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Statistics of DNA sequences: A low-frequency analysis
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~Received 12 April 1999; revised manuscript received 7 June 1999!

We study statistical properties of DNA chains of thirteen microbial complete genomes. We find that the
power spectrum of several of the sequences studied flattens off in the low frequency limit. This implies the
correlation length in those sequences is much smaller than the entire DNA chain. Consequently, in contradic-
tion with previous studies, we show that the fractal behavior of DNA chains does not always prevail through
the entire DNA molecule.@S1063-651X~99!10211-3#

PACS number~s!: 87.14.Gg, 87.16.Ac, 05.10.2a
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I. INTRODUCTION

The statistics of DNA sequences is an active topic of
search nowadays. There are studies on the power spe
density, random walker representation, correlation funct
@1#, etc. Although some of the studies are in contradict
with each other, there is a consensus with respect to
reported behavior of the power spectrum of DNA sequenc
For high frequencies it is roughly flat, with a sharp peak
f 51/3, due to the existence of the codon structure and
nonuniform codon usage@2,3#. There is also much smalle
peak aroundf '1/11, which might be related to the DNA
folding structure@4#. For smaller frequencies, it has bee
reported that the power spectrum presents a power-law
havior with exponent approximately equal to21, that is, 1/f
noise. Since a cutoff of the power-law exists at high frequ
cies, it has been called ‘‘partial power-law’’@5#. The pres-
ence of ‘‘1/f’’ noise in a given frequency interval indicate
the presence of a self-similar~fractal! structure in the corre-
sponding range of wavelengths, whereas a flat power s
trum indicates absence of correlations~white noise!.

It is an important question to know whether or not t
power-law behavior of the power spectrum of a given DN
chain extends up to the smallest frequencies. If this occur
would imply that the fractal behavior of that DNA cha
spans the entire chain, and that the correlation length of
chain is not smaller than the chain size. Some studies h
claimed that the fractal behavior of DNA prevails throu
the entire DNA molecule@6#. The aim of this paper is to
show that this is not generally correct.

We have done statistical analysis of the DNA of thirte
microbial complete genomes@7#, that is, Archaeoglobus
fulgidus~2 178 400 bp!, Aquifex aeolicus~1 551 335 bp!, Ba-
cillus subtilis ~4 214 814 bp!, Chlamydia trachomatis
~1 042 519 bp!, Escherichia coli, also known as Ecoli
~4 639 221 bp!, Treponema pallidum~1 138 011 bp!, Haemo-
philus influenzae Rd~1 830 138 bp!, Helicobacter pylori
26695 ~1 667 867 bp!, Mycoplasma pneumoniae~816 394
bp!, Mycobacterium tuberculosis H37Rv~4 411 529 bp!,
Pyro-h Pyrococcus horikoshii OT3~1 738 505 bp!, Syn-
echocystis PCC6803~3 573 470 bp!, andMycoplasma geni-
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//www.msg.ucsf.edu/;mariav
PRE 601063-651X/99/60~5!/5932~6!/$15.00
-
tral
n
n
he
s.
t
e

e-

-

c-

it

e
ve

talium G37~5 80 073 bp!. We have found that the behavio
of power spectrum at small frequencies can be different
different organisms. Also, it can be different for differe
nucleotides in the same organism. Thus, for some organis
the behavior of the power spectrum~PS! as a function of the
frequency shows, in a log-log plot, three different region
instead of two, reported previously@5,6,8#. That is, as the
frequency increases, it changes from~on average! a flat func-
tion, a power-law, and then flat again@9#, showing that the
fractal structure of DNA sequences does not necessarily
tend up to the total length of the chain. The flattening of t
power spectrum at low frequencies is just a signature of
fact that the correlation length of DNA sequences is,
many sequences, much smaller than the entire length of
DNA chain. We have calculated the autocorrelation funct
~AF! of the nucleotides in the DNA chains of the organism
mentioned above. We have found that in some of the org
isms the correlation length is of the order of a few thousa
base-pairs. In others, the correlation length is very large,
ing not smaller than 100,000 base-pairs. We have also fo
in nearly all the sequences studied a peak of the autoco
lation function at lengths approximately equal to 100. T
corresponding peaks are also present, as expected, in
power spectrum. To the best of our knowledge this has ne
been reported before.

