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Self-consistent model of a positive column in a glow discharge under free-flight
and collisional regimes of charged-particle motion

V. S. Egorov,1 Yu. B. Golubovski,1 E. Kindel,2 I. B. Mekhov,1 and C. Schimke2
1Institut of Physics, St. Petersburg University, Ulianovskaia 1, 198904 Petrodvorets, St. Petersburg, Russia

2Institut für Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Strasse 19, 17489 Greifswald, Germany
~Received 19 March 1999!

We consider the nonlocal theory of a positive column in a glow discharge in two cases, where the mean free
path of charged particles is either greater than the discharge tube radius~the free-flight regime! or much less
than the radius~the collisional regime!. The great bulk of electrons, which determines the density and the
discharge current in the axial direction, appears to be trapped by the radial field of a positive column. The
electron flux to the wall, which compensates for the ionization in a volume, is determined by fast electrons with
energies of the order of wall potential, which are able to leave in a loss cone. The electron kinetic equation,
which is solved by averaging it over the radial transits for the two regimes considered, permits us to obtain the
electron density and the ionization rate. Thus, we develop the theory of a positive column for the non-
Boltzmann electron distribution in the radial field. Under the free-flight regime, this theory is developed by
analogy with the Langmuir-Tonks one. Under the collisional regime, the spatial distribution of the potential is
obtained from the ion motion equation with the ambipolar diffusion coefficient, which depends on the radial
coordinate. The concrete calculations are carried out for the xenon discharge under the free-flight and colli-
sional regimes. The theoretical calculations are compared with the results of experiments on the measurements
of the electric field and the densities of metastable and resonance xenon atoms.@S1063-651X~99!13310-5#

PACS number~s!: 52.25.Dg, 52.80.Hc, 52.70.Kz, 52.25.Ya
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I. INTRODUCTION

The principles of the kinetic theory of a positive colum
in an inert gas discharge at low pressures and small curr
were considered in@1,2#. In these papers, the problem of
joint solution to the electron kinetic equation and the i
motion equation was formulated and ways of solving it we
outlined. In@3,4#, the concrete calculations were carried o
for a set of inert gases in the case of the collisional regime
charged particle motion. The collisional regime takes pla
when the mean free path of electronsle and that of ionsl i
are much smaller than the discharge tube radiusR. So, the
application range of the collisional kinetic model is restrict
at low pressures by the conditionle ,l i,R. The purpose of
this study is to develop the kinetic model of a positive c
umn in an inert gas discharge under the free-flight regime
charged particle motion when the opposite conditionle ,l i
.R is fulfilled. For the first time, such a problem was co
sidered in the work of Langmuir and Tonks@5# under the
assumption that in the decelerating radial field, the elect
density has Boltzmann distribution. In the present paper,
electron density and the radial potential are determined
self-consistent way proceeding from a kinetic analysis
electron motion. The comparison between free-flight a
collisional models is carried out in the case of a posit
column in a xenon discharge. The calculation results
compared with experimental data.

II. KINETIC MODEL OF A POSITIVE COLUMN
UNDER FREE-FLIGHT AND COLLISIONAL REGIMES

The peculiarities of electron motion in the potential fie
of a positive column are related to their acceleration in
longitudinal fieldEz and their deceleration in the radial fie
PRE 601063-651X/99/60~5!/5971~7!/$15.00
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Er , by which, a considerable portion of electrons appears
be trapped by the radial potentialw(r ). At low pressures,
under the free-flight regime, electron motion in the rad
direction occurs when the total energy is conserved. Un
the collisional regime, when the energy losses in elastic
teractions are negligibly small and when the electron ene
relaxation lengthl«;AM /mle exceeds the radiusR, one
can assume that the total energy is also conserved.

Under the collisional regime, the electron momentum
laxation lengthle is much less thanR. That leads to the
isotropization of the electron distribution function, and t
traditional expansion in Legendre polynomials is obviou
Under the free-flight regime, as was shown in@1#, one can
also consider the isotropic component of the distribut
function f 0(«) ~with respect to the trapped particles und
the condition that the energy gained from the applied elec
field between two collisions,eEzle , is less than the excita
tion threshold of atoms«1, i.e., eEzle /«1,1) and can for-
mulate the kinetic equation, which is the same as the
used for the collisional regime except for the spatially av
aged coefficients of the equation.

