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Modeling the effect of an external electric field on the velocity of spike propagation
in a nerve fiber
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The effect of an externally generated electric field on the propagation of action potentials is modeled,
assuming the Hodgkin-Huxley equation for the voltage-dependent conductance of the membrane of a nerve
fiber. With some simplifying assumptions, this conductance together with Maxwell's equations leads to the
Hodgkin-Huxley differential equations for propagation, modified by a term proportional to the gradient of the
externally generated electric field component along the nerve fiber. Computer solution of these equations
shows the influence of an electric field gradient on propagation velocity. When the electric field oscillates,
voltage spikes starting later along a given axon advance or lag relative to earlier spikes, so the time between
spikes at the receiving end differs from the time between spike originations. The amount that a low-frequency
electric field modulates pulse timing at the end of a fiber relative to that at the beginning is estimated under
several conditiond.S1063-651X99)04811-4

PACS numbd(s): 87.50—a, 87.10+e

[. INTRODUCTION spike time intervals can be different at the receiving end of a
nerve fiber from the intervals at the transmitting end. In other
The interaction of electricity with the human body haswords, an ELF field modifies the information coded into
been of interest for over a century; in recent decades, quegulse intervals.
tions have been posed concerning possible health effects of Hodgkin and Huxley obtained data by which to determine
extremely low-frequencyELF) electric fields produced by Parameters for their model and against which to test the

power lines. This report generalizes a recent analysis of thElodel by imposing an externally generated voltage as a step-
current density induced in nerve fibers by ELF fieldg to function of time across the cell membrane and assuming that

account for nonlinear membrane conductivity. It will be the current density transverse to the membrane would be the

shown that because of the nonlinear relation between voltage® ™€ ?s dlt _I‘_’ﬁOUkithr the ds?_me_tvoltag? futr_lctlon gatural_llé_/
and current density across the membrane, an externally geﬂ_enera ed. Thus théir model In 1ts construction and specifi-

erated electric field can slightly speed or retard the propag%aIIy in its relation to m.easure.d data assumes thqt a mem-
. . . rane voltage as a function of time results in a certain current
tion of action potentials.

The propagation of an action potential requires a nonlin_density as a function of time, regardless of the source of the
. . voltage. The model proposed here uses the Hodgkin-Huxley
ear relation between voltage and current density across gy ,ations for current density across the cell membrane in
me_m_brane2 as was quz_;mtlfled by |—_|0dgk|n and Huxley Mrelation to membrane voltage, and follows Hodgkin and
their investigations of spike propagation along the giant axonyuxley in assuming applicability of these equations even
of the squid[2]. It is important to distinguish in their model \yhen an external source influences the membrane voltage. In
between(1) the equations relating current density across thesec. |1, Scott's derivation of the propagation equations from
membrane to voltage drop an@) the equations derived Maxwell's equations is generalized to allow for an externally
from these(by use of circuit theoryfor the propagation of generated ELF field. This results in the Hodgkin-Huxley dif-
voltage spikes along the axon. Later Scott derived thesferential equations for spike propagation, modified by a term
propagation equations from the equations for current densitfor the externally generated ELF field. Computer solution of
across the membrane, Maxwell's equations for the electrothe differential equations then produces a relation between
magnetic field, and a few approximations, without assuminghe gradient of the ELF field component along an axon and
circuit theory[3]. the propagation velocity, as described in Sec. Ill. Section IV
Another example of an effect in animals which dependsextrapolates these results to estimate the effect of an external
on the nonlinear membrane conductance is the naturally odield gradient that oscillates in time.
curring conversion of a receptor potential into a train of volt-
age spikes in a nerve fibg4,5]. In this example, the mean Il. FORMULATION OF PROPAGATION EQUATIONS
time interval between spikes codes the intensity of sensation.
Coding information into intervals between voltage spikes on Scott discussed the relation between Maxwell’s equations
nerve fibers is ubiquitous across the animal kingdom. for the electromagnetic field and the Hodgkin-Huxley equa-
This report concerns a nonlinear response of a nerve fibdions for propagation of a voltage spike along a nerve for the
to an ELF electric field. The gradient of the ELF field com- case of zero incident fiel8]. The formulation here accounts
ponent along a nerve fiber will be shown to influence thefor an incident field and attends in more detail to certain
velocity of propagation. If the ELF field oscillates, then so approximations needed to arrive at the desired propagation
does the propagation velocity, with the result that spike-to-equations.
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In cylindrical coordinates d, ¢,z), the nerve fiber is a 9
cylinder defined by><a. An electromagnetic field is defined €in—rE,(@ ,z1)+J,(a",21)
both inside and outside a boundary defined dya; the
membrane of the nerve fiber is modeled as a limiting case of d . N
zero thickness. Thus the membrane partitions space into an = €ourz; Ep(@,2)+J,(a",2,1)
inner regionp<<a and an outer regiop>a. The voltage-
dependent conductance of the membrane is expressed by a
nonlinear boundary condition joining the two regionspat
=a.