A DNA chain is represented by a sequence of four lette
corresponding to four different nucleotides: adenine~A!, cy-
tosine~C!, guanine~G!, and thymine~T!. The calculation of
the power spectrum or the autocorrelation function requ
that this symbolic sequence be transformed into a numer
one. Several methods have been proposed for this@5,8,10#.
Here we use the method introduced by Voss@8#, which has
been shown in@11# to be equivalent to the method used
@5#. In Voss’s method one associates 0 to the site in whic
given symbol is absent and 1 to the location where it
present. So, for a given DNA sequence there will be fo
different numerical sequences, corresponding to the
quences associated with A, C, G, and T. In his original
per, Voss calculated the PS for each one of these seque
and summed them to find the average PS. Here, we t
them distinctly, because we also want to know about
similarities and differences of the statistical features of d
ferent nucleotides in a given DNA sequence.

By artificially linking flank sequences together, Borstn
et al. @12# found a behavior for the PS as a function of t

:
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PRE 60 5933STATISTICS OF DNA SEQUENCES: A LOW- . . .
frequency that was flat, then an exponential decay, then
again. Our studies ofcompletesequences show that the b
havior of the PS does not show any exponential decay in
region of intermediate frequencies. We found instead
power-law. However, for low frequencies we also find a fl
PS in several of the sequences studied. A flat PS at h
frequencies is observed in all cases.

II. STATISTICAL ANALYSIS

A. Power spectrum

Let us use Voss’s method@8# and denote byxj
A the nu-

merical value associated with the symbolA. Then one has
xj

A51 if symbol A is present at locationj andxj
A50 other-

wise. Similar transformation is made for symbols C, G, a
T. Consequently, the DNA can be divided into four differe
binary subsequences of 0’s and 1’s, associated with the s
bols A, C, G, and T.

The Fourier transform of a numerical sequencexk of
lengthN is by definition,

V~ f j ![
1

N (
k50

N21

xk exp~22p ik f j !, ~1!

where the frequencyf j is given by f [ j /N, and j
50, . . . ,N21. The PS is defined asS( f j )5V( f j )V( f j )*
5uV( f j )u2. From the definition, we can see thatV( f 0)
5^xk&, where the brackets denote average along the ch
Consequently, this quantity carries no information about
relative positions of the nucleotides. Because of this, we u
ally neglect this quantity in our calculations, that is, we co
centrate only on frequencies withj .0.

Since DNA sequences have a large number of base-p
and the PS presents considerable fluctuation, some kin
averaging is usually done to plot this quantity as a funct
of the frequency. The main way of averaging done so fa
the following @5,6,8#: the DNA chain of lengthN is divided
into non-overlapping subsequences of lengthL. Then, the
power spectrum of each of these segments is computed
averaged over theN/L subsequences. In this method t
smallest frequency for which the PS can be calculated is
course,f 51/L. Consequently, the behavior of frequencies
the range@1/N,1/L# is unknown. An example of such a ca
culation for Ecoli is shown in Fig. 1~a!, where the DNA
chain was divided in subsequences of 8192 nucleotides
clear power law, followed by an approximate flat region w
peaks atf 51/3 andf '1/11, is seen. To avoid overlap of th
curves, we have displaced the PS of cytosine, guanine,
thymine by dividing it by 10, 102, and 103, respectively.
Since the power spectrum for sequences of real numbe
symmetric with respect to the axisf 50.5, we plot only the
PS for frequencies in the interval of 0 to 0.5. A similar figu
for adenine is shown in@6#.

Another way of averaging the PS, used in@13#, is to cal-
culate it for the entire sequence ofN points and then plot it
by averagingn neighboring points. That is,

S̄~ f j 1n/2!5
1

n (
l 5 jn

( j 11)n21

S~ f l ! ~2!
at

e
a
t
h

d
t
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nd
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with j 50,1, . . . ,N/n. This can be translated by saying th
this is an average in sliding windows ofn points, where there
is no overlapping between one window and the next. In t
method, the smallest frequency that is calculated isn/2N.
We show in Fig. 1~b! the PS for adenine in Ecoli using thi
method, withn532 ~upper curve! andn5512~lower curve!.
In the case of few points per bin (n532) we see hints tha
the PS flattens off in the low frequency limit. This does n
occur whenn5512, which shows only the power-law a
intermediate frequencies and the flat region at high frequ
cies. We will see, however, that the method we use bel
which is a standard one in statistics, gives better result
the low frequency region than this and the other meth
discussed above.

