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Self-consistent model of a positive column in a glow discharge under free-flight
and collisional regimes of charged-particle motion
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We consider the nonlocal theory of a positive column in a glow discharge in two cases, where the mean free
path of charged patrticles is either greater than the discharge tube (ddiusee-flight regimgor much less
than the radiugthe collisional regimg The great bulk of electrons, which determines the density and the
discharge current in the axial direction, appears to be trapped by the radial field of a positive column. The
electron flux to the wall, which compensates for the ionization in a volume, is determined by fast electrons with
energies of the order of wall potential, which are able to leave in a loss cone. The electron kinetic equation,
which is solved by averaging it over the radial transits for the two regimes considered, permits us to obtain the
electron density and the ionization rate. Thus, we develop the theory of a positive column for the non-
Boltzmann electron distribution in the radial field. Under the free-flight regime, this theory is developed by
analogy with the Langmuir-Tonks one. Under the collisional regime, the spatial distribution of the potential is
obtained from the ion motion equation with the ambipolar diffusion coefficient, which depends on the radial
coordinate. The concrete calculations are carried out for the xenon discharge under the free-flight and colli-
sional regimes. The theoretical calculations are compared with the results of experiments on the measurements
of the electric field and the densities of metastable and resonance xenon [8G0663-651X99)13310-5

PACS numbgs): 52.25.Dg, 52.80.Hc, 52.70.Kz, 52.25.Ya

[. INTRODUCTION E,, by which, a considerable portion of electrons appears to
be trapped by the radial potential(r). At low pressures,
The principles of the kinetic theory of a positive column under the free-flight regime, electron motion in the radial
in an inert gas discharge at low pressures and small currentirection occurs when the total energy is conserved. Under
were considered ifi1,2]. In these papers, the problem of a the collisional regime, when the energy losses in elastic in-
joint solution to the electron kinetic equation and the ionteractions are negligibly small and when the electron energy
motion equation was formulated and ways of solving it wererelaxation lengthx ,~+M/m\ . exceeds the radiuR, one
outlined. In[3,4], the concrete calculations were carried outcan assume that the total energy is also conserved.
for a set of inert gases in the case of the collisional regime of Under the collisional regime, the electron momentum re-
charged particle motion. The collisional regime takes placdaxation length\, is much less tharR. That leads to the
when the mean free path of electransand that of ions\; isotropization of the electron distribution function, and the
are much smaller than the discharge tube radu§o, the traditional expansion in Legendre polynomials is obvious.
application range of the collisional kinetic model is restrictedUnder the free-flight regime, as was shown[i, one can
at low pressures by the condition, ,\;<R. The purpose of also consider the isotropic component of the distribution
this study is to develop the kinetic model of a positive col-function fy(g) (with respect to the trapped particles under
umn in an inert gas discharge under the free-flight regime ofhe condition that the energy gained from the applied electric
charged particle motion when the opposite conditiQn\; field between two collision®gE,\,, is less than the excita-
>R is fulfilled. For the first time, such a problem was con- tion threshold of atoms, i.e.,eE,\./e,<1) and can for-
sidered in the work of Langmuir and TonkS] under the mulate the kinetic equation, which is the same as the one
assumption that in the decelerating radial field, the electromsed for the collisional regime except for the spatially aver-
density has Boltzmann distribution. In the present paper, thaged coefficients of the equation.
electron density and the radial potential are determined in a The kinetic equation for the isotropic component of the
self-consistent way proceeding from a kinetic analysis ofdistribution functionf,(e) is given by[1]
electron motion. The comparison between free-flight and
collisional models is carried out in the case of a positive d — fo —
column in a xenon discharge. The calculation results aregzPs(¢) g, o (e)=viF(e)fo(e) ~vi* (e tenfo(e+ey),

compared with experimental data. (1)
Il. KINETIC MODEL OF A POSITIVE COLUMN where for the free-flight regime coefficieﬁs(s) takes the
UNDER FREE-FLIGHT AND COLLISIONAL REGIMES form
The peculiarities of electron motion in the potential field 4\/—(eE