The kinetic equation for the isotropic component of t
distribution functionf 0(«) is given by@1#

d

d«
D̄«~«!

d f0

d«
~«!5vn* ~«! f 0~«!2vn* ~«1«1! f 0~«1«1!,

~1!

where for the free-flight regime coefficientD̄«(«) takes the
form

D̄«~«!5
4A2~eEz!

2

3m3/2R2
h~«!E

0

r 1(«)

@«2ew~r !#3/2r dr , ~2!
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h~«!5

E
0

r 1(«)

@«2ew~r !#3/2r dr

naA2

m
E

0

r 1(«)

s tr„«2ew~r !…@«2ew~r !#2r dr

,

~3!

and for the collisional regime

D̄«~«!5
4~eEz!

2

3mnaR2E
0

r 1(«) @«2ew~r !#3/2

s tr„«2ew~r !…
r dr . ~28!

The coefficient on the right-hand side of~1! vn* («) for the
free-flight and collisional regimes is

vn* ~«!5
4na

mR2E
0

r 2(«)

s* „«2ew~r !…@«2ew~r !#r dr .

~4!

Here, m is the electron mass,na is the density of neutra
atoms of the inert gas~which is supposed to be uniform!,
s tr(w) is the elastic transport cross section,s* (w) is the
total inelastic cross section (w is the kinetic energy of the
electron!, «1 is the excitation threshold of atoms,«5w
1ew(r ) is the total energy of the electron, andR is the
discharge tube radius. Expressions~2!, (28), ~3! contain the
quantities averaged over the tube cross section, which is
cessible for the particle with energy«. The functionr 1(«) is
the turning point; it can be defined asew„r 1(«)…5«. The
function r 2(«) is the turning point of the electron, whic
loses energy«1 in inelastic collisions, thusew„r 2(«)…5«
2«1.

Under the free-flight regime, the small longitudinal anis
tropic componentf a(«,vz) is given by

f a~«,vz!52eEzvzh~«!
d f0~«!

d«
, ~5!

wherevz is the longitudinal component of the electron v
locity. Under the collisional regime, that anisotropic comp
nent is given by

f a~«,vz ,r !5 f 1z~«,r !
vz

v
52

eEzvz

naA2w

m
s tr~w!

d f0~«!

d«
.

~58!

Under the assumption that the total energy is constant for
radial flights of trapped electrons, the radial anisotropic co
ponent of the distribution function is equal to zero.

The kinetic equation~1! should be supplemented by th
boundary condition according to the possibility of electr
losses on the wall if the electron energy exceeds the w
potential«w . The correct solution to the problem include
consideration of the loss cone to the wall. When locat
itself in this cone due to collisions, the electron can leave
the wall, which is equivalent to the finite electron loss fr
quency. In this case, it is necessary to add to the right-h
side of Eq.~1! the additional term averaged over radial ele
tron transitsvnw(«) f 0(«), wherenw is the frequency of the
c-
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-
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electron losses on the wall@vnw(«)50 if «,«w]. The
boundary condition for Eq.~1! is the condition of function
f 0(«) reduction to zero at infinity, i.e.,

f 0~«!u«5`50. ~6a!

If one assumes that the frequency of electron losses on
wall is rather great, instead of~6a! one can set the zero
boundary condition for the distribution function at the wa
potential«w to be

f 0~«!u«5«w
50. ~6b!

The latter condition corresponds to the so-called ‘‘blac
wall’’ approximation.