In the method we use, we calculate the mean PS i
sliding window of n points, with adjacent windows havin
an overlap ofn21 points. The average PS in each windo
will determine the values of the smoothed resulting
quence. In mathematical terms we can express this as

S̄~ f j !5
1

n (
m5 j 2D

j 1D

S~ f m! ~3!

whereD5(n21)/2, n is taken an odd number, andj varies
from D11 to N2D21. Although the new sequence in th
method is smoother than the original one, its length is o
smaller than it by 2D points. We have found that this metho

FIG. 1. ~a! Power spectrum of Ecoli calculated by dividing th
entire DNA chain in subsequences of 8192 nucleotides. The cu
for C, G, and T have been multiplied by factors of 1021, 1022, and
1023, respectively, to avoid overlap of the curves.~b! Power spec-
trum of adenine~A! for Ecoli calculated by averaging 32~upper
curve! and 512~lower curve! neighboring points. The lower curve
has been multiplied by a factor of 1021.
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shows the same behavior for moderate and high frequen
as the two other methods discussed above. However,
superior for studies at low frequencies.

To speed up the calculations of the PS we have used,
is normally done, the Fast Fourier Transform algorithm@14#.
This algorithm speeds up the calculation of the PS by a
tor of N/ loga N, but it requires that length of the sequen
analyzed be an integer power of the integera, which usually
is taken to be two. Since the length of DNA sequences
not generally equal to an integer power of two, we take
our computation the largest subsequence, starting from
beginning of the chain, that fulfills this requirement. Mo
specifically, we take the firstN852K nucleotides, whereK is
the largest power of 2 satisfying the requirement thatN8
<N, with N being the total size of the DNA chain. In thi
way, the number of nucleotides not included in the calcu
tion is always smaller, and in many cases much smaller, t
N/2. We have also done calculations considering the en
length of the DNA and zero padding the sequence to the n
integer power of 2, as described in@14#. The results remain
essentially the same as the ones we show here.

Since our method shows the same behavior for the P
the range of intermediate and large frequencies as the o
averaging method, and also due to the large size of the D
chains, we plot the PS only in the frequency ran
@1/N,0.01#. We show in Fig. 2 the results of our calculatio
for n533 for four representative cases of the thirteen o
studied. For clarity, we have displaced the PS of C, G an
by dividing it by 10, 102, and 103, respectively. In this way,
an overlap of the curves is avoided. Our results show that
low frequency PS associated with each of the nucleotide
the organisms studied fall into one of the following cases

~a! All the four PS associated with the four differe
nucleotides flattens off at low frequencies. In these ca
there are three regions in the PS versus frequency curve

FIG. 2. Power spectrum of~a! Ecoli, ~b! Aquifex Aeolicus, ~c!
Bacilus subtilis, and~d! Haemophilus influenzae Rd. The curves for
C, G, and T have been multiplied by factors of 1021, 1022, and
1023, respectively, to avoid overlap of the curves.
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both low and high frequencies the PS is of white noise ty
and the middle region is characterized approximately b
power-law behavior, that is, in a log-log plot the PS satis
S; f 2g, with g.0. This is for example the case of Eco
shown in Fig. 2~a!. When compared with Fig. 1 or with Fig
1 of @6# we see that the averaging methods of@5,6,8# and@9#
do not show the true behavior of the PS at low frequenc
In this calculation we used the first 222 nucleotides, which
corresponds to 90% of the Ecoli DNA. We show anoth
case with the same behavior in Fig. 2~b!, which is the PS of
Aquifex aeolicus. For the PS ofAquifex aeolicuswe used the
first 1020 sites, which corresponds to 68% of the cha
length. The other organisms, among the ones studied,
show the same PS behavior areArchaeoglobus fulgidus, Syn-
echocystis PCC6803, Mycoplasma pneumoniae, and Myco-
bacterium tuberculosis.

~b! The second type of behavior is the one in which t
PS at small frequencies of all the nucleotides present
power-law behavior, which is approximately an extension
the PS behavior at intermediate frequencies. For these or
isms, the PS presents only two regions: a flat one at h
frequencies, and a power-law behavior for intermediate
low frequencies. A typical case for this kind of behavior
shown in Fig. 2~c!, which is the PS ofBacillus subtilis. In the
calculation of the PS in this case we have used the first 122

sites, which corresponds to 99% of the total length of
chain. The other organisms studied that have similar PS
Treponema pallidum, Pyro-h Pyrococcus horikoshii OT3,
andMycoplasma genitalium.