of a positive column are related to their acceleration in the  p (g)= —— 2 )f e—ep(n ¥ dr, (2)
longitudinal fieldE, and their deceleration in the radial field 3m3?R?
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ri(e) a0 electron losses on the Wa[Iv_vW(s)=0 if e<e,]. The
o [e—eq(r)]™rdr boundary condition for Eq(1) is the condition of function
h(e)= ' fo(e) reduction to zero at infinity, i.e.,
2 [ry(e)
Na \/%fo ou(e—ep(r))[e—ee(r)]?rdr fo(e)]o===0. (63

3 If one assumes that the frequency of electron losses on the
wall is rather great, instead dBa one can set the zero
boundary condition for the distribution function at the wall

_ 4(eEz)2J'r1(8)[8—e€0(f)]3/2 potentiale,, to be

= rdr. 2'
T 3mMnR2 )y oy (e —eq(r)) @) fo(e)]s—. =0. (6b)

The coefficient on the right-hand side @ vv* (&) for the
free-flight and collisional regimes is

and for the collisional regime

The latter condition corresponds to the so-called “black-
wall” approximation.

_ 4ng, (ra) The normalization condition for the distribution function
vr*(g)= mRZJO o*(e—eq(r))le—eep(r)]rdr. fo(e) can be written as follows:
4
47T\/§ Ew,
Here, m is the electron mass), is the density of neutral Ne(e(r))= 2 nOJe(P(r)fO(S) Ve—ee(r)de, (V)

atoms of the inert gaswhich is supposed to be unifoym

oy (W) is the elastic transport cross sectiarf,(w) is the  \heren, is the electron density at the discharge axis. The
total inelastic'cross sec;ion'/v( is the kinetic energy of the symbole,, .. in the upper limit of the integral takes the value
electron, ¢, is the excitation threshold of atoms,=w o gjthere,, in the black-wall approximatiofb) or infinity
teo(r) is the total energy of the electron, amtlis the if the problem is solved with the loss cone consideration
discharge tube radius. Expressid@s, (2'), (3) contain the (). Expression(7) determines the distribution of the elec-
quantities averaged over the tube cross section, which is agron density in the decelerating radial field for the nonequi-
cessible for the particle with energy The functionr,(¢) is  Jibrium distribution function. In the case of the Maxwell dis-
the turning point; it can be defined @&p(ri(e))=e. The  ribution function, this expression gives the Boltzmann
function r,(e) is the turning point of the electron, which dependency(r)=nqye~¢#"’kTe. Knowing the external dis-
loses energye; in inelastic collisions, thu®e(r,(e))=e  charge parameter, curreintone can determine the value of
€1 no. The current density,(r) with the anisotropic component

Under the free-flight regime, the small longitudinal aniso-of the distribution functior(5) and (5) takes the forms
tropic component(e,v,) is given by

8m\2 Sw df
dfo(e) i ()= —~ a2 f e 302 dTo
fale.vz) = —eEvh(e) — 6 AT g € BN e eI g (e dey
®
wherev, is the longitudinal component of the electron ve-
locity. Under the collisional regime, that anisotropic compo- 8 ew [e—ep(r)] |df
Lo jAr)= e?E,n J — |2 (g)|ds
nent is given by 2 3men,  eninou(e—ee(n) | de '
v, eE,v, dfo(e) &)
fa(s,vz,r)=flz(s,r)7= B oW de respectively, for the free-flight and collisional regimes. By
Ny /_Utr(w) integrating Eqs(8) and (8) over the radius, and by chang-

ing the order of integration, one comes to the following ex-
(5")  pression for the discharge current

df,
de (2

Sy,

Under the assumption that the total energy is constant for the A2
radial flights of trapped electrons, the radial anisotropic com- i= R? Of
ponent of the distribution function is equal to zero.

