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Minimal model for complex dynamics in cellular processes

C. Suguna, Kanchan K. Chowdhury, and Somdatta Sinha*
Centre for Cellular and Molecular Biology, Hyderabad 500 007, India

~Received 11 June 1999!

Cellular functions are controlled and coordinated by the complex circuitry of biochemical pathways regu-
lated by genetic and metabolic feedback processes. This paper aims to show, with the help of a minimal model
of a regulated biochemical pathway, that the common nonlinearities and control structures present in biomo-
lecular interactions are capable of eliciting a variety of functional dynamics, such as homeostasis, periodic,
complex, and chaotic oscillations, including transients, that are observed in various cellular processes.
@S1063-651X~99!14911-0#

PACS number~s!: 87.80.Vt, 05.45.2a
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I. INTRODUCTION

Biochemical reactions underlie cellular functions. The v
riety of functional dynamics is a consequence of the non
earities inherent in multiple modes of biochemical regu
tion, such as cooperativity and kinetics at the levels of g
expression, protein synthesis, enzyme activity, receptor fu
tion, and transport processes. These highly networked r
tions utilize single, multiple, and coupled negative and po
tive feedback processes as the primary mode of regulatio
coordinate and control the accumulation of intermediates
end product of the pathway@1–4#. Of the two types of feed-
back, the negative feedback processes desensitize the sy
to perturbations, such as environmental or developme
noise. They have a stabilizing role and help in conserva
of energy in cellular economy, and are, therefore, natur
selected to be the most common form of regulation in pa
ways. Though potentially destabilizing, many biochemi
processes employ positive feedback for excitable dynam
and for the amplification needed in switching and rap
response processes@5,6#. Homeostasis has been consider
as the most common type of dynamics in biology, but it
becoming increasingly evident that multistable, multirhy
mic, oscillatory, chaotic, and transient processes are m
generic and ubiquitous at various levels of organization
biological systems having important functional consequen
@7–9#.

For example, along with sustained oscillations, wh
were observed many years ago@10#, other types of dynamics
such as multiple stable states, birhythmicity, and comp
oscillations have also been reported subsequently in glyc
sis of cell-free extracts of yeast cells@11,12#. Similar diver-
sity in dynamics has been found in many other biochem
reactions under a variety of experimental conditions—
peroxidase-oxidase reactions and hormone oscillations@13–
19#, cyclic Adenosine Mono-Phosphate~cAMP! oscillations
in cellular slime molddictyostelium discoideum@20#, glyco-
lysis and insulin secretion in pancreatic beta cells@9,21,22#,
neuronal systems@23#, and calcium oscillations of differen
frequency and amplitude@24–28#. Recently, dynamic phe
nomena of another type are attracting wide attention du
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their interesting signaling role in diverse cellular process
These are the transient processes, e.g., ‘‘sparks’’
‘‘puffs’’ in calcium oscillations, and spatial waves in man
cell types@29,30#.

One interesting aspect of these phenomena is the e
gence of the multiplicity of roles of the same product who
different dynamics signal different cellular functions—
including cell death@28,30#. This requires the underlying
controls of the pathway to be flexible, yet precisely reg
lated, to yield output signals of the required dynamics. Th
for optimal performance, requiring stability, sensitivity, an
multiplicity of dynamics, a combination of negative an
positive feedback processes is useful. In reality, the b
chemical details of the pathways are generally quite dive
elaborate, and involve complex regulatory controls. Bu
minimal regulatory structure in a complicated pathway m
be sufficient to give rise to the required function
dynamics—the additional complexities being the outcome
evolutionary selection for robustness and redundancy.
aim of this paper is, thus, to see if a skeletal pathway, inc
porating the minimal combination of a pair of coupled neg
tive and positive feedback processes, representing the st
ity and sensitivity properties of the system, can exhibi
multitude of dynamics, as observed in real biochemical re
tion pathways.

As the minimal model we consider a three-variable pa
way comprised of only two feedback loops—one negat
and one positive in the form of common cellular contr
processes in cells—and enumerate the variety of dynam
that this pathway can exhibit for changes in its paramet
We show that this simple model pathway not only exhib
equilibrium and periodic dynamics, but also shows birhy
micity, complex oscillations, chaos, and other complexiti
such as fractal basin boundaries that give rise to interes
transient dynamics under noise. Thus, even at this elem
tary level, the pathway possesses a wide range of functio
diversity that is observed in complex biochemical pathwa
with more elaborate controls. It would, therefore, be use
to delineate the important control structures for manipulat
and modification in diseased or engineered biochemical p
ways.