The normalization condition for the distribution functio
f 0(«) can be written as follows:

ne„w~r !…5
4pA2

m3/2
n0E

ew(r )

«w,`
f 0~«!A«2ew~r ! d«, ~7!

wheren0 is the electron density at the discharge axis. T
symbol«w,` in the upper limit of the integral takes the valu
of either«w in the black-wall approximation~6b! or infinity
if the problem is solved with the loss cone considerat
~6a!. Expression~7! determines the distribution of the elec
tron density in the decelerating radial field for the noneq
librium distribution function. In the case of the Maxwell dis
tribution function, this expression gives the Boltzma
dependencyne(r )5n0e2ew(r )/kTe. Knowing the external dis-
charge parameter, currenti, one can determine the value o
n0. The current densityj z(r ) with the anisotropic componen
of the distribution function~5! and (58) takes the forms

j z~r !5
8pA2

3m5/2
e2Ezn0E

ew(r )

«w,`
@«2ew~r !#3/2h~«!Ud f0

d«
~«!Ud«,

~8!

j z~r !5
8p

3m2na

e2Ezn0E
ew(r )

«w,` @«2ew~r !#

s tr„«2ew~r !…
Ud f0

d«
~«!Ud«,

~88!

respectively, for the free-flight and collisional regimes. B
integrating Eqs.~8! and (88) over the radius, and by chang
ing the order of integration, one comes to the following e
pression for the discharge currenti:

i 5
4p2

mEz
R2n0E

0

«w,`Ud f0

d«
~«!UD̄«~«!d«,

where the coefficientD̄«(«) is defined by expressions~2!
and (28) for the two considered electron kinetic regimes.

By using the distribution function, one can obtain th
rates of directI d(r ) and stepwiseI s(r ) ionizations

I d~r !5
8p

m2
n0naE

«d1ew(r )

«w,`
sd„«2ew~r !…

3 f 0~«!@«2ew~r !#d«, ~9!
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I s~r !5(
k

nk~r !nki~r !,

nki~r !5
8p

m2
n0E

«k1ew(r )

«w,`
sk„«2ew~r !…f 0~«!@«2ew~r !#d«,

~10!

wheresd(w) andsk(w) are the cross sections of direct an
stepwise ionizations,nk(r ) are the densities of excited a
oms, which are involved in the processes of stepwise ion
tion, and«d and «k are the threshold values of these pr
cesses.

To obtain the stepwise ionization rate, the balance eq
tions for low excited metastable and resonance states m
have been solved. In the equations for resonance levels,
necessary to take into account the effect of radiation re
sorption on the basis of the integral Biberman-Holstein eq
tion @6,7# applied to cylindrical geometry. The balance equ
tions in the two-level approximation are

Wm~r !1nr~r !ne~r !krm5nm~r !@nmi~r !1ne~r !kmp

1ne~r !kmr1nd#,

Wr~r !1nm~r !ne~r !kmr1AE
0

R

nr~r 8!K~r ,r 8!r 8dr8

5nr~r !@A1n ri ~r !1ne~r !krp1ne~r !krm1nd#,

~11!

K~r ,r 8!5
1

4pE0

2p

duE
2`

` dz

z21q2E0

`

«nkne2kn
Az21q2

dn,

q25r 21r 8222rr 8cosu,

wherenmi(r ) andn ri (r ) are the frequencies of level deac
vation due to stepwise ionization~10!, kmr and krm are the
rate constants of the resonance and metastable level mi
kmp and krp are the rate constants of the level deactivat
due to stepwise excitation of the high-lying states,nd is the
frequency of the atom transits to the wall, andA is the prob-
ability of spontaneous radiation. The level excitation ra
Wm,r(r ) can be obtained in terms of the distribution functi

Wm,r~r !5
8p

m2
nan0E

«m,r1ew(r )

«w,`
sm,r* „«2ew~r !…

3 f 0~«!@«2ew~r !#d«, ~12!

wheresm* (w) ands r* (w) are the cross sections of the co
responding level excitation and«m and« r are the thresholds
of these processes. The integral operator in Eq.~14! de-
scribes the absorption of photons at the points with ra
coordinater ~hence the appearance of the resonance atom
these points!, which have been emitted at pointsr 8, z, u,
integrated over the whole tube volume. Here,«n andkn are
the emission and absorption line contours. The second e
tion in ~11! can be solved, for example, by using the redu
tion to the set of linear algebraic equations as has been
scribed in@8,9#.
a-

a-
st
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b-
-

-

g,
n
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l
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a-
-
e-

Thus, the analysis of the electron kinetics permits us
derive the electron density and the total ionization ra
which are necessary for solving the self-consistent prob
of the mutual formation of the distribution function and th
potential field.