The kinetic equatior{1) should be supplemented by the _
boundary condition according to the possibility of electronwhere the coefficienD(e) is defined by expressiong)
losses on the wall if the electron energy exceeds the wafnd (2) for the two considered electron kinetic regimes.
potentiale,,. The correct solution to the problem includes  BY using the distribution function, one can obtain the
consideration of the loss cone to the wall. When locating'ates of direct 4(r) and stepwisé(r) ionizations
itself in this cone due to collisions, the electron can leave to
the wall, which is equivalent to the finite electron loss fre- 8 w0
quency. In this case, it is necessary to add to the right-hand lg(r)= F”O”af o (r)ad(s_e‘P(r))
side of Eq.(1) the additional term averaged over radial elec- e
tron transitsv v, (e)fo(e), wherew,, is the frequency of the Xfo(e)e—ep(r)]de, 9)

m Ez 0
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Thus, the analysis of the electron kinetics permits us to
Is(r)ZEK Ni(r) (), derive the electron density and the total ionization rate,
which are necessary for solving the self-consistent problem
8 . of the mutual formation of the distribution function and the
hi(r) =~ f " oe—eg(n)ig(e) e —ep(r)]ds,  Potential field.
m extee(r
(10 I1l. SOLUTION TO THE SELF-CONSISTENT
. . PROBLEM OF THE MUTUAL FORMATION OF THE
whereoy(w) andoy(w) are the cross sections of direct and psTR|BUTION FUNCTION AND THE POTENTIAL FIELD
stepwise ionizationsn,(r) are the densities of excited at-
oms, which are involved in the processes of stepwise ioniza- In the case of the free-flight regime, the problem under
tion, andey4 and e, are the threshold values of these pro-analysis can be solved by analogy with the Langmuir-Tonks
cesses. theory[5] for plasma and layer. The electron density, which
To obtain the stepwise ionization rate, the balance equas obtained using the nonequilibrium distribution function, is
tions for low excited metastable and resonance states mudefined by formulg7). One can obtain the ion density(r)
have been solved. In the equations for resonance levels, it fsom the condition that all ions which appear at the points
necessary to take into account the effect of radiation reab-'<r due to ionization leave through the cylinder surface at
sorption on the basis of the integral Biberman-Holstein equaradial coordinate, when being accelerated by the radial field
tion [6,7] applied to cylindrical geometry. The balance equa-under the free-flight regime
tions in the two-level approximation are

1 r I(r")yr'dr’
Win(r) + 0 (1) Ne(r) Kem = N1 [ 7mi(1) + Ne(r) Kmpp ni(r)=;JO 5 ) (13
+Ne(M) Kt val, \/M[efp(r)—ecp(r’)]
Wr(r)+nm(r)ne(r)kmr+AJRn,(r’)K(r,r’)r’dr’ whereM is the ion mass ant(r) is the total ionization rate,
0
L(r)=1lg(r)+1s(r). (14)

=n.(r[A+ Vri(r)+ne(r)krp+ne(r)krm+Vd]i
(11) In the discharge plasma region, the condition of quasineutral-
ity ng~n; is fulfilled. By applying the Abel transformation to
Eqg. (13) [2], one deduces integral differential equation for

2 e [e’s}
K(r,r’)=i de L g,k e‘kﬂzzﬂzdy, the functionr (¢) in the following form:
AT 0 % 22+q2 0 vy
_ ) dr 1 2e 1 d reni(e)r(e")de’ 15
g=r<+r's—2rr'cosé, =\ — — | /- """ (15
de 7 Y MI(¢) delo Vo—o

wherev,(r) andv,;(r) are the frequencies of level deacti-

vation due to stepwise ionizatiol0), k,,, andk,,, are the ~EXpressions(9), (10), (14) define the ionization rate, and
rate constants of the resonance and metastable level mixingxPression(7) defines the ion density for the quasineutral
kmp @ndk;, are the rate constants of the level deactivationPlasma, which is equal to the electron one. By analogy with
due to stepwise excitation of the high-lying stateg,is the ~Langmuir-Tonks theory, the solution of the equation for
frequency of the atom transits to the wall, ads the prob-  Plasma(15) r(¢) has a maximum at the poinp,, and
ability of spontaneous radiation. The level excitation ratede/dr— at this point, which corresponds to the bound of