II. MINIMAL PATHWAY AND METHODS

The model biochemical pathway is a three-step reac
sequence~Fig. 1! where the substrate S1 is converted to S
5943 © 1999 The American Physical Society
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which then is converted to the product S3 through an enzy
~E!-mediated reaction. There are two levels of control bu
into this linear chemical reaction through two feedba
loops—end-product inhibition of S1 by S3~a negative feed-
back! and the autocatalytic production of S3 from S2 by t
enzyme E~a positive feedback!. For the feedback processe
we consider common molecular interactions that are ab
dantly employed in the biochemical pathways in cells. W
assume that the S3-S1 interaction for end-product inhibi
follows cooperative kinetics@31#, and the autocatalytic pro
duction of S3 is through the allosteric property of the e
zyme E@32#. These are nonlinear kinetic processes that
common in mechanisms of biochemical regulation and
widespread in both genetic and metabolic reactions unde
ing cellular processes, such as the cell cycle, gene repres
induction, glycolysis, hormonal signaling, cAMP oscillation
in cellular slime molds, calcium-induced-calcium-relea
~CICR!, etc.@9,31,34#. Thus we consider this to be a simp
and general scheme that may represent a large variet
functional dynamics observed in cellular systems.

The time evolution of this model pathway can be d
scribed by the following equations:

dx

dt
5F~z!2kx,

dy

dt
5x2G~y,z!,

dz

dt
5G~y,z!2qz, ~1!

wherex, y, and z are the normalized concentrations of t
substrates S1, S2, and S3, andk and q are parameters con
trolling the rates of degradation of S1 and S3 that follow fi
order kinetics and are nonsaturated. The nonlinear funct
F(z) and G(y,z) represent the negative and positive fee
back terms, respectively.F(z) is a function of the end prod
uct alone and the reaction requires cooperative bindingn
molecules ofz for inhibition. The positive feedback term
G(y,z) involves the allosteric enzyme E that obeys the c
certed transition model@32#. E follows the quasi-steady-stat
hypothesis for the enzymatic forms and is considered to b
dimer with exclusive binding to the more active conform
tional state@33#. These two regulatory processes in Eq.~1!
can be written as

F~z!5
1

11zn , ~2!

G~y,z!5
Ty~11y!~11z!2

L1~11y!2~11z!2 , ~3!

FIG. 1. The minimal biochemical pathway: a three step reac
sequence with inhibition of S1 by endproduct S3 and activation
the allosteric enzyme E by S3.
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whereT andL are maximum velocity and allosteric consta
of the enzyme E. Thus this simple three-step regulated re
tion sequence shown in Fig. 1 and described by Eqs.~1!, ~2!,
and ~3! is our minimal model.

This model reaction system has been studied using a c
bination of analytical and numerical methods. The basal
rameter values for this pathway were based on typical
perimental values available for other cellular proces
possessing similar positive and negative feedback me
nisms @33–36#, and have been chosen asn54, L5106, T
510, k51, q50.01. All parameters and variables are d
mensionless here. Numerical simulations have been done
a range around these basal values. The system of equa
yields only one positive real steady state for a large range
parameter values. The local stability of this steady state
been analyzed using linear stability analysis. The dynam
behaviors ofx, y, and z have been numerically simulate
using Mathematica ver 2.2.

III. RESULTS AND DISCUSSION

We describe the nature and role of the common con
properties and the variety of dynamics exhibited by our mi
mal pathway upon variation of parameters.

A. Nature of the regulatory feedback processes

Figure 2 summarizes the response of the two feedb
controls—end-product inhibition~negative feedback! F(z)
and allosteric activation~positive feedback! G(y,z) to
changing substrate concentrations. The negative feedb
termF(z) @see Eq.~2!# is a function of the end product alon
and Fig. 2~A! shows the extent of feedback inhibition wit
increasingz for different values of the cooperativity of inhi
bition n. With increasingz, F(z) decreases sharply, and
higher values ofn this effect becomes stronger, making th
rate of synthesis of S1 negligible for large concentrations
the end product. Thus, at higher values ofn ~3 or 4 here!,
F(z) acts like a switch that shuts off or drastically reduc
the synthesis ofx beyond a small value ofz. It is clear that
with increasing cooperativity~n! the negative feedback con
trol becomes tighter as compared to when there is no co
erativity (n51). The positive feedback process modeled
G(y,z) @see Eq.~3!# involves the autocatalytic synthesis o
S3 from S2, aided by the allosteric enzyme E, and is, the
fore, a function of bothy and z. As shown in Fig. 2~B!,
G(y,z) has a sigmoidal saturation curve for increasing co
centrations of both the substratesy and z. Increasingz re-
quires reducedy for ensuring the same amount of positiv
feedback control to occur. Thus the allosteric transition fro
a low-activity, low-affinity conformation to a high-activity
high-affinity one is promoted by eithery or z, and the tran-
sition is steeper at higher concentrations of the two s
strates.