III. SOLUTION TO THE SELF-CONSISTENT
PROBLEM OF THE MUTUAL FORMATION OF THE

DISTRIBUTION FUNCTION AND THE POTENTIAL FIELD

In the case of the free-flight regime, the problem und
analysis can be solved by analogy with the Langmuir-Ton
theory@5# for plasma and layer. The electron density, whi
is obtained using the nonequilibrium distribution function,
defined by formula~7!. One can obtain the ion densityni(r )
from the condition that all ions which appear at the poin
r 8,r due to ionization leave through the cylinder surface
radial coordinater, when being accelerated by the radial fie
under the free-flight regime

ni~r !5
1

r
E

0

r I ~r 8!r 8dr8

A 2

M
@ew~r !2ew~r 8!#

, ~13!

whereM is the ion mass andI (r ) is the total ionization rate,

I ~r !5I d~r !1I s~r !. ~14!

In the discharge plasma region, the condition of quasineut
ity ne'ni is fulfilled. By applying the Abel transformation to
Eq. ~13! @2#, one deduces integral differential equation f
the functionr (w) in the following form:

r
dr

dw
5

1

p
A2e

M

1

I ~w!

d

dw
E

0

w ni~w8!r ~w8!dw8

Aw2w8
. ~15!

Expressions~9!, ~10!, ~14! define the ionization rate, an
expression~7! defines the ion density for the quasineutr
plasma, which is equal to the electron one. By analogy w
Langmuir-Tonks theory, the solution of the equation f
plasma ~15! r (w) has a maximum at the pointw0, and
dw/dr→` at this point, which corresponds to the bound
the quasineutral region. If the Debye radius is less than
tube radius, one can assume that this point corresponds t
radiusR,

r ~w0!5R. ~16!

The quantityw0 determines the potential fall in the quasine
tral plasma. The near-wall drop of potentialD is equal to the
difference between the wall potential«w and the potential
ew0,

D5«w2ew0 . ~17!

The detailed description of the solution to the proble
under the collisional regime was presented in@3,4#. The ion
motion equation takes the form

1

r

d

dr
rbini~r !

dw~r !

dr
5I ~r !, ~158!
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wherebi is the ion mobility. This equation can be reduced
the ambipolar diffusion equation with the coefficient, whi
depends on the radial coordinate@3#. The expression

ew~R!5«w ~168!

is the analogue of the condition~16!. Furthermore, by twice
integrating Eq. (158) one derives the balance equation

bi

eE0

«w
ne~ew!dew5E

0

Rdr

r E0

r

I ~r 8!r 8dr8. ~18!

The equality between the ionizations and the elect
transits to the wall is necessary in order to provide
steady-state discharge. In the framework of the model c
sidered, the electron flux to the wall can be obtained fr
Eq. ~1! as the flux in the energy space at the energy«w .
Under both the free-flight and the collisional regimes, for t
number of electron transits to the wall per unit discha
length and unit time, that approach gives

2pR jw5
4p2

m2
R2n0D̄«~«w!Ud f0

d«
~«w!U

in the black-wall approximation, and

2pR jw5
4p2

m2
R2n0F D̄«~«w!Ud f0

d«
~«w!U

2E
«w

«w1«1
vn* ~«! f 0~«!d«G

when considering the loss cone.
The charged particle balance equation can be written

the form

2pR jw52pE
0

R

I ~r !rdr . ~19!

The algorithm of the solution to the self-consistent pro
lem can be represented in the following way. One takes
approximation of the trial potential using three parameter
the form

ew~z,r !52eEzz1ew~r !,

ew~r !5H b«1S r

RD 2

if r ,R,

«w if r 5R.

~20!

