occur separatelfFigs. 2 and &), respectively. (b) Normal-

ized intensities within the plasma plotted as functions of the gain
distance forl =30. The solid line represents the pump waves, the

Equation(62) is a generalization of equations that apply to dot-dashed line represents the forward Stokes wave, and the dashed
the forward and backward instabilities separately, whereat® represents the backward Stokes wave.

Eq. (63) is peculiar to the combined instability. Sind&
=0, it follows from Eq.(62) that

Sf+sb$1+Nf+Nb' (64)

R, (R_+Npexp({) —R_ (R, —Ny)
(R_+Npexp )+ (R, —Np)

F(0)= (70

where {= (R, +R_)z. Solution(70) is consistent with Eq.

Equation(64) reflects the fact that the total signal intensity (65). For the common case in which-1S,>N;, one can use
cannot exceed the total input intensity. It follows from Egs.the approximate roots

(63) and (64) that

Ny
SfiNf+—Nf+Nb, (65)
N Ny 66
=
Sp<Np+ N+ N, (66)

By substituting Eqs(62) and (63) in Eg. (47), one can
show that

dF=(R.—F)(R_+F), (67)
where
2R, =1+N;—Sy+[(1+N;—Sp)?+4N;S, ]2
(68)
It follows from Eq. (67) that
(R, +R_)z=1In (R, ~No(R-+F) (69)

(Ri=F)(R-+Np) |

Sy, is determined by Eq(69) and the conditiorB(I) =Ny,
which is equivalent to the conditioR(l)=(N¢/N,)S;,. By
inverting Eq.(69), with S, known, one finds that

R, ~1-S,+N;/(1-Sy), (70
R.~NiS,/(1-Sy), (72)
to rewrite Egs.(69) and(70) as
(1-Sp)[NtSy+(1-S,)F]
(1-S,)z=In 1-S-F)N, (73
and
£y~ M=) S 7

Niexp({)+(1-S,)*

respectively, wheré~(1—S;)z.

The normalized(total) output intensity of the(forward
and backwarf Stokes waves is plotted as a function of the
gain lengthl in Fig. 4(a), for the case in whichNp= N;¢
=105 When pump depletion is unimportarit<(10), the
Stokes output intensity of the combined instability is the sum
of the Stokes output intensities of the forward and backward
instabilities. The normalized intensities of the pump and
Stokes waves within the plasma are plotted as functions of
the gain distance in Fig. 4(b), for the case in whichNy
=N;=10"° and=30. The initial growth of both Stokes
waves from noise is driven by depleted pump waves. Con-
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saturates before forward SBS, irrespective of the relative im-

portance of dissipation and depletion. The steady-state spa-

tial evolution of backward SBS is described by E@) and

(61). In the high-gain regime, backward SBS depletes the

pump waves significantljfig. 3(b)]. Thus, the spatiotempo-

ral growth of forward SBS is driven by pump waves whose
L @ intensity varies with distance and Eq81)—(36) do not ap-

0 10 20 30 40 ply as written. However, by making the substitutions

Gain length N /yi—Nx, na/y;—n., andfZ y;(z')]2dz —z in Egs.
(28)—(30), one can show that

Output intensity
o O O O

o b h ® ®» =

o —————

&ZAf =N 4y (75)

(0 +vy) N, =A;+ven, (76)

: ® (9 +vN_=ven_ . (77
0 5 10 15 20 25 30
Distance Since Eqs(75—(77) contain no variable coefficients, their

FIG. 5. (a) Normalized output intensities plotted as functions of SOIU?'On can be Ipferred from' qugl)‘(%?- It f,OIIOWS that
the SBS gain length. The forward noise intensity exceeds the the linear gaturatlon and nonlinear depletlon times pf fgrward
backward noise intensity by a factor of 5. The solid line represents>BS are given by Eqs39) and(43), respectively, withyfz
the total output intensity for the combined instability. For compari- replaced byf [ y¢(z')1?dz’. The reduction of the gain dis-
son, the dot-dashed and dashed lines represent the output intensitiesice by pump depletion shortens the linear saturation time
when forward and backward SBS occur separaf@yNormalized  of forward SBS, but lengthens the nonlinear depletion time.
intensities within the plasma plotted as functions of the gain dis-Since the steady-state equati@4%)—(49) have a unique so-
tance forl=30. The solid line represents the pump waves, thelution, the spatial evolution of the combined instability is
dot-dashed line represents the forward Stokes wave, and the dashgﬂ/en by Eqs(62), (63), and(70), even though forward and
line represents the backward Stokes wave. backward SBS grow at different rates and saturate at differ-

ent times. It is clear from Figs. 4 and 5 that the output inten-
sequently, when pump depletion is importaht-(L0), the sity of the backward Stokes wave is lower in the presence of
rate at which the Stokes output intensity increases with gaitthe forward Stokes wave than in its absence. Thus, the com-
length is slower for the combined instability than for the bined instability is characterized by a burst of backward SBS
forward instability[Fig. 4(a)]. followed by the ascendance of forward SBS.