Maxwell’'s equations relate the electric field the electric ~ With Eq. (1), one obtains from this
displacemenD, the magnetic fieldH, the magnetic induc- ; J
tion B, the charge density, written here asand the current 7 _~ 7 _
densityJ. Using Sl units, lefuy be the magnetic permeabil- azH(@20=CuZr (2D = Jmenf 2,1). ®
ity of free space. Letting the indgxake the values “in” and ]
“out,” let ¢ and o; be the dielectric permittivity and the [If the membrane were characterized by a voltage-
electrical conductivity, respectively, in regign Azimuthal ~ independent conductivityryem, one would havedyeq,=
symmetry is assumed{Jd¢=0), as is a transverse magnetic ~ ImenP/ . Then for the static situatiorin which d/dt
field: H=e4H 4 (so H,=H,=0). From this it follows that =0) in the case for whiclarj,= oo, it is easy to check that

the electric field has only andz components, and these are EQ. (4) implies the condition(B12) in [1], in the limit as&
determined byH , [3]: —0; however, for nonstatic situations, the capacitive term

dd/at is important]

:_CM%q)(z,t)vLJmem(z,t). 4

J J J
( €] 54_ o Ep= € EEP+JP: — £H¢, (1) B. Second relation: boundary condition asp— o
To establish the second relation betwekrandH ,, one
notices that close to any point on the membrane, the electric
<6j£+gj E,= e-jiEz_{_‘]Z:E ipH¢. ) fielq is W_eII_ approximated by the_ gradient of a potential
ot at d which satisfies the Laplace equation. As analyzed by Scott

[3], this implies that a voltage drop across the membrane has
Maxwell's equations provide a scalar wave equation for the? Z derivative related to a jump in the tangential electric field

governing componentsl 4 : component, from p=a” to p=a":
J
P2 91 a P P 5®(z,t)=Ez(a‘,z,t)—Ez(a+,z,t). (6)
—t———p— —+o | =|H,=0.
a2 appap” M(’(e’ﬁt oi) 5t |He=0- O

Applying the operator

The main focus of analysis is on the potential difference
®d(z,t) across the membrane. This potential will be related to
H, in two ways: the first way uses E({l) and the continuity
of H, at p=a together with the Hodgkin-Huxley equations to Eq. (6) and using Eq(2), one obtains
relating membrane voltage to membrane current density; the
second uses Ed2) along with a boundary condition gs d
— o0, which depends on the incident electric field from an| %in™ €in ¢
external source and expresses the incident electric field in the

J J
Oin™t EinE Ooutt eoutﬁ

d\ d
Ooutt Goutﬁ 5@(2,0

model. Elimination ofH, between these two relations will _ a\1 9 H (s
provide the propagation equations fdr, modified to ac- =| Tourt €out ¢ ;%p s(a,z,t)
count for the incident electric field.
Jd\l o
_(Uin+ eina); %pH¢(a+,z,t). (7)