B. Stability and dynamics

It is clear that the two feedback terms respond in an
posite manner for a small increase in the end productz. The
final functional response~dynamics! of the pathway, given
the nature of the two opposing regulatory processes, wo
depend much on the other processes, such as the rem

n
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degradation rates of the substrate S1 and end product S~k
and q, respectively!, which increase or decrease the flux
material through the pathway. In Figs. 3~A!–3~D!, we show
the ~k,q! parameter space describing the stability regio
where the pathway shows equilibrium and oscillato
~simple and complex! dynamics for different values of th
cooperativity of the negative feedback~n!.

There are three regions in each plot—the region mar
with crosses represents~k,q! values where the steady state
negative and hence not of interest here; the dotted regio
where the steady state is a fixed point, and the pathway
turns to the equilibrium state on perturbation; and the bla
closed region is where the steady state is unstable~through
local linear stability analysis!. Generally, the pathway show
equilibrium dynamics both for very low and high rates
degradation of S1 and S3, but as the cooperativity of
negative feedback~n! increases, the isolated region showi
unstable dynamics increases, and it is the largest forn54.
To study the dynamics within the unstable region, we sim
lated the model equations forq50.1 for a range ofk values.
The results are shown in Fig. 3~E! for n51 to 4. For low
cooperativity (n51,2), the pathway only shows simple p
riodic dynamics in this range ofk values. But forn.2, a
whole range of complex behavior, such as period-doub
bifurcations, chaos, complex oscillations, etc., occur alo
with simple limit cycle dynamics. This region of comple

FIG. 2. Nonlinear feedback regulation:~A! Feedback inhibition,
F(z) with increasing concentration of the end product~z! for dif-
ferent values of cooperativity~n!; ~B! feedback activation,G(y,z),
as a function of the end product~z! for different concentrations ofy.
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dynamics is the largest forn54, while the pathway shows
simple limit cycle oscillations for basal values ofk and q
~k51, q50.01). This indicates that, even if the normal d
namics is periodic, any small changes ink can induce com-
plex behavior in the pathway functioning, enabling it to e
hibit multiplicity in dynamics. We studied this region i
greater detail.

Figures 4~A!–4~H! show the~y,z! phase plots depicting
the variety of unstable dynamics exhibited by this minim
pathway forq50.1 andn54, with increasingk. Within this
unstable region, the pathway starts and ends with sim
limit cycle oscillations with much complexity in dynami
behavior for the interveningk values. Figure 4~A! shows
simple oscillatory behavior~limit cycle with amplitude;30
and time period;80! for k50.0023, which is stable agains
small perturbations in substrate concentrations. We desig
this limit cycle as the ‘‘type I’’ attractor. For a very sma
increase ink, at k50.0024, the dynamics changes signi
cantly. Depending on the initial conditions, the pathw
evolves to two different types of attractors—the perio
doubled type I attractor and another large attractor~‘‘type
II’’ ! with eight times higher time period and almost twice t
amplitude of the type I attractor. Both these attractors
plotted together in Fig. 4~B! for the convenience of compari
son. For small increases ink, the two attractors continue to
coexist and the type I attractor goes through further bifur
tions @Fig. 4~C!, for k50.002 75#, which separate into band
@Fig. 4~D!, for k50.0028#. The two chaotic bands the
spread until they merge and one gets chaotic oscillati
where large complex oscillations~bifurcated type II attrac-
tor! are interspersed with small high frequency random
cillations ~chaotic type I attractor! shown in Fig. 4~E! for k
50.003. A similar sequence of dynamics was also obser
in the Brusselator model, but only on periodic forcing@37#.