In Figs. 2—4 the noise intensities for forward and back- We checked the analysis of Secs. Il and IV by solving
ward SBS were equal. This choice made possible a fair cormthe equations governing forward and backward SBS numeri-
parison of the intrinsic scattering efficiencies of the two in-cally. In our numerical simulations, distance is normalized to
stabilities. However, the noise intensity for forward SBS isthe plasma length,, time is normalized to the time taken by
higher than the noise intensity for backward SBS because thge light waves to cross the plasma, and intensity is normal-
action sources that generate the light wajig. (40) for  ized to the incident pump intensity. Consequently, the wave
forward SBS and its analog for backward SBe inversely evolution is characterized by the gain parametey
proportional to the sound frequencigs]. To illustrate how =¥lp/vo and the loss parametgB;=vdl,/v,, together
this imbalance affects the combined instability, the normalwith their analogs for backward SBS. We chose the laser
ized output intensity of the Stokes waves is plotted as and plasma parameters,=0.35 um, |;=1,=2.5x10"°
function of the gain length in Fig.(8), for the case in which W cm™2, l,=300 um, ng=n;=8.9x 10?° cm ™2 (one-tenth
N;=10"° andN,=2x10"". The normalized intensities of critical density, T,=5.0 KeV, and T,=1.0 KeV. The
the pump and Stokes waves within the plasma are plotted aseam-crossing angle ¢=40°. For these physical param-
functions of the gain distance in Fig(l§, for the case in etersa;=2.3, 3;=0.35, a;,=5.5, andB,=2.0. The ratio of
which Ny=10"° N,=2x10"7, andl=30. Itis clear from  the sound frequencies for forward and backward SBS equals
the figures that forward SBS overwhelms backward SBS inhe ratio of the loss parameters, which is 0.18. The results of
steady state. our simulations are displayed in Fig. 6. In Fig(@s N

=10"°% and N,=0. The output intensity of the forward
V. DISCUSSION St'olfes wave exhibits weak relaxqtion qscillations before at-
taining a steady-state value that is limited by pump deple-

Initially, pump depletion is unimportant, and forward and tion. In Fig. b), Ny=0 andN,=1.8x10 ’. The output
backward SBS grow independently. This linear spatiotempointensity of the backward Stokes wave exhibits weak relax-
ral growth is described by Eq&28)—(30). Since the growth ation oscillations before attaining a steady-state value that is
rate y (sin )2 [Eqgs.(24) and(25)], where 24 is the scat-  limited by pump depletion. The observed ratio of the nonlin-
tering angle, backward SBS grows more quickly than for-ear depletion times for forward and backward SBS is consis-
ward SBS. Since the Landau damping ragesin(¢) [7], the  tent with Eq. (43). In Fig. 6a), Ny=10"° and N,=1.8
linear saturation timex1/sin¢ [Eq. (39)]. The nonlinear X 10 ’. As our analysis predicts, backward SBS grows more
depletion timetyoc1/sing [Eq. (43)]. Thus, backward SBS rapidly than forward SBS and attains a quasisteady state. The
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radiation, after which the evolution of the output intensities
is similar to that displayed in Fig(6). In steady state, the
output intensities are identical.

The major theme of Sec. IV and the preceding discussion
is that forward and backward SBS coexist and compete for
the pump energy. One should remember that several other
processes also coexist and modify this competition. These
processes include double SBH, which is made possible by
a sound wave whose wave vector is the sum of the pump
wave vectors, and the transfer of energy between the pump
waves[16—-24 and the Bragg scattering of the pump waves
[17], both of which are made possible by a sound wave
whose wave vector is the difference of the pump wave vec-
tors. While much remains to be learned about crossed-beam
interactions, one should note that the second process trans-
fers energy from one pump wave to the other, but conserves
the total pump energy. Consequently, it does not impede the
combined SBS instabilityEqgs. (44)—(46)].