A. First relation: continuity of H

To establish the first relation, impose the continuitylyf ~ The next task is to determine thederivative ofH, asp
(but not its normal derivatieat p=a. From this follows the ~—a™ in terms ofH 4(a,z,t). This determination involves a
continuity of 9H ,/dz, and in turn, by Eq(1), the continuity ~ boundary condition o, as p— <0, which in turn depends
of (¢;0E,/dt+J,). One views the membrane as a limiting on the incident field, conceived as the electromagnetic field
case in which a thicknesé shrinks to zero, withE,é— that would be present due to an external source if the nerve
—® and €pem/ —Cy , Where® is the potential of the out- fiber were removed. It is convenient to specify the incident
side of the membrane relative to the inside abg is a field by E}'(0,z,t), the zcomponent of the incident electric
capacitance per unit area of the membrane. This form is corfield along the axis of the nerve fiber, and to work with
sistent with the following relation between tpecomponent  Fourier transforms.
of current in the membrang,,.,, and the components &, Denote the Fourier transform with respect tindz by an
andJ, outside the membrane: overbar, so an arbitrary functioy(z,t) has as its transform



5920 JOHN M. MYERS PRE 60

— def 1 I wheref, supposed known, is defined by
9B w)=5- dtdz “t=AAg(z,1); (8)
def
the inverse transform is f(z,)=E;(0z1), (11)

g(zt)= %f f dodge (“=Fg(B, w). (9)  the propagation constant in regipis defined by

The nonlinear aspect of the problem is confined to the kf= B2~ po(€j0’ +iwory), (12)
boundary atp=a, so Maxwell's equations are applicable;
from Eqgs.(2) and(3), it follows that andl, is a modified Bessel functigi6]. It is routine[3,7] to
— e — show that(for coefficientsC(8,w) and D(B,w) yet to be
E; (p.B,0)=f(B,)lo(Koup), (100 determinedt
_ Hy(a,B,0)l (ko)1 (kpa) if p=<a,
H¢(P,B,w): 4:( B,o)1(Kinp)/11(kia) P . (13)
C(B,w)l1(Koup) + D(B,0)K(Koyp)  Otherwise,
from which it follows that
10 — kinH s(a, B, @) o(kna)/1 (k@) as p—a,
—a—pHd,(p.B,w):l in qﬁ( B, o)l o(kina)/11(kjna) pP— i (14)
pop Koul C(B,)1g(Kou@) =D (B, @)Ko(koy@)] as p—a’.

The Fourier transform of Eq?2) is used to specify a boundary condition of the total field approaching the incident field as
p— .

10 — ; =inc .
;%quﬁ(p!Brw)_)(o-out_lweout)Ez (p,,B,w), (15)
this and Eq(14) result in
KouC(,0) = (0oui weoun) {(8,0). (16)
Continuity ofH,, at p=a and Eq.(13) imply
Hy(a,8,0)=C(B,0)l1(Kud) + D(B,©)K1(Koud).- (17)

Solving Egs.(16) and(17) for C and D and substituting these solutions into E#i4) produce
. kinH g(a,8,0)1o(kin@)/11 (k@) as p—a~,
;%pif,(p,ﬁ,w): (Tou— 1 @€ou) F(8,0)/[Kou@K1(Koy@)] (18)
—KouH ¢(aa:8:w)KO(kouta)/Kl(koula) as P"a+-

The substitution of Eq(18) into the Fourier transform of Eq. C. Combining the two relations
(7) yields Eliminating H,, between Eq(19) and the Fourier trans-
form of Eq. (5), one finds
L= Kinl o(Kin@)
1BP(B,w)= -
BEB )= G Twen T (knd) o Kl o(Kind)
(iB)*®(B,w)= :
KouK o( Koud) _ (on—iwep)l1(kixd)
(Oou— i wequKi(Kou@) Kouto(Kou@)
f_(ﬁ, ) (0 out— 1 we€ou) K1(Kou@)
RN ok A 19 R —
Ko Ko (Koud) 19 X[ =i 0CyB(B,0) ~ Inenl £0)]
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i,Bf_(B ) D. Propagation equation modified for an external field
- Kou@K1(Koud) ' (20 As their model ford,,em, Hodgkin and Huxley take
which implies the following equation, more convenient for Jmenf 2,8) = I P1, (27)