The parameterb«1 corresponds to the fall of the trial poten
tial in the quasineutral plasma. Then, one can average
coefficients of the kinetic equation over the potential~20!
according to expressions~2!–~4!. The kinetic equation~1!
with the boundary condition~6a! or ~6b! depending on the
approximation is numerically solved. By using the calcula
distribution function, which depends on the three parame
Ez , «w , b, the electron densityne(r ), Eq. ~7!, and the ion-
ization rateI (r ) @Eqs.~9!, ~10!, ~14!# are then deduced, an
the equation for the potential~15! or (158) is solved. Vary-
ing the parameters of the trial potential, it is necessary
n
e
n-

e
e

in

-
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he

d
rs

o

fulfill the conditions~16!,~19! and the equalityb«15ew0 for
the free-flight regime, and to satisfy the conditions~168),
~19!, and~18! for the collisional regime. The solution of~15!
or (158) gives the required distribution of potentialw(r ) for
the parametersEz , «w , and b, which were determined in
that way.

IV. RESULTS AND DISCUSSIONS

Concrete calculations were carried out for a xenon d
charge at a current of 100 mA, in the range of pressu
0.01,p,0.15 Torr; the discharge tube radius was equa
0.32 cm. The cross sections of elementary processes
sented in Fig. 1 were used. To obtain the distribution fu
tion, these cross sections were averaged over the trial po
tial ~20! according to expressions~2!–~4!; the kinetic
equation~1! was numerically solved with the boundary co
dition ~6a! or ~6b!. The numerical method of solving Eq.~1!
is based on its conversion into a set of linear algebraic eq
tions.

The results of the distribution function calculation, whic
was carried out in the framework of the solution to the se
consistent problem under the free-flight kinetics with bo
the zero boundary condition and the loss cone taken
account, are presented in Fig. 2. The coefficientvnw(«) was
defined as

vnw~«!5H 0 if «,«w;

2pn0A2~«2«w!

m
if «>«w,

wheren0 is some mean value of the electron-atomic elas
collision frequency. The consideration of the loss cone le
to a decrease in the value of the wall potential«w ; neverthe-
less, in the energy range of excitations and ionizations,
difference between the distribution functions calculated
two approximations is not significant. That being the ca
the simpler approximation was used to develop the s
consistent model.

FIG. 1. The cross sections of electron-atom collisions in xen
used in the solution to the kinetic equation and calculation of ex
tation and ionization rates:A, elastic transport cross section;B,
metastable level3P2 excitation;C, resonance level3P1 excitation;
D, total excitation cross section;E, direct ionization;F, stepwise
ionization;G, effective cross section of metastable level3P2 exci-
tation ~cascade excitations are taken into account!; A–F: @10#, G:
@11#.
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The kinetic equation~1! for the isotropic component o
the distribution function has a different form for the fre
flight and collisional regimes. This difference is related
the forms of the coefficientD̄«(«), Eqs.~2! and~28!. In Fig.
3, the distribution functions obtained in the framework of t
free-flight and collisional models in the same potential fie
ew(z,r ) and with the same boundary conditions are co
pared.

FIG. 2. Comparison between the kinetic equation solution
the free-flight regime of electron kinetics with the loss cone tak
into account~solid curveA) and that under the black-wall approx
mation~dashed curveB) obtained in the framework of the solutio
to the self-consistent problem;«1 is the first excitation threshold,«d

is the ionization threshold, and«wA and«wB are the wall potentials
obtained by using the distribution functionsA andB, respectively;
Xe, p50.04 Torr,i 5100 mA, R50.32 cm,Ez53.32 V/cm.

FIG. 3. Comparison of solutions to the kinetic equation for t
free-flight regime~solid curve! and that for the collisional regime
~dashed curve!; ~a! linear scale,~b! logarithmic scale; Xe,p50.10
Torr, i 5100 mA, R50.32 cm,Ez53.50 V/cm.
-

In Fig. 4, the isotropic component of the kinetic ener
distribution function at different radial points calculated
the black-wall approximation under the free-flight regime
displayed. The specific feature of a nonlocal formation of
electron distribution function consists of its sufficient defo
mation over radius, due to a large depletion with fast el
trons in the peripheral regions of the discharge tube. T
leads to a steeper radial dependency of the ionization
excitation rates than that of the electron density. Moreov
in this case the electron kinetic mean energy depends on
radial coordinate. These facts are shown in Fig. 5.