W,, (r) can be obtained in terms of the distribution function the quasineutral region. If the Debye radius is less than the
tube radius, one can assume that this point corresponds to the

8 Cw radiusR,

Wm,r(r):_znanoj O':cn’r(s—ego(l‘))
m emrtee(r) r(eo)=R. (16)
Xfo(e)[e—eq(r)]de, (12)  The quantityp, determines the potential fall in the quasineu-

h N N h ) £ th tral plasma. The near-wall drop of potentiflis equal to the
whereop(w) and o7’ (w) are the cross sections of the €or- jitfarence between the wall potential, and the potential
responding level excitation ang, ande, are the thresholds eeo

of these processes. The integral operator in 84) de-

scribes the absorption of photons at the points with radial A=e,—epq. (17)
coordinater (hence the appearance of the resonance atoms at
these points which have been emitted at points, z 6, The detailed description of the solution to the problem

integrated over the whole tube volume. Hesg,andk, are  under the collisional regime was presented3]. The ion
the emission and absorption line contours. The second equarotion equation takes the form

tion in (11) can be solved, for example, by using the reduc-

tion to the set of linear algebraic equations as has been de- 1 grb-n-(r) de(r) —1(r) (15)
scribed in[8,9]. rdr " dr '
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whereb; is the ion mobility. This equation can be reduced to
the ambipolar diffusion equation with the coefficient, which
depends on the radial coordind®. The expression

ee(R)=zy (16)

is the analogue of the conditidi6). Furthermore, by twice
integrating Eq. (15) one derives the balance equation

bi Sy Rdr (r
—f ne(ecp)d&p:f —f I(r")r'dr’. (18
€Jo ol Jo

30 40

. o 0 10 20
The equality between the ionizations and the electron w (eV)

transits to the wall is necessary in order to provide the ) o
steady-state discharge. In the framework of the model con- FIG. 1. The cross sections of electron-atom collisions in xenon
sidered. the electron flux to the wall can be obtained front'sed in the solution to the kinetic equation and calculation of exci-

Eq. (1) as the flux in the energy space at the enesgy tation and ionization re_ttest.\, elastic transport cross sgcthB;
metastable Ievei‘Pz excitation;C, resonance Ieve‘TPl excitation;

Under both the free-flight and the collisional regimes, for the N ; . N !
D, total excitation cross sectiofg, direct ionization;F, stepwise

number of electron transits to the wall per unit discharge™ .~ ~ . . -
S . ionization; G, effective cross section of metastable le¥Bl, exci-
length and unit time, that approach gives

tation (cascade excitations are taken into accguAtF: [10], G:

X [11].

4 —
27Rj,=—5R?neD, (&) _ o _

m? fulfill the conditions(16),(19) and the equality3e,=egq for
. o the free-flight regime, and to satisfy the conditiofi€'),
in the black-wall approximation, and (19), and(18) for the collisional regime. The solution ¢f5)

or (15") gives the required distribution of potentia(r) for

df
o (8w

47 — |dfg the d 8, which d ined i
=Y “'o parameterg,, ¢,,, and 8, which were determined in
27TR]W_ m2 R nO DS(SW) dS (SW) that Way.
ewter
_f w Vv*(s)fo(s)ds IV. RESULTS AND DISCUSSIONS
Ew Concrete calculations were carried out for a xenon dis-

when considering the loss cone. charge at a current of 100 mA, in the range of pressures
The charged particle balance equation can be written iiy-01<P<0.15 Torr; the discharge tube radius was equal to
the form 0.32 cm. The cross sections of elementary processes pre-
sented in Fig. 1 were used. To obtain the distribution func-
_ R tion, these cross sections were averaged over the trial poten-
ZWRJWZZTFJO [(r)rdr. (19 tial (20) according to expression§2)—(4); the kinetic
equation(1) was numerically solved with the boundary con-
The algorithm of the solution to the self-consistent prob-dition (68 or (6b). The numerical method of solving E€L)