Intensity

VI. SUMMARY

In this paper, we studied in detail the simultaneous for-
ward and backward SBS of crossed laser beams. We ob-
- tained analytical solutions for the linearized equations gov-

———————————————————— erning the transient phase of the instabi(iBgs. (21)—(23)]
and the nonlinear equations governing the steady Fiys.
'Fiomoe 150 200 (47)—(49)]. In their transient phases, forward and backward

SBS grow independently. Initially, backward SBS grows

FIG. 6. Normalized output intensities plotted as functions of themore quickly than forward SBS. As the backward Stokes
normalized time. The solid line represents the pump waves, thvave grows, it depletes the pump waves and slows the
dot-dashed line represents the forward Stokes wave, and the dashgtbwth of the forward Stokes wave. In steady state, forward
line represents the backward Stokes waia. Forward SBS.(b) SBS dominates the combined instability, because the for-
Backward SBS(c) Simultaneous forward and backward SBS. ward Stokes wave has a higher noise intensity from which to

. grow and forward SBS scatters the pump power more effi-
subsequent growth of forward SBS is slowed by the PUMRsiently.

depletion associated with backward SBS, but forward SBS |, the Appendix we show that the equations governing the
eventually suppresses backward SBS. In all three cases, Wnyitaneous near-forward and near-backward SBS of an
checked that the final numerical solutions for the wave inygqjated beam are equivalent to the equations governing the
tensities within the plasma agree with the analytical solutiong;jitaneous forward and backward SBS of crossed beams.

of Sec. IV. _ _ , _ Thus, the results of this paper also apply to the SBS of an
The analysis and numerical simulations of this paper ares,|ated beam.

based on the standard approximation that the time taken by
the light waves to cross the plasma is much shorter than the
time taken by the sound waves to respond to the ponderomo-
tive forces that drive them. This approximation is valid when  We acknowledge useful discussions with R. E. Giacone
a<<1 andB<1. Although these conditions are satisfied for agnd A. V. Kanaev. This work was supported by the National
wide range of physical parameters, they are not satisfied fogcience Foundation under Contract No. PHY-9415583, the
the physical parameters listed here. Consequently, we rédepartment of EnergyDOE) Office of Inertial Confinement
stored the time derivatives to the light-wave equatid®gs.  Fusion under Cooperative Agreement No. DE-FCO3-
(6) and(15), and their analogs for the pump wayesid used  92SF19460, the University of Rochester, and the New York
the method of characteristics to solve the resulting equationState Energy Research and Development Authority.
numerically. For forward SBS, the output intensities are de-

layed by 1 transit time, but are otherwise identical to those APPENDIX: FORWARD AND BACKWARD SBS

displayed in Fig. 6). For backward SBS the relaxation os- OF AN ISOLATED LASER BEAM

cillations are more pronounced because the light waves take

a finite time to respond to the sound waves. The first maxi- In this appendix we show that the equations governing the
mum of the Stokes intensity exceeds the incident pump insimultaneous forward and backward SBS of an isolated
tensity by a factor of 1.2. However, after this initial burst of beam are equivalent to the equations governing the simulta-
backward Stokes radiation, the evolution of the output intenneous forward and backward SBS of crossed beams. The
sities is similar to that displayed in Fig(l§. In particular, geometry associated with the forward SBS of an isolated
the steady-state output intensities are identical. The combeam is shown in Fig.(@. Each forward-scattering process
bined instability also exhibits a burst of backward Stokesis subject to matching conditions of the form

ACKNOWLEDGMENTS
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o \ 1= wewg Agl/2( wows) 2 (A8)
1 k 2
\ ° Equations(A6) and (A7) are equivalent to Eqs(28) and
Ko \ (29), the solution of which was described in the text.
> Equations(A4) and (A5) describe the transient evolution

! of forward SBS. In steady state,

/ d Ar= wil Aol *Ar, (A9)
(b) where

wi= 020 l4wqwsrVg. (A10)
Notice that w|Ag|?=y?/veve, In agreement with Egs.

(AB6)—(A8). It follows from Eq. (A9) that the forward-
scattered intensitief ;=|A;|? and F,=|A;,|? satisfy the

equations
dF1=2u¢PFy, (A1)
FIG. 7. Geometry associated with the SBS of an isolated laser
beam.(a) Near-forward SBS(b) Near-backward SBS. d,F,=2uPF,, (A12)
wo=wi+ws, Ko=Ki+Ks, (A1)  whereP=|Aq|? is the pump intensity.