The calculations of the excitation rates and the popu
tions of the metastable3P2 and resonance3P1 levels were
carried out using Eqs.~11! and~12!. Considering the balance
equations for the populations of these levels, the processe
direct excitation from the ground state, mixing due to co
sions with electrons, stepwise excitation of high-lying stat
stepwise ionization, departures to the wall, and resonant
diation outcome were taken into account. According to e
mations, the other processes~molecule creation, chemoion
ization, etc.! are not significant under the condition
considered.

r
n

FIG. 4. Kinetic energy distribution function at different radi
points obtained in the framework of the solution to the se
consistent problem for the free-flight regime; Xe,p50.04 Torr, i
5100 mA, R50.32 cm,Ez53.32 V/cm.

FIG. 5. Relative radial distributions of the potentialew and the
macroscopic plasma parameters: mean energy^w&, electron density
ne , direct I d , stepwiseI s , and totalI ionization rates obtained in
the framework of the solution to the self-consistent problem for
free-flight regime. Axial values: ^w0&55.82 eV, n052.44
31011 cm23, I 053.7531017 cm23 s21; Xe, p50.04 Torr, i
5100 mA, R50.32 cm,Ez53.32 V/cm.
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In the range of pressure corresponding to the free-fli
electron kinetics, the stepwise transits to high-lying lev
are negligible. Herewith, in connection with the determin
tion of the metastable atom excitation rate, it is necessar
note the following. As the literature on data analysis sho
~for example,@11#!, the process of the metastable atom ge
eration is mainly determined by the cascade radiative tran
from the configuration 5p56p and the more high-lying elec
tron configurations of the xenon atom. This circumstan
was taken into account by using the corresponding cross
tion of the 3P2 level excitation presented in@11#.

In the range of pressures, corresponding to the collisio
electron kinetics, the stepwise transits to the more high-ly
levels and the subsequent transits to the continuum are
most significant processes in the deactivations of the3P2
and 3P1 levels. This circumstance was taken into account
bringing the additional flux from the metastable and re
nance levels into the expression for the ionization rateI (r )
~the approximation of the instant high-lying state ionizatio!.

Solving the integral Biberman-Holstein equation, the co
tours of radiation and absorption lines were supposed to
dispersive, since in the situation considered the absorp
coefficients are sufficiently great and the dispersive wing
the line plays the most important role in the radiation o
come.

In Fig. 6, the radial distributions of the excitation rat

FIG. 6. Relative radial distributions of excitation ratesWm,r and
populationsnm,r of ~a! metastable state3P2, ~b! resonance state
3P1 obtained in the framework of the solution to the self-consist
problem for the free-flight regime. Axial values:Wm052.7331017

cm23 s21, nm051.7431012 cm23, Wr051.4731017 cm23 s21,
nr052.6931011 cm23; Xe, p50.04 Torr, i 5100 mA, R
50.32 cm,Ez53.32 V/cm.
t
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and excited state populations are compared. These fig
show that the radial distributions of the excited particle de
sities are broader than those of the excitation rates. The la
is related to the main mechanisms of the excited level de
tivation. These mechanisms are different for the resona
and metastable levels.

The main channels of metastable level deactivation
the stepwise ionization and the departures to the wall un
the free-flight regime. The broadening of the metasta
atom density profile in comparison with that of the excitati
rate is related to competition between these processes
sides the fact that it is the stepwise ionization that leads
the broadening. For the resonance atoms, the obse
broadening of the density profile is related to resonant ra
tion trapping and the excited atom production due to t
effect. The theoretical calculations were compared with
results of experiments on the measurements of the m
stable and resonance xenon level populations by the R
destvensky hook method.