The complexity in pathway dynamics changes at hig
values ofk. The high frequency type I attractor disappea
and the pathway goes through a series of changes in dyn
ics of the type II attractor only. Here the dynamics is robu
against small perturbations in substrate concentrations. T
also exist periodic windows in this range ofk @Fig. 4~F! for
k50.006#, period reversals@Fig. 4~G! for k50.009#, com-
plex oscillations, asymmetric bifurcation@38# giving rise to
the ‘‘kink’’ in the type II attractor, etc. With increasingk, the
time period of the type II limit cycle reduces, eventual
showing a robust, simple, periodic behavior@Fig. 4~H!, for
k50.028# again, with an amplitude of almost twice that
k50.0023@Fig. 4~A!# but of similar time period, thus com
pleting a full cycle of behavioral modes. Thus the function
dynamics exhibited by this simple pathway is quite comp
and sensitive to kinetic parameters and substrate conce
tions.

C. Coexistence of attractors and their basins of attraction

The coexistence of two different attractors, as shown
Figs. 4~B!–4~E!, indicates that this biochemical pathway
capable of functioning in two different types of oscillato
modes under experimental conditions, even when all par
eters are the same. Figure 5~A! shows these two time serie
of the end productz plotted together to show clearly that th
type II attractor has a larger amplitude and higher time
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FIG. 3. Stability plots in~k,q!
parameter space for different va
ues of the cooperativity~n!. The
3 denotes negative steady state
O denotes equilibrium dynamics
and the blank region denotes~k,q!
values at which the steady state
unstable for~A! n51, ~B! n52,
~C! n53, and~D! n54. ~E! Dy-
namics at different values ofn, for
variation of k, with q50.1. All
other parameters are kept at the
basal value.
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riod. Figure 5~B! shows the relative positions of the tw
attractors in the three dimensional~x,y,z! phase space. Th
type I attractor is almost two dimensional because its spr
in thex direction is very small. It is clear from the figure th
the phase space of the two attractors overlaps consider
thereby raising interesting questions about the predictab
of the final dynamical state of the pathway on perturbat
~final state sensitivity!.

We looked for the basins of attraction of the two coexi
ing attractors by undertaking a thorough search of the~y,z!
phase space near the positive steady state. The equa
describing the model biochemical pathway were simula
for a range of initialy,z values around the steady state
different scales, and the type of the asymptotic attractor
noted. It was observed that the pathway evolved to either
of the attractors, depending on initial conditions. Figu
6~A!–6~C! show the mappings~in the y,z plane! of their
basins of attraction~crosses for the type I and dots for th
d

ly,
ty
n

-

ons
d
t
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type II attractor! at three different progressively finer scale
The figure shows that, not only is the evolution to the fin
state unpredictable, there are no clearly defined boundarie
the phase space for the two attractors at any scale. A
there is self-similarity revealing a fractal nature of the ba
of attraction of these nonchaotic attractors. The implicatio
of this type of behavior in biological processes can be v
interesting and important from the functional point of view

D. Characterization of the chaotic attractor

It is clear that the common and biologically realistic no
linearities used in this minimal pathway can give rise to ve
complex dynamics. Figure 4 shows that the small-amplitu
high frequency type I attractor goes through period-doubl
bifurcations, and the coexisting, large, type II attractor go
through bifurcations and complex shape changes in the p
space. Because of the fractal nature of the basins of attrac
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of these two attractors, the time evolution of the pathway
seen to have very long stretches of chaotic type I oscillati
interspersed with regions of large-amplitude complex typ
oscillations. We attempted to describe this complexity in
dynamics by seeking a simpler representation of the sys
by deriving a one-dimensional map from the model. Suc
representation simplifies the geometric description of
system by reducing the number of state space variables
still contains the essential information about the behav
@39–41#.

From the relative positions of the two attractors in F
5~B!, one can see that the type I attractor is trapped in
almost two-dimensional sheet of the phase space. The st
state, which is situated near the kink of the larger attracto
a saddle point of index 2. Figures 7~A! and 7~B! show the
time series of the end productz and the chaotic type I attrac
tor in the~y,z! phase plane fork50.0029. Since the system