inverting the transforms to thez(t) domain: L .
g ) where they call-Jyy[®] the “ionic current density” and

| BEM(0 ) define it by a system of equations that are ordinary differen-
G(B,w)(o—i wem)( — B2D + M) tial equations irt, with coefficients that are functions of both
Kou@ K1 (Kou@) tandz
= —10CyP(B,®) ~ Inenf B, ), (2D def
! " ~ Iy @]=gen(® — D) + gamPh(D — Dy,)
whereg(z,t) is defined by its transform +gU(Dd—D)) (28)
ap w):(kinlo(kina) +(Uin_iwein)koutKO(koula))_l where ®.=77 mV  and ®y,=-50 mV, @,
' li(kina) (oo~ iweqKi(Kou@) | =54.401079 mV; the first two play the role of Nernst po-

(22) tentials, whiled®, is chosen in a way discussed below. The

The f . is sharol ked relati he i | fg’s are constants with units of conductance per unit area:
e functiong is sharply peaked relative to the time scale o gx=360 S/n, gy.=1200 S/mM, andg, =3 S/nt.

all between 0 and 1 and correspond to the opening and shut-

X 2

E(,B,w)= E( 1+ (kin2) ting of gates that regulate conductance. At any ppiatong

2 8 the fibern, m, andh depend on the history of voltage at that
(o—iwe) |\t point, according to the ordinary differential equations
+(Kou@)? IN(2Kgy@) 57— ————
( OUla') ( outa) 2(0_0ut_ i Q)Eout) ) d n 29
r=—= 1-n)—pBun,
+O((Kou@) IN?(Key), 23 gt~ oA 29
G i i <1 ichd| dm
so thatg is flat over the regiofk,,a| <1 in which® (3, ) 18 (1—m)-B.m, (30

is significant. To arrive at the propagation equation of dt

Hodgkin and Huxleywith or without an external field one

makes two approximations, the first of which replagely d

a/2 times ad function. The denominator in E¢21) which r_la=ah(l—h)—,3hh, (32)

divides the external field is
Kou@ K1 (Ko@) =1— %(koula)z[ln(Z/kouta) + % —v]
+O[ (Kou@)* IN(Kou@) 1, (24)

where y=0.5772 - - is Euler's constan{6]. The Fourier andT is the temperature in degrees centigrade. Hodgkin and
transform of an ELF external field gradient/dz is negli- ~ HUXIey state ther's andf’s as functions of an offset voltage

gible outside the region defined by|<lla and |2 v defined by

wherer is a temperature-dependent rate constant defined by

r(T)=30"6310 kHz, (32

<|a®/pueei], so in this case the denominat(®4) can be def
replaced by 1; this and the replacemengaby a/2 yield v=>0—Pp. (33
a ( 92 g Forv in mV:
= ot en= || —=P(z,t)+ —EM(0z1)
2 at)\ 9z2 dz % 01 (0.v+1.0) 31
P an(V)= “exp(0.v+1.0—-1" (34
=Cu 5 (20~ Imenf 2.1). (25)
B,(v)=0.125 expv/80.0), (35)
In deriving the Hodgkin-Huxley propagation equation, a sec-
ond approximation is made: one negleeis;, compared ~ (0.v+25) 36
with oy,, thereby simplifying Eq(25) to am(V) = exp0.lv+2.5—-1" (36)
aoy | & I inc B(V)=4.0 exgiv/18.0), (37)
> Ed)(z,tH— ﬁEZ (O,Z,t)
an(v)=0.07 exv/20.0), (39)
d
= —d(z,t)— 1). 2
Cu 51 P(20 = Imenl2,0) (26) Bn(v)=1[exp0.1v+3.0+ 1.0]. (39)
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The square brackets ifyy[ ®] indicate that the membrane  When the additional constraint is imposed tdatand F