The optical scheme of the measurement of the densitie
the excited xenon atoms in the3P2 and 3P1 states corre-
sponds to the classical scheme of the hook method mod
according to modern experiment potentialities. The dye la
pumped by the pulse discharge nitrogen laser was used
source of the continuous spectrum. In the optical sche
instead of the stationary spectral device, a combination
optical elements easy to replace on the vibrostable exp
mental table~lenses, mirrors, diffraction gratings! was used.
Using the 1200 grooves/mm grating, the spectral dispers
of the system reached the value of 0.2 nm/cm. The h
interference picture was registered by video camera
treated by computer. The treatment of the hook picture w
based on the so-called vernier method@12#. A detailed de-
scription of the experiment and treatment method was p
sented in@13#. The length of the discharge tube was 60 c
the radius 0.32 cm. The discharge current was equal to
mA, 100 mA, and 125 mA. In addition, measurements of
discharge longitudinal electric field were carried out.

In Figs. 7 and 8, the theoretical dependencies of the m
stable3P2 and resonance3P1 xenon level populations at th

t

FIG. 7. Comparison between experimental and theoretical
pendencies of the metastable state3P2 ~crosses for experiment! and
the resonance state3P1 ~circles for experiment! populations on the
pressure; solid curves denote calculations by the free-flight mo
in the range of pressures 0.01,p,0.04 Torr and by the collisiona
one in the range of pressures 0.10,p,0.15 Torr; Xe, i
5100 mA, R50.32 cm.
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discharge axis and that of the reduced fieldEz /p on the
pressure are compared with experimental dependencie
the theoretical calculations, the free-flight model of charg
particle motion was applied in the range of pressures 0
,p,0.04 Torr, whereas the collisional one was applied
the range of 0.10,p,0.15 Torr. The figures show that th
proposed theory reaches satisfying agreement with exp
ment in the absolute values of the metastable and reson
level populations and in the absolute value of the redu
field, in spite of the existing uncertainty in the constants
elementary processes. The theory describes the tenden
the level populations to increase with pressure growth in
range of 0.01,p,0.04 Torr~the free-flight regime! and its
tendency toward saturation in the range of 0.10,p,0.15
Torr ~the collisional regime!. The reduced field decrease

FIG. 8. Comparison between experimental~circles! and theoret-
ical ~solid curve! dependencies of the reduced fieldEz /p on the
pressure; calculations were carried out using the free-flight mod
the range of pressures 0.01,p,0.04 Torr and the collisional one in
the range of pressures 0.10,p,0.15 Torr; Xe, i 5100 mA, R
50.32 cm.
o-

e
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d
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ri-
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e

with the growth of pressure observed in experiment also f
within the framework of the proposed theory.

V. CONCLUSION

The solution to the kinetic equation for the isotropic com
ponent of the electron distribution function in a positive co
umn of a glow discharge was analyzed under the conditi
that the energy relaxation length of electrons is much gre
than the discharge tube radiusR and that the free path o
electrons is either greater thanR ~the free-flight regime of
electron motion! or less thanR ~the collisional regime!. Us-
ing the calculated distribution function, the distributions
the electron density that has a non-Boltzmann form and
ionization rates were obtained. These functions were
volved in the solution to the ion motion equation in the tw
limiting cases, where, in the accelerating radial field, the io
move either without collisions~the Langmuir-Tonks theory
analogue! or under the diffusion regime~the Schottky theory
analogue!. The ion equation solution permits one to obtain
a self-consistent way the longitudinal electric field and t
radial potential and hence to solve the problem of the mu
formation of the distribution function and the potential fiel
In the framework of the proposed theory, the main mac
scopic plasma parameters — the electron densities, the m
energies, the excitation and ionization rates, the populat
of the metastable and resonance levels — and the radial
tributions of these parameters were obtained in the cas
the xenon discharge at low pressures. Under the same
ditions, experiments on the measurements of the longitud
electric field and the populations of the xenon metastable
resonance levels were carried out on the basis of the R
destvensky hook method. Comparison of the theoretical
experimental data displays satisfying agreement in the a
lute values as well as in the relative dependencies of
observed parameters on the pressure.
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