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The dynamics of on-line learning is investigated for structurally unrealizable tasks in the context of two-
layer neural networks with an arbitrary number of hidden neurons. Within a statistical mechanics framework,
a closed set of differential equations describing the learning dynamics can be derived, for the general case of
unrealizable isotropic tasks. In the asymptotic regime one can solve the dynamics analytically in the limit of a
large number of hidden neurons, providing an analytical expression for the residual generalization error, the
optimal and critical asymptotic training parameters, and the corresponding prefactor of the generalization error
decay.[S1063-651X99)03211-0

PACS numbeps): 87.10+¢€, 02.50--r, 05.20-y

[. INTRODUCTION We employ a statistical mechanics framework developed
in [6] which allows us to describe analytically the learning

Learning in layered neural networks refers to the modifi-dynamics, by means of a closed set of differential equations
cation of internal network parameteds so as to bring the for the order parameters, with the number of examples play-
map implemented by the netwofk as close as possible to a ing the role of time. The effects of unrealizability on the
desired mapfg. The resulting performance is monitored €volution of the order parameters and the generalization error
through thegeneralization error a measure of the dissimi- are studied numerically in all phases of learning process. We
larity betweenf ; and fz. Two-layer feed-forward networks focus on the asymptotic phase, which is particularly interest-
are widely used in classification and regression applicationdNd since here, contrary to realizable scenarios, no prior
mainly due to their ability to implement any input-output knowledge of the asymptotic solutions exists. Asymptoti-
mapping, in any desired accuracy, provided that the hiddegally, the system converges towards a stable fixed point
layer has a sufficient number of neurdi3. The scenario in which corresponds to a nonzero residual generalization error,
which the network doesot have a sufficient number of neu- Whose value increases with the learning rate, and is nonzero
rons to implement a certain input-output mapping is termec@ven for an asymptotically vanishing learning rate. Although
structurally unrealizablein any other case the taskiisal-  asymptotic solutions cannot be obtained analytically in gen-
izable eral, one can obtain analytical solutions in the limit of large

Structural unrealizability has been examined, via statististudent network siz&. The dependence of the generaliza-
cal physics techniques examining the equilibrium distribu-tion error decay on the network architecture and parameter
tion of models, main|y for the case of the perceptfﬁrﬁL choice is then derived, providing the optimal and critical
due to the technical difficulties of examining multilayer net- asymptotic learning rate value as a function of the unrealiz-
works. In this paper we focus on the analysis of structurallyability measureL, in both standard and normalized SCM
unrealizable tasks in multilayer networks in tmm-line  architectures defined below.
learning scenario. On-line learning is a popular method for
training multilayer feed-forward neural networks, where net- Il. THE FRAMEWORK
work parameters are updated according to only the latest in a AND THE DYNAMICAL EQUATIONS
sequence of training examples. On-line methods can be ben- . . . N
eficial in terms of both storage and computational time, and CONSider a mapping from an input spage It* onto a
also allow for temporal changes in the task being learned. ASC@ar®,(€) = yZi-19(J; ), which defines a SCMtermed
overview of on-line learning methods in neural networks carfne “student” networl, where J={J},<< is the set of
be found in[4]. We analyze unrealizability isoft committee  iNPut-to-hidden adaptable weights and the hidden-to-output
machine(SCM) networks[5], in which the hidden units are Weights are of fixed strengthy. We choose g(x)
connected to the output unit with positive couplings of fixed=erf(x/\/2) to be the sigmoidal activation function of the
Strength' and 0n|y the input_to_hidden Coup”ngs are adaphidden units. The activation of the student hidden unih-
tive. The learning problem can be formulated in a generafler presentation of the input patteg is denotedx*
student-teacher framework, in whictsudentSCM network =JiT§”.
with K hidden neurons is trained on examples generated by a Let (§#,{*) be theuth input-target pair in a sequence of
teachernetwork of similar configuration, but witM hidden  training examples. Components of the input vectfsare
neurons. In unrealizable scenarios, the complexity of the taséirawn independently, at each iteration, from a zero mean
M is greater then the complexity of the student netwkirk Gaussian distribution with unitary variance. The correspond-
<M, andL=M —K measures the degree of structural unre-ing target{* is given by ateacher networkwith the same
alizability. architecture of the student except for a possible difference in
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the numbeiM of hidden units, and is defined by the weight tween student and teacher vectors. The order parameters are
vectors B={B,}1<n<m - The target mapping is therefore necessary and sufficient to determine the generalization error
L(EM=y=M19(y¥4), wherey“=B£# is the activation of &4=(e(J,£)) 4.