lem can be represented in the following way. One takes thé&® based on its conversion into a set of linear algebraic equa-

approximation of the trial potential using three parameters irf!oNs- o , _ _
The results of the distribution function calculation, which

the form . . :
was carried out in the framework of the solution to the self-
ep(z,r)=—eEz+ep(r), consistent problem under the free-flight kinetics with both
the zero boundary condition and the loss cone taken into
r\2 i R account, are presented in Fig. 2. The coefficieny,(e) was
_ | Belg Tr=R defined as
ee(r)= (20)
Ew if r=R. 0 if e<ey:
The parameteBe, corresponds to the fall of the trial poten- Vi(e)= 20e—gy) o _
27vg — if e=ey,

tial in the quasineutral plasma. Then, one can average the
coefficients of the kinetic equation over the potenti20)
according to expression®)—(4). The kinetic equatior(1) where v, is some mean value of the electron-atomic elastic
with the boundary conditiori6a) or (6b) depending on the collision frequency. The consideration of the loss cone leads
approximation is numerically solved. By using the calculatedto a decrease in the value of the wall potentigl neverthe-
distribution function, which depends on the three parametertess, in the energy range of excitations and ionizations, the
E,, ey, B, the electron density(r), Eq. (7), and the ion- difference between the distribution functions calculated in
ization ratel (r) [Egs.(9), (10), (14)] are then deduced, and two approximations is not significant. That being the case,
the equation for the potentiél5) or (15') is solved. Vary- the simpler approximation was used to develop the self-
ing the parameters of the trial potential, it is necessary te@onsistent model.
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FIG. 2. Comparison between the kinetic equation solution for  ri 4. Kinetic energy distribution function at different radial
the free-flight regime of electron kinetics with the loss cone takenpoimS obtained in the framework of the solution to the self-

into account(solid curveA) and that under the black-wall approxi- gnsistent problem for the free-flight regime; X&=0.04 Torr,i
mation (dashed curvé@) obtained in the framework of the solution _ 199 mA R=0.32 cm E,=3.32 V/cm.

to the self-consistent problem; is the first excitation thresholdy
is the ionization threshold, ang, 5 ande, g are the wall potentials
obtained by using the distribution functiodsand B, respectively;
Xe, p=0.04 Torr,i=100 mA, R=0.32 cm,E,=3.32 V/cm.

In Fig. 4, the isotropic component of the kinetic energy
distribution function at different radial points calculated in
the black-wall approximation under the free-flight regime is

The kinetic equatior(1) for the isotropic component of displayed. The specific feature of a nonlocal formation of the
the distribution function has a different form for the free- €lectron distribution function consists of its sufficient defor-
flight and collisional regimes. This difference is related tomation over radius, due to a large depletion with fast elec-
the forms of the coefficierﬁs(s), Egs.(2) and(2'). In Fig. trons in the penpheral_reglons of the d|scharge _tube. This
3, the distribution functions obtained in the framework of theleaqIS to a steeper radial dependency of the lonization and
free-flight and collisional models in the same potential fielgxcitation rates than that of the electron density. Moreover,
ep(z,r) and with the same boundary conditions are com-" th's case Fhe electron kinetic mean energy erends on the
pared. radial coordlna'ge. These facts are shown in Fig. 5.