current density atZt) is a function of the history of mem- be invariant with, one has the quiescent case, which is just

brane voltage at for times earlier thar, i.e., ®(z,t") for  the algebraidrather than differentialequation for a mem-

t'<t. brane voltageb,(F) independent of as well as indepen-
In order to study the dependence of propagation velocitydent of 7

on parameters, it is convenient to reexpress these equations

in dimensionless time and distance parameters: 0=ny(@o(F)[Po(F)— D]
def ONa 3
=r(T)t (40) +ams(¢o(|:)) hs(Po(F)[Po(F) — Pyal
and oL
+ ——[Po(F)—P ]-F. (46)
def ONa
{=(2g¢/agin) 2. (41)

The Hodgkin and Huxley model, partially specified, con-
In these variables, /4t in Egs.(29)—(31) is replaced by tains a parameteb that must be assigned a numerical value

dl T while Egs.(26)—(28) combine to produce to fully specify the model. Hodgkin and Huxley assumed
implicitly that the value assigned t®, is independent of
92 9 any external field, and hence independent of the external
P (Culg) 7P (L 7) field gradientF, and that assumption is made here. Thus if
9 ® is defined for one special case lef it is defined for all
Ona cases. For the case=0, the value ofb that makes the ionic
=n*d— D) +—m3h(d—Dy,) current 0, satisfying Eq46), depends od, . Conversely, if
9k one knows the voltagey (called the resting potentiaht
gL which the ionic current is O for the cae=0, one can assign
+ %(‘D_(DL)_F(LT): (42)  to @, the value for which the solution to E@46) is the

resting potential. Hodgkin and Huxley chose the value for

whereF is (aoi,/2gx) JEN(0,z,t)/ 9z expressed in thel(7) @, such that

coordinates:

Do(0)=Dr=65 mV. (47)
def J .
F(¢,7)=(ao/2gx) >—EY°(0(adi/2gx) Y2¢,r ~17). IIl. TRANSLATIONAL INVARIANCE FOR CONSTANT
9 OF (2,0)192

(43)
In casedEy“(z,t)/9z is constantF =F, is constant and
Hence the approximations used to derive the propagatiothere exists an everywhere-finite solution to E4) of the
equations of Hodgkin and Huxley produce for the case of afgrm ®(7— ¢/y) for an as yet undetermined normalized ve-
external field the additiongldriving) term —F proportional locity parametery. This corresponds in the variablest) to
to —JE;/dz in Eq. (42). a propagating action potential that is a function of ¢/ 6)
where the physical velocity is
E. Static case and the resting potential

Consider the case in whichd®/9d7=0 anddF/dr=0. In

this case, one has a membrane voltdgg) with no depen-  ope gptains in this way the following fifth-order system of
dence onr, andn({,7) has a static valuey({), found by  oginary differential equations, which contains a given con-
settingd/dt=0 in Eq. (29): stant gradienF, and the as yet undetermined velociyas
parameters:

0= (aoi/29¢) ¥ (T) y. (48)

def
N{O)={1+ Bn(@ (D)) an(®())} 1, (44)

2 rCy d
with similar equations fomg andh,. Thus the order of the — ®(1)=9? g—M d—T¢(T)+n4[‘D(T)—CI>K]
system of differential equations drops from 5 to 2, and one dr K
has in place of Eq42) the second-order system: Ina

+=—=—m3h[D(7)— Dy,]
Ok

(?2
— D) =n(P()(P—Dy) o
” + g_[(D(T)_CDL]_Fo ; (49)
K
ONa
" ams(d%g))?’hs@(g))@—cha) accompanied by the normalized form of E¢@9)—(31):
9 d
oo (P P)-F(), (45) d—:=an<1—n)—ﬂnn, 50
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m I B o
o = (L~ m)~ B, (51) 128 |

dh

3= an(1=h)=Bih. (52) 1256

These four equationgnd the definitions of the’s and
B’s) define a propagating action potential. The main focus of
this report is on determining as a function ofF, (and of
rCm/gx). The procedure is the same as that used by
Hodgkin and Huxley for the casey;=0. As is well known
for the casd~;=0, solutions that are everywhere finite exist

S

only for special values of. For a single-spike solutiony is -0.2 -0.1 0 0.1
. F, (mV)

uniqgue and depends oR,, as well as on the parameter 0

(rCm/9k). FIG. 1. Plot ofy versusF for rCy, /gx=1/36.