the teacher hidden unit We will use indices,j,k,| to refer If we interpret the normalized number of examples
to units in the student network armadim for units in the = u/N as a continuous time variable, the update equations
teacher network. (1) gives rise to first-order coupled differential equations of

In standard SCM, the strength of hidden-to-outputthe form
weights is unitary ¢=1). The SCM network is referred to

asnormalizedif y=1/(no. of hidden units); in this case the dRin "

map implemented by the student and teacher networks is da 7 S'Yn),
$3(£)=(UK)=L19(x) and {(£)=(UM)ZL,g(yn), re-

spectively, so that the output of the teacher and student net- dQy

works will have the same range-1,1], even if the number da 7 8% 61X ) + (S8, (2

of hidden units is differenK # M and they implement maps
of different complexity.

The case of a perfectly realizable takk=M has been
analyzed in[6] (for the standard SCMand in[7] (for the
normalized SCM We focus here on the unrealizable sce-
narioM >K. The error made by a student with weigliten
a given inputé is provided by the quadratic deviation
e(J,&) =12 *— ¢5(€*)]%. The most basic on-line learn-
ing rule is to perform gradient descent on this quantity. Then

where the angled brackets denote averages over inputs. Av-
erages in Eq(2) can be carried out analytically for arbitrary

K and M=K+L, providing a closed set of equations of
motion. Note that; is slightly different for standard or nor-
malized SCM architecture, as well as the corresponding
equations of motion.

the update of each weight in response to the presentation of . STRUCTURE OF THE SOLUTIONS
the uth example £#,{*) has the form IN UNREALIZABLE SCENARIOS
In the unrealizable scenario the student does not have
JHrl=k 4 2%#, (1)  enough resources to imitate the teacher units accurately even
N if an infinite number of examples is provided, so one may

. expect residual generalization error and a suboptimal map-
where 8= yg' (x")[{*— ¢3(£#)] and the learning ratey  ping of the asymptotic student vectors onto the space
has been scaled with the input sikeé Performance on a spanned by the teacher vectors.

typical input defines the generalization erroeg To demonstrate learning in an unrealizable scenario, we
=(&(J,§))g through an average over all possible input vec-show the evolution of the order parameters and the generali-
tors &. zation error for a standard SCM witk=3 hidden units

We use a statistical mechanics description of the learningearning an unrealizable task with=1 (M =4). In the re-
procesq 6] which is exact in the limit of large input dimen- mainder of the paper, we will focus on uncorrelated isotropic
sion N where the dynamics of gradient descent learning inteachers of unitary length,,= &,,,. The dynamical evolu-
the unrealizable scenario is completely described by a smation of the overlap®;, andR;,, follows from integrating the
set of order parameter(s<ixj>=JiTJkEQik, (xiyn)=J'B,  equations of motior(2) from initial conditions determined
=R, and (y,Ym) =B, Bn=Tnm, Measuring overlaps be- by the (random initialization of the student weight3; we



5904 SILVIA SCARPETTA AND DAVID SAAD PRE 60

initialize Q;; from uniform distributions in th¢0,0.5] inter- 0.0006 0.009985

val, Q;.¢=0, andR;, from [0,10 1. . o g U
The time evolution of the various order parameters is, 4404 NN

shown in Figs. (a)—1(c) for =0.2. As for realizable sce- . ™ 0.009983

nario[6], the unrealizable dynamics is characterized by two

. ) o L
major phases of learning. Initially, the order parameters are® %992

trapped in an unstable fixed point characterized by a lack of (a) 0.009981 ] (P) .
differentiation between the hidden units of the student where 0 T T 50 ¢ 5 10 15 20
the overlaps of each student unit with all teacher uRis L L

are nearly identical. All the student overlagy ., have
nearly the same value, which does not differ much from the
value of the norms);; . Trapping in the symmetric phase for S*, C”
unrealizable scenarios is of the same nature as the one ot
served and analyzed in the realizable cd&&&]. Eventually, 0.01
small perturbations introduced by the random initial condi-
tions lead to an escape from this phase and convergenc
towards the asymptotitsuboptima) regime|[8].