The calculations of the excitation rates and the popula-
0.08.] ' ' ] tions of the metastabléP, and resonancéP; levels were
1 @ carried out using Eqg11) and(12). Considering the balance
equations for the populations of these levels, the processes of
direct excitation from the ground state, mixing due to colli-
sions with electrons, stepwise excitation of high-lying states,
0.04- g stepwise ionization, departures to the wall, and resonant ra-

] diation outcome were taken into account. According to esti-
mations, the other processéwnolecule creation, chemoion-
ization, etc) are not significant under the conditions
considered.
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FIG. 5. Relative radial distributions of the potent&p and the
e(eV) macroscopic plasma parameters: mean en@sgy electron density
ne, directly, stepwiselg, and totall ionization rates obtained in
FIG. 3. Comparison of solutions to the kinetic equation for thethe framework of the solution to the self-consistent problem for the
free-flight regime(solid curve and that for the collisional regime free-flight regime. Axial values: (wy)=5.82 eV, ny=2.44
(dashed curve (a) linear scale(b) logarithmic scale; Xep=0.10  x10%em 3, 1,=3.75x107 cm 3s ™%, Xe, p=0.04 Torr, i
Torr, i=100 mA, R=0.32 cm,E,=3.50 V/cm. =100 mA, R=0.32 cm,E,=3.32 V/cm.
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0.00 0.04 0.08 0.12 0.16

p (torr)
1.0 g S SN SN EE— FIG. 7. Comparison between experimental and theoretical de-
(b) pendencies of the metastable st3g (crosses for experimenand
0.8] 3 the resonance staft®; (circles for experimentpopulations on the
3 pressure; solid curves denote calculations by the free-flight model
-0 6_3 E in the range of pressures 08p<0.04 Torr and by the collisional
&L n/ny one in the range of pressures 0<10<0.15 Torr; Xe, i
5 o] W/W =100 mA, R=0.32 cm.
z 0.4 E
00 f and excited state populations are compared. These figures
E show that the radial distributions of the excited patrticle den-
] . . . . sities are broader than those of the excitation rates. The latter
000 o oA e M Moe is related to the main mechanisms of the excited level deac-
/R tivation. These mechanisms are different for the resonance
and metastable levels.
FIG. 6. Relative radial distributions of excitation rat&%, , and The main channels of metastable level deactivation are

populationsn,,,, of (a) metastable statéP,, (b) resonance state the stepwise ionization and the departures to the wall under
3P, obtained in the framework of the solution to the self-consistentthe free-flight regime. The broadening of the metastable
problem for the free-flight regime. Axial value®/no=2.73<10""  atom density profile in comparison with that of the excitation
cm s, npe=1.74x10%cm 3, W,o=1.47x10"cm*sY,  rate is related to competition between these processes, be-
No=2.69x10" cm % Xe, p=0.04 Torr, i=100 mMA, R gides the fact that it is the stepwise ionization that leads to
=0.32 cm,E,=3.32 Viem. the broadening. For the resonance atoms, the observed
broadening of the density profile is related to resonant radia-
In the range of pressure corresponding to the free-flightion trapping and the excited atom production due to this
electron kinetics, the stepwise transits to high-lying levelseffect. The theoretical calculations were compared with the
are negligible. Herewith, in connection with the determina-results of experiments on the measurements of the meta-
tion of the metastable atom excitation rate, it is necessary tetable and resonance xenon level populations by the Rozh-
note the following. As the literature on data analysis showslestvensky hook method.
(for example[11]), the process of the metastable atom gen- The optical scheme of the measurement of the densities of
eration is mainly determined by the cascade radiative transitthe excited xenon atoms in th&P, and 3P, states corre-
from the configuration 5°6p and the more high-lying elec- sponds to the classical scheme of the hook method modified
tron configurations of the xenon atom. This circumstanceaccording to modern experiment potentialities. The dye laser
was taken into account by using the corresponding cross sepumped by the pulse discharge nitrogen laser was used as a
tion of the 3P, level excitation presented iri1]. source of the continuous spectrum. In the optical scheme,
In the range of pressures, corresponding to the collisionahstead of the stationary spectral device, a combination of
electron kinetics, the stepwise transits to the more high-lyingptical elements easy to replace on the vibrostable experi-
levels and the subsequent transits to the continuum are thaental table(lenses, mirrors, diffraction gratingsvas used.
most significant processes in the deactivations of tF¢  Using the 1200 grooves/mm grating, the spectral dispersion
and 3P, levels. This circumstance was taken into account byof the system reached the value of 0.2 nm/cm. The hook
bringing the additional flux from the metastable and resodinterference picture was registered by video camera and
nance levels into the expression for the ionization t#t¢ treated by computer. The treatment of the hook picture was
(the approximation of the instant high-lying state ionization based on the so-called vernier metHd@]. A detailed de-
Solving the integral Biberman-Holstein equation, the con-scription of the experiment and treatment method was pre-
tours of radiation and absorption lines were supposed to bsented in13]. The length of the discharge tube was 60 cm,
dispersive, since in the situation considered the absorptiothe radius 0.32 cm. The discharge current was equal to 75
coefficients are sufficiently great and the dispersive wing oimA, 100 mA, and 125 mA. In addition, measurements of the
the line plays the most important role in the radiation out-discharge longitudinal electric field were carried out.
come. In Figs. 7 and 8, the theoretical dependencies of the meta-
In Fig. 6, the radial distributions of the excitation rates stable®P, and resonancéP; xenon level populations at the
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' ' ' with the growth of pressure observed in experiment also falls
1004 \ i within the framework of the proposed theory.
] V. CONCLUSION