~c! The third, and last, type of behavior we have seen
the one in which, for a given organism, different nucleotid
present different asymptotic behavior for the PS at low f
quencies. That is, the PS flattens off for some of the nu
otide sequences, and for the others it remains approxima
a power-law. An example of such a behavior is shown in F
2~d!, which is the PS ofHaemophilus influenzae Rd. We see
that different behavior for the PS are grouped in pairs. In
the cases studied we found that the PS of A is qualitativ
similar to the PS of T and the one of C is similar to the o
of G. This kind pairing of the statistical features of nucl
otides has been reported for yeast chromosomes in@1#. This
is consistent with the strand symmetry of DNA sequenc
reported in@15#. A possible explanation for the single-bas
strand symmetry is provided in@16# and @17#. In the calcu-
lation of the PS we have used the first 1020 sites of the DNA
chain, which corresponds to 57% of the total number
nucleotides. Since a large number of sites are left out of
calculation, we have also analyzed the PS of the central
final region of the chain. We verified that the results rem
essentially the same as the ones shown in Fig. 2~d!. The
other organisms that have similar statistical features for
PS are Chlamydia trachomatisand Helicobacter pylori
26695.

For very large DNA sequences, such as the ones of m
more complex organisms than microbes, all the three m
ods discussed above for the calculation of the PS may
impractical, due to computer limitations. In this case, an
proach such as the one used in@13#, in which the density
sequence rather than the original base sequence is used
Fast Fourier Transform, will certainly be more appropriat
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FIG. 3. Autocorrelation func-
tion of Ecoli for ~a! A and T,~b! C
and G,Aquifex Aeolicusfor ~c! A
and T,~d! C and G,Bacilus subti-
lis for ~e! A and T, ~f! C and G,
and Haemophilus influenzae R
for ~g! A and T, ~h! C and G. The
horizontal lines arêxk&

2. Statisti-
cal linear independence betwee
the nucleotides in a given se
quence occurs whenR[^xkxk1 l&
5^xk&
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B. Autocorrelation function

The autocorrelation functionR( l ) of a numerical se-
quence is, by definition,

R~ l ![^xkxk1 l&, ~4!

where the brackets denote average over the sites along
chain. For l 50, Eq. ~4! implies R(0)5^xk

2&, which is a
quantity carrying no information about the relative positi
of the nucleotides. As in the case of the power spectrum
S(0), this quantity will be neglected in our calculation
There are two reasons why we do not use the more tr
tional definition of AF, that is,R( l )[^xkxk1 l&2^xk

2&. The
first, and most important one, is that there is no simple re
tionship between the traditional definition and the PS. T
the

r

i-

-
e

PS and the AF are Fourier transform pairs, as discusse
@18#, only when the AF is given by Eq.~4!. Also, the ana-
lytical connections between these two quantities discus
below, such as power-law in the PS implying power-law
the AF, are valid only with the definition we use, not wi
the traditional definition. The other reason is that the tra
tional definition can result in negative values for the AF,
we see below, and this does not allow us to plot it a log
rithmic scale.

Statistical independence between sites separated by a
tance l implies that^xkxk1 l&5^xk&

2. The value ofl above
which this condition is satisfied~on average! is called the
correlation length. DNA molecules, depending on the org
ism, can form an open or a closed loop. Bacterial DNA u
ally forms a closed loop@19#. For circular chains, the auto
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correlation function and the PS form Fourier transform pa
~this is the Wiener-Khintchine theorem! @18#. In order to
consider the entire DNA sequence~without having the con-
strains of the Fast Fourier algorithm! we calculate the AF
using its plain definition, that is, Eq.~4!, and not via Fourier
transforming of the PS@20#. We present results forl in the
interval @1,105#. This is a much larger interval than the on
considered in previous publications@1,21#, which took l in
@1,103#. It is obvious that whenl !N, as it occurs here, i
does not matter if we consider open or closed boundary c
ditions. Since we find it computationally easier to consid
open boundary conditions, we present the results of the
for this case. It is beyond the scope of this paper to st
cross-correlation between two different kinds of nucleotid
Such a kind of study can be found for example in@1,2#.

We show in Fig. 3 the AF versusl for the sequences
whose PS we displayed in Fig. 2. Since the AF presen
strong oscillation of period 3@2#, we chosen to be a multiple
of 3 in order to smooth it out. Here we have usedn533
~there was no particular reason for choosingn a multiple of 3
in the calculation of the PS!. In Fig. 3 the horizontal lines are
the corresponding values of^xk&

2. When R( l )[^xkxk1 l&
'^xk&

2 statistical independence between the nucleotides
given type holds. As Fig. 3 shows, whenl &100 the AF is
roughly flat for some sequences, and for others it is appr
mately a power-law. Then, asl increases we see a regime
a power-law in all cases. For the interval ofl studied, we
observe that the AF can get flat again asl increases even
more ~with R( l )'^xk&

2), or not reach a plateau. For th
sequences where the PS flattens off at low frequencies
expect that the AF will get flat for largerl, with statistical
independence holding. However, for most of the cases s