To find y(Fq,rCy,/gx), one proceeds by trial and error,

guided by the fact that, just as for the caseFf=0, @ gyt to 15 decimal places. The parametéF)Cy, /gy was set
guessed value that exceegldeads—on integrating the sys- first at the value corresponding to the squid axon at 6 °C, and
tem of equations—to a trajectory that dives toward negativgnen for several other values. For each such vafigayas set
infinity, while a guessed value that is too low leads t0 a5t 5 syccession of values. For each valueFgf an initial
trajectory that rises without bound. guess was made far, and the system of ordinary differential
equations was integrated, starting from values on the linear-
A. Defining y ized trajectory close to the singular point, at whidh
=®(Fy)—0.0001 mV. Integration was continued until the

For F constant, the system of ordinary differential equa-, . X "
A y d ajectory exceeded either a positive bound of 135 mV or a

tions is autonomous, and so is characterized by a vector fielﬁ

defined on a five-dimensional phase space with coordinaté%egative bound of-135 mV. Two values ofy were deter-

(®,dd/dr,n,m,h) [8]. This field and hence the integral mined such that one resulted in a positive overshoot, the
cur’ves cor're'sp'onding to solutions of the system are paran‘?—ther negative; then a binary search produced a succession of

; = he trial value forv. E val_ues ofy3 so as to clos_e_ in on the valu,eséFOZr(T)C,\,I 19x) _
Sglljgg 33(:00’ rE:C M/gg" ’ a?]r(;dtr:eetrtig?v\;ijgefo?ywth e?; ?Sn é which partitions the positive from the negative overshooting.
' M K ’

trajectory that starts from the quiescent point having coordi—'; ;Iité'a'rt]?r;gﬂgs determined this value to better than ten sig-
nates (®q,0,ng(Pg),My(Pg),ho(Py)), where &y is short ) R B

for ®((Fy). This is a singular point, a saddle point. Only for (_I(:)o(;l aF/rt%nptiE‘turrﬁcgéug:s ié:Idsart]r?;Mr_es%ulgFé%fwn in
the special values does this trajectory return to the quiescent F'_ : 1 ’ d p2 f y F 1 (T)Cu/ d
point; for all other values it shoots off to plus or minus ',gf an or ¥ O’r.( )Cu/g)  an .
infinity in the ® coordinate. Searching over trial valuesypf 7 . ﬁY(FO’rq)CM/gK)/‘?FO’ respectively, the latter in
back and forth between the regions that generate positive arfits of mV"*~. For likely fields from external sourcef

. . ; <0.01 mV, and in this regime Fig. 1 shows that
t hoot det th | value. '
negative overshoot determines the special value v(Fo,r(T)Cyn/gk) is well approximated by only the first

B. Initial conditions 0.3

Trial values ofy are found to be too small or too big by
integrating the system of equations. For any trial value, ini-
tial conditions for this integration follow from linearizing the 0.2
system of ordinary differential equations around valdes,

m, and h that define the singular point. For this linearized
system, one finds a solution that begins with exponential
growth by numerically finding the real roots of the charac-
teristic polynomial.(The exponent is a function d¢f, and a
trial value of the velocity parametey, for which one can