. ] The solution to the kinetic equation for the isotropic com-
] ponent of the electron distribution function in a positive col-
\ umn of a glow discharge was analyzed under the conditions
* that the energy relaxation length of electrons is much greater
than the discharge tube raditsand that the free path of
I electrons is either greater thd® (the free-flight regime of
0.00 0.04 0.08 0.12 0.16 electron motion or less tharR (the collisional regimg Us-
ing the calculated distribution function, the distributions of
the electron density that has a non-Boltzmann form and the
FIG. 8. Comparison between experimer(titcles and theoret-  ionization rates were obtained. These functions were in-
ical (solid curvé dependencies of the reduced fidid/p on the  volved in the solution to the ion motion equation in the two
pressure; calculations were carried out using the free-flight model itimiting cases, where, in the accelerating radial field, the ions
the range of pressures 00p<0.04 Torr and the collisional one in move either without collisiongthe Langmuir-Tonks theory
the range of pressures 04@<0.15 Torr; Xe,i=100 mA, R analogu¢or under the diffusion regiméhe Schottky theory
=0.32 cm. analogué The ion equation solution permits one to obtain in
a self-consistent way the longitudinal electric field and the
discharge axis and that of the reduced fi@g/p on the radial potential and hence to solve the problem of the mutual
pressure are compared with experimental dependencies. formation of the distribution function and the potential field.
the theoretical calculations, the free-flight model of chargedn the framework of the proposed theory, the main macro-
particle motion was applied in the range of pressures 0.0%copic plasma parameters — the electron densities, the mean
<p<0.04 Torr, whereas the collisional one was applied inenergies, the excitation and ionization rates, the populations
the range of 0.1€& p<<0.15 Torr. The figures show that the of the metastable and resonance levels — and the radial dis-
proposed theory reaches satisfying agreement with experiributions of these parameters were obtained in the case of
ment in the absolute values of the metastable and resonantiée xenon discharge at low pressures. Under the same con-
level populations and in the absolute value of the reduceditions, experiments on the measurements of the longitudinal
field, in spite of the existing uncertainty in the constants ofelectric field and the populations of the xenon metastable and
elementary processes. The theory describes the tendency elsonance levels were carried out on the basis of the Rozh-
the level populations to increase with pressure growth in thelestvensky hook method. Comparison of the theoretical and
range of 0.0 p<0.04 Torr(the free-flight regimpand its  experimental data displays satisfying agreement in the abso-
tendency toward saturation in the range of 6-30<0.15 lute values as well as in the relative dependencies of the
Torr (the collisional regimg The reduced field decreases observed parameters on the pressure.

E,/p(V cm’” torr")

1

p (torr)
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