FIG. 4. Power spectrum of Ecoli, in the range of frequenc
from 0.001 to 0.1, in which the averaging is done by dividing t
entire DNA chain in subsequences of 1024 nucleotides for~a! A
and T, and~b! C and G. They-axis has a linear scale.
s
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ied, this happens whenl @105. Only the AF ofAquifex aeoli-
cusseems to reach a plateau forl in the interval@1,105# for
all the nucleotides. This is shown in Fig. 3~c! and Fig. 3~d!,
where we observe that the correlation lengths for this org
ism appear to be between 103 and 104. For the other organ-
isms studied, we see a wide variety of behaviors for the
in the region ofl P@103,105#. As Fig. 3 shows, we find case
in which the AF reaches a plateau with statistical indep
dence between the nucleotides, in others we see a slow
crease of the AF, such as the AF of A forBacillus subtilis.
We also find an abrupt change of slope in a plateau reg
like the AF for A and of G inHaemophilus influenzae Rd.
And most interestingly, we find the presence of an
correlations, that is,̂xkxk1 l& being smaller than̂xk&

2. This
implies that sites separated by a given distance tend to
occupied by different nucleotides. The case in which t
appears more strongly is in the AF of C forHaemophilus
influenzae Rd. We have also observed that most of the s
quences present a peak in the AF atl'100. We have found
that the corresponding peaks are also seen in the PS. We
show this for Ecoli. In order to significantly reduce fluctu
tions, we divided the DNA sequence of Ecoli in reasona
short segments of 1024 bp and applied the averaging me
used in@5,6,8#, which was described above. The results, w
a linear scale in they-axis, are plotted in Fig. 4~a! for A and
T and in Fig. 4~b! for C and G. In the PS the peaks of A an
T are broader and higher than the ones of C and G. Du
the properties of the Fourier Transform, the wider peaks
the PS are narrower in the AF, and vice-versa, as we se
Fig. 4. Also, the location of the peaks are not the same for
the nucleotides. For A,T they are atl'100 bp, but for C and
G they are atl'80 andl'60 bp, respectively. To the best o
our knowledge, this kind of periodicity has never been
ported before, and the reason for it is unknown to us.

The final point we discuss is with respect to the function
form of the PS and AF. For analytical studies the easiest w
to derive relationship between these two quantities is
transform the sum of Eq.~1! into an integral@22#. There are
three typical cases that are well studied and understood.

~a! When the AF obeys a power-law in the entire range
lengths, that is,R( l ); l 2g ~with 0,g,1) results inS( f )
; f g21, which is also a power-law. Forg close to zero, this
implies S( f );1/f , that is, a fractal behavior.

~b! In the case that the AF decays exponentially, that
R( l );exp(2l/lc), wherel c is a characteristic length, result
in S( f );1/(11 f 2l c

2). Here, whenf !1/l c implies in S( f )
being constant in this frequency range~white noise!. When
f @1/l c one hasS( f );1/f 2.

~c! When the AF is described by a function that is a pro
uct of an exponential decay and a power-law, that is,R( l )
; l 2g exp(2l/lc), results in S( f );(11 f 2l c

2)(g21)/2. For f
!1/l c implies inS( f ) being constant in this frequency rang
When f @1/l c one hasS( f ); f g21.

Thus, for cases~b! and~c! there is flattening of the PS a
low frequencies only. In case~a! there is no flattening at all
This is not exactly what happens in DNA sequences. Th
we see flattening of the PS athigh frequency, and in some
cases also at low frequencies. For the AF there are case
which flattening occurs for largel and in most cases flatten
ing also occurs for smalll. An intermediate power-law re
gion is found for both the PS and the AF. Our prelimina
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studies indicate that there are not many typical functions
would reproduce the behavior of the AF and PS for DN
sequences. Note that the non-triviality of this point com
from the fact that these functions are linked by the sum gi
in Eq. ~1!. So far, the best candidate we have found is

R~ l !5
A exp~2 l / l c!

~B1 l !g 1C. ~5!

Qualitatively we have found that this function correctly d
scribes what we have seen for the PS and AF of DNA
quences. In a future study, we plan to further investigate
question, and if this function proves to be the most appro
ate one, we will use methods of minimization to find t
parametersA, B, C, l c, andg that best fits the AF and PS o
the sequences studied.
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III. CONCLUSION

In summary, we have studied statistical properties of
complete DNA of 13 microbial genomes and shown that
fractal behavior not always prevails through the entire cha
For some sequences the power spectrum gets flat at low
quencies, and for others it remains a power law. In the st
of the autocorrelation function we have found a rich varie
of behaviors, including the presence of anti-correlations.
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