FIG. 4. Phase plots for different dynamical behaviors of the e
product~z! for increasing values ofk at q50.1. ~A! Type I attractor
for k50.0023. ~B! Coexistence of bifurcated type I attracto
~marked I! and type II attractor~marked II! for k50.0024. ~C!
Coexistence of period 4, type I attractor and type II attractor fok
50.002 75.~D! Type I attractor bifurcated into two chaotic band
with coexisting type II attractor fork50.0028.~E! Chaotic type I
and complex type II attractors fork50.003.~F! Type II attractor for
k50.006 ~periodic window!. ~G! Type II attractor fork50.009
~period reversal!. ~H! Limit cycle for k50.028.
s
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highly dissipative and the three-dimensional~3D! trajectories
rapidly converge to a nearly 2D sheet on which they rem
trapped, the correlation dimension@42,43#, of this attractor,
was found to be 1.65. We constructed a Poincare´ section@41#
along linePQ for the chaotic attractor in Fig. 7~B!, in a plane
perpendicular to the~y,z! plane. The one-dimensional retur
map constructed from this is shown in Fig. 7~C!. The points
fall along a smooth one-dimensional curve with a sing
maximum, along with an additional branch. This kind of
situation has been found experimentally as well as theor
cally in other systems, such as the Belousov-Zhabotin
reaction @44#, peroxidase-oxidase reaction@14#, and diode
circuit reaction@41#, and is indicative of higher order dynam
ics. The slope of the hump at the fixed point is found to
21.75, which is clearly indicative of period-doubling bifu
cations and chaos.

IV. CONCLUSIONS

The biochemical pathways underlying the variety of c
lular processes are generally quite elaborate and involve m
tiple regulatory controls connecting many reaction branch

d

FIG. 5. Birhythmicity for k50.0024, q50.1, andn54. ~A!
Asymptotic temporal behavior ofz. Both type I and type II attrac-
tors are plotted together for comparison.~B! Three dimensional
phase plots of the two attractors~type I and type II!.
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The experimentalist aims to delineate the details of eac
molecular terms. The cell employs few types of kinetic reg
latory mechanisms that impart common features in app
ently diverse/dissimilar processes. The aim of this study i
explore the minimal regulatory structure that can give rise
the variety of functional dynamics observed in diverse ce
lar processes, presuming that the additional complexities
the outcome of evolutionary selection primarily for robu
ness, redundancy, and network connectivity, which have
portant adaptive roles.

We have shown that a minimal model, incorporating co
mon regulatory processes, is capable of showing a div
variety of dynamical behaviors—from equilibrium to osc
latory, complex, chaotic, and transients—that are exhib

FIG. 6. Basins of attraction of the two attractors~x for type I
and O for type II! for different initial conditions in the~y,z! plane
with x fixed at the steady-state value fork50.0024,q50.1.~B! and
~C! are magnifications of the boxed regions in~A! and~B!, respec-
tively. Transients of about 6000 time units are discarded in
simulation for each initial condition.
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by many cellular processes in cells/tissues. This capability
having diverse dynamics for different parameters and con
tions enables cells to utilize common resources for va
differing functions. For instance, calcium signals are used
cells to trigger cellular functions ranging from fertilization
development, and differentiation, to death@30#. The same
calcium signals regulate cardiac, muscular, and neurona
tivities by using different combinations of spatial and tem
poral controls. The response of the cell is optimized by
frequency and level of the oscillatory calcium—termed
frequency and amplitude coding@28,30#. In order to achieve
such versatility the biochemical reaction pathway involv
should be flexible yet precisely regulated to yield molecu
signals with differing periodicity, or the same periodicity b
differing amplitudes, with variation in pathway paramete

e

FIG. 7. Characterization of the chaotic attractor atk50.0029,
q50.1. ~A! Time series ofz after removing transients.~B! Phase
plot in the~y,z! plane with Poincare´ section along linePQ, parallel
to x plane. ~C! One dimensional return map of the attractor. T
slope of the map at the equilibrium point is21.75.
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or substrate concentrations. We have shown that this m
mal pathway can achieve such versatility. The existence
birhythmicity and the fractal basins of attraction facilitate t
process of transient signaling~spontaneous or activated! un-
der the omnipresent experimental noise in biological s
tems, as observed in spontaneous events, such as ca
‘‘sparks’’ or ‘‘puffs’’ @45#. Such mechanisms may also un
derlie random switching between alternative regulatory pa
in cells @46#. Though we have considered spatial homoge
ity in our model, these transients in cells in the tissue c
give rise to spatial waves as observed in many syste
@29,30#. A decrease in time period of oscillations with in
creasing parameter shown by this minimal pathway is a
observed in young mice for circadian rhythms showing a
dependent reduction in the time period of the rhythm@47#.
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The functional diversity exhibited by this minimal path
way is indicative of the possibility of greater diversity in th
complex and realistic pathway. An understanding of this s
tem can, on the one hand, yield much unification in t
source of diverse cellular phenomena and, on the other,
to a better understanding of the more complex biochem
reaction networks controlling cellular functions, so that o
can design necessary controls for the required behavior,
vise methods to correct altered dynamics@48,49#, or engineer
new pathways with the required dynamical behavior.
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