0.1

¥ '9vF, (mv )

solve numerically. This initial condition, more precise than
the initial condition used by Hodgkin and Huxley, is moti-
vated by the desire for as much precision as possible in de- 01
termining howvy(F,,rCy /gx) depends otk e
IV. NUMERICAL ANALYSIS ool o v ]
The numerical solution ofy(F,,r(T)Cy/gx) was per- —0.2 R my ° 0.1

formed as follows, using a fourth-order Runge-Kutta routine
[9] to forward integrate the equations in arithmetic carried FIG. 2. Plot ofy~19y/9F, versusF, for rC,, /gx=1/36.
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TABLE |. Dependence ofy andy onr(T) atF=0.

r(T)Cwu/gk

¥(0)

y(0) 1y (mv™1)

1.00/36=0.027777777
1.50/36=0.041666666
2.00/36=0.055555555
2.50/36=0.069444444
3.00/36=0.083333333
3.50/36=0.097222222
4.00/36=0.111111111
4.50/36=0.125000000
5.00/36=0.138888888
5.50/36=0.152777777
6.00/36=0.166666666
6.50/36=0.180555555

12.743143653
9.760029779
8.029646202
6.877171563
6.044387337
5.409165600
4.905562618
4.494557981
4.151453199
3.859783923
3.608113894
3.388228726

0.129445819
0.107600697
0.102590168
0.104611181
0.110250898
0.118032410
0.127230295
0.137460700
0.148513560
0.160275428
0.172690892
0.185742098

two terms of a Taylor expansion:

Y(Fo,rCm/9x)=y(0rCy/gx)

d
+Fo§_|:07(FOJCM/9K)

Fo=0

(53

PRE 60

that F changes by no more than a few percent of its peak
value asr changes byry,ssand as{ changes by .

B. Pulse trains subject to slowly varying gradients

The Hodgkin-Huxley equations have solutions not only
for the isolated voltage spike studied above, but also for
trains of such spikes, with nearly the same velocity as for a
single spike. Consider a sequence of voltage spikes, each of
which propagates along an axon along #haxis of a coor-
dinate system, and suppose the axon is subjected to an inci-
dent electric field parallel to the axon having a gradient
defined in Eq.(43). If F varies slowly with7 and ¢, then
each spike can be expected to vary in its speed of propaga-
tion as would a single spike propagating with a consi&t
equal to the value oF at the time and place of the spike.
That is, the(normalized time 7({, 75) at which a spike start-
ing at /=0 at time 7, reaches positiod is determined by
assuming that thénormalized velocity of a spike along the
way at (¢',7") is y(F(Z',7")). From this assumption of “lo-
cally flat” behavior follows a differential equation for the
normalized timer({,7,) at which a spike passing=0 at
time 7, reache<:

dig 7(¢,7a) = 1/(local velocity = 1/y[F(Z,7(L,7a))].
(55

Itis convenient to abbreviate the terms on the right-hand sidg solve this equation approximately, it is convenient to first
of the approximatior{53) by writing y(0) for y(0,rCy/9x)

and y for (9/9F) y(Fo,rCM/gK)|FO=O. Numerical compu-

tations ofy(0) andy(0) 1y in units of mV"* as functions

of the temperature-dependent raf{&) are shown in Table I.

V. MODULATION OF PULSE TRAINS

A. Slow variation in F

transform it into an integral equation, assuming thatrat
=7, the spike is at=0:

¢
(L, 7A)=Tat fo d'{(VF(E 7 maD] . (56)

Under the very reasonable assumption that a first-order
Taylor expansion expressegF,) viewed as a function of
F, (omitting to write explicitly the dependence gfon the

An_es_timate of the_ effect of a slowl_y oscillating incident parameterC,, /gx), one has
electric field on the timing of successive pulses propagated

along a nerve can now be made. The first step is to define

“slowly.”

V78 m))]=90)+yF(, (L, 7a), (B

An action potential propagating along a nerve dEfine%/vhere v(0) andy are coefficients independent ¢fand 7:
time and distance scales in the normalized variablasd{.