The geometry associated with the backward SBS of an
where (wg,ko) and (w¢,k¢) satisfy the light-wave dispersion isolated beam is shown in Fig.(§. Each backward-
equation w2=w§+ c?k?, and (ws,ks) satisfies the sound- scattering process is subject to matching conditions of the
wave dispersion equaticm2=c§k2. Because the frequencies form
of the daughter waves depend on the magnitude of their

wave vectors, but not on their directions;,= w¢; = w; and wo=wptws,  Ko=Kp+tks, (A13)
Wgp = Ws] = Ws- . . .
LSt 8 where (q,kg) and (wp,kp) satisfy the light-wave disper-
By substituting theAnsaze sion equation, andd{,k;) satisfies the sound-wave disper-
An=[Ao expliKo- X—iwgt) + Ay eXpliKsy - X—iw;t) sion equation. As in forward SBSy,,= w,;= wp and o,
= Wg~ Wg.
+ A explikio- Xx—iwst)]+c.c. (A2) By adding toAnsatz(A2) the terms
and Apr eXplikpy - X—Twpt) + Apy explikpy - X—iwpt) +c.c.,
. . . . (A14)
N =N; exp(ikg; - X—iwgt) + Ny explikg - X—iwgt) +cC.C.
(A3) and toAnsatz(A3) the terms
into Egs.(1) and(2), and making the slowly varying enve- N1 expikgsy - X—iwgt) + Ny explike - X—iwgt) +cC.cC.
lope approximation, one can show that each forward- (A15)

scattering process is governed by equations of the form
associated with backward SBS, one can show that each
9 A= (0320qv) AgN*, (Ad4)  backward-scattering process is governed by equations of the
form
+ *— 2 * + *
(di+vs)N i(wg2wg) A At + vgn (A5) —&ZAbZi(w§/2wovo)AoN*, (AL6)
In Eq. (A5), v¢N* is a phenomenological term that models
the Landau damping of the sound wave and* is a phe- (0 +vg)N* = —i(w§/2ws)A3 Ap+ven*. (A17)
nomenological term that maintains the density fluctuations
associated with the sound wave at their noise levein the ~ As in forward SBS,ve,=vg=vs. It follows from Egs.
absence of instability. Because the Landau-damping rates déA16) and (A17) that the transient evolution of backward
pend on the magnitudes of the sound wave vectors, but n§&iBS is governed by Eq$A6)—(A8), with f replaced byb
on their directionsyg,=vg=rv. By making the substitu- andz replaced byl —z. Equations(A6) and (A7) apply to
tions wi?Ai—A¢, iwN*/wX?>=N, iwn*/ol?—n, and other parametric instabilities driven by an isolated pump

zIvy—z, one can rewrite EqgA4) and (A5) as wave provided that one type of daughter wave is strongly
damped. In steady state, the backward-scattered intensities
d,A¢=y;N, (A6)  B;=|A,|? andB,=|A,,|? satisfy the equations
(9 vo)N=y;A¢+ vgn, (A7) —d,B1=2u,PBy, (A18)

where —d,B,=2u,PB,, (A19)
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where uy, is given by Eq.(A10), with f replaced byb. d,P=—2(u{F+ u,B)P. (A23)
In the high-gain regime, the intensities of the scattered
waves as they exit the plasma are comparable to the intensity
of the pump wave as it enters the plasma, and one mu&quationgA21)—(A23) are equivalent to Eq$44)—(46), the
account for the depletion of the pump wave within thesolution of which was described in the text. It is clear from
p_Iasma. In steady state, the pump intensity satisfies the equfive derivation of Eqs(A21)—(A23) that one can interpre
tion as the intensity scattered forward over the entire range of
d,P=—2u¢(F1+F5)—2u,(B1+B,). (A20) angles for which propagation in ttedirection is a reason-

_ o i able approximation, and one can interpBeés the intensity
By making the substitutions=F;+F, andB=B;+B; in  gcattered backward over the entire range of angles for which
Egs.(Al1), (A12), (A18), (A19), and(A20), one can show prgpagation in the-z direction is a reasonable approxima-
that the simultaneous forward and backward SBS of an isoggp. EquationgA21)—(A23) apply to other parametric insta-

lated beam is governed by the equations bilities driven by an isolated pump wave, provided that one
d,F=2uPF, (A21) type of daughter wave is strongly damped. For SBS,
=ut=p [7] and one can use the substitutiop2—z to
—d,B=2u,PB, (A22) rewrite Eqs.(A21)—(A23) in the form of Eqs.(47)—(49).
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