Let 7,45s0€ the normalized time duration for the passage of

an action potential past a given position, anddgt. be the

normalized distance along the axon occupied by an action
potential at a given time. While,,¢sis roughly constant

from 6 to 20°C, v varies with the parameteiC,,/gx as

shown in Table I; for the axon studied by Hodgkin and Hux-
ley 7,265, and the corresponding,,ssis about 5 ms at
6.3°C and 1.2 ms at 18.5°C. The normalized distance along
the axon occupied by an action potential at a given time is

Locc= Y Tpass

(59

which implies a physical distancg,.~6 cm at 6 °C and

2.3 cm at 18.5°C.

The purpose of this section is to study an axon subjected
to an incident electric field gradier® along its axis that

oscillates slowly with normalized positioh and time 7 (in
contrast to the assumption of Sec.)|IBy slowly is meant

v(0) is short fory(0,rCy,/gx) and

_def o
')’:(Q_FO')’(FOJCM/QK) e o (59

0=

Substituting Eq(57) into Eq. (56) yields

{ .
7({,7a)=7aF fo dg' {y(0)+y[F(' 7(¢  7a)]} T
{
~Tpt J; dg’y(0)~*

:)’ ’ ’
Xll_W[F(g !T(g :TA))]]

I S 2 P
~ N0 y(O)foo'g F('.7({' 7a)), (59
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which is suitable for solution by successive approximations.

Let T(O)(év, 7a) = 7o+ ¢/ v(0) and define

{

2 (n—1)
= y(o)f dE (7D 7).

(60)

(g 7= Tat

When the sequence converges, Jim ™™ (¢, 74) = 7({, 7a).
Under the assumed conditions of “smd&l|” the first ap-
proximation is already a good approximation:

Jdé’ F(Z" 7at"1v(0)).
(61)

{
T(giTA)%TA—F,}/(_O ,y(o)

C. Example

As a straightforward example, I1€({,7) =, coswr, in-
dependent of. Then the integral in the approximatigfl)
is elementary and one obtains

(L, m8) = {Slnw[TA+§/y(0)] sinwT,}
~ 2'7fo _
=Tp— wy(o)SIr[(/2)/(0)]C0$7'AvL Z12y(0)].

(62

Suppose a sequence of spikes is propagated starting at
. Thecorresponding arrival times

=np for n=0, 1, 2,...
at arer,; then by Eq.(62) one readily computes

- 4.)/f0 wp wl
Th— Tn 1=p+ sm—sm—

0y(0) 2y(0)
. 1 4
X sinw (n—z p+m ) (63

The argument in the sine in the last factor advancespy
for each pulse, contributing to pulse-to-pulse variation in

MODELING THE EFFECT OF AN EXTERNAL ELECTRCT . ..
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Ap 4yfq wp wl

= sin—-sin
P ¥(Owp " 2 " 2¥(0)

1 ¢
(”_E)“zy(m}'

This modulation of the interval between spikes is bounded in
magnitude by

X sinw (64)

Ap 2-7f0
65
‘ 7(0)" (©9
which in physical units corresponds to
A ao;
Pond _ 78 2 EM0z). (66)
pphys| y(0)gk 9

Hence as the nerve diameter decreases, so does the modula-
tion of pulse intervals caused by an incident electric field
gradient.

An explicit example for the squid giant axdof radius
238 wm) is the following. If o~ a/p and {=~p+y(0), then
spikes transmitted at even intervadsarrive at{ with inter-

vals that alternate betweep[l—4'yf0/wy(0)] and p[1

+4yfo/my(0)]. In other words, there is pulse-interval
modulation, with the intervals alternately stretched and
shrunk by a fraction 4f0/wy(0). Shifting to physical co-
ordinates, at a temperature of 18.5°C, one fifid&grpolat-

ing in Table ) that rCy/gx=3.82/36, y(0)~5, and
y/y(0)=0.124 mV'1. This implies that a gradient of

1 mV/ien? (10 V/n?) in the longitudinal component of an
incident electric field at 60 Hz modulates pulse intervals
transmitted every 8.3 ms along a squid giant axon of length
16 cm, producing a fractional modulation of the pulse inter-
vals of 1.47%. It would be interesting to see if measurements
confirm this.
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