Understanding the evolution of the parameters in the
asymptotic phase is particularly important in the study of
unrealizable ScenariOS, where no prior know]edge exists FIG. 2. Theoretica(lines) vs numerical resultscircles) for the
about the asymptotic solutions themselves. The suboptim&@ptimal fixed pointQ*,C*,R*,S*,U*. (a,p We plot C* (upper
mapping that emerges from our numerical solutions suggest&§®), S* (lower ling), in the insetQ* (upper ling andR* (lower
that the limited student resources are used mainly to speciafn®: and in (b) U*, for thf casel <K as a function ofl at K
ize oncertain teacher vectors, while retaining small correla- —~190: (6. The overlapsC™ (upper ling, S* (lower ling), in the
tion with the rest of the teacher vectors. The evolution of thd"S€tQ" (upper ling andR* (lower line), and in(d) U*, for the
student norms and student-student correlations shown in Fi .aseL:lK. as a function of atK =20; for Co_mpar'son’ dotted lines
1(a) demonstrates that asymptotically, each one of the st analytical results for the<K case ak =20.
dent units imitates one of the teacher unii{~T;;, Ry,
~T 44, andR33~T33), while ignoring units imitated by other
student vectorsK;3,R14,R21,R23,R31,R34~0), and retain-
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dynamics can be described in terms of only five variables,
via the ansatz

ing some correlation with other teacher units, not imitated by Q=08 +C(1—5,),
other student unitsK;,,R,,,R3,). The corresponding evo-
lution of the generalization error is shown in FigciL R,=R&,+S(1—8,)0(K—n)+UBb(n—K), 3)

In structurally unrealizable cases, as for learning with
noise [9], suboptimal asymptotic performance will be ob- for the student-student overlaps af@part from a relabeling
tained for any fixed learning rate, suggesting that an anneabf the student hidden unjtstudent-teacher overlaps, respec-
ing schedule should be invoked asymptoticaltjeally, one tively, where the step functios is 0 for negative arguments
would expect asymptotically the student vectors to be conand 1 otherwise. As one can see from Fig. 1, this approxi-
fined to theM-dimensional subspacs; spanned by the set mation (3) is particularly good in the symmetric phase
of orthogonal unit length teacher vectors, and they can thergwhere alsoR=S=U hold9 and during the final conver-
fore be represented &8 (<N) dimensional vectors in the gence to the asymptotic regime. Asymptotic solutions in the
teacher coordinate systemhis is true for vanishing learning case of an isotropic teacher are characterized by specialized
rates ». However, learning at finiten results in student student vectors of similar norm®{;=Q for all 1<i<K)
weight vectors not completely confined to the subspSige  and similar correlations among themselvé;, (= C for all
The weight vectors of the trained student can then be written <i, k<K, i+#k); each one of these vectors specializes on
asJ;==M R, +Ji , whereJ; indicates the component of a certain teacher vectoR( =R for all 1<i<K), while all
J; in the orthogonal subspace. The optimal asymptotic solustudent vectors have similar correlations with lélteacher
tion, with the lowest asymptotic generalization error is char-vectors imitated by other student vectof®; (=S for all 1
acterized by solutions obtained with a vanishing learning rate<i, n<K, andi#n), as well as with the otheM—K
» and thus a vanishing vectdr-. In the following section, teacher vectors on which no student vector specialiis (
we present an analysis of the asymptotic solution when the=U for all 1<i<K, andK<n=M).

learning rate is annealed. Therefore, the system’s dynamics is described asymptoti-
cally by only five coupled differential equations derived us-
V. ASYMPTOTIC REGIME ing the relationg3). In order to find the analytical expression

for the optimal fixed point, we solve the truncated equations
The number of order parameters in E@) is K(K of motion, neglecting terms of ord@(%?) in Egs.(2). In
+1)/2+ KM, so that the analysis becomes more and morerder to find the asymptotic fixed point of this system of five
difficult asK andM grow. However, the symmetric architec- coupled equations analytically, we exploit the geometrical
ture of the teacher network,,= é, leads to the grouping constraint that hold between the order parameters to simplify
of the dynamical variables. In the general case of an unreathe system. Since at the optimal fixed point student vectors
izable learning scenario and isotropic teachers, the system&re confined taSg, one may express any vectyras
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FIG. 3. The residual generalization error in standard SCM—theordtioaly vs numerical resultécircles. (a) Theoretical value of
Eo(L,K) for the casd.=IK as a function ofe for L=1,2,3 from down to up(b) Theoretical value of,(L,K) for the casd.=IK (solid
line) and the casé <K (dashed lingas a function of =L/K. K=20,100,200 from down to up. Inset: Theoretical valud&gfL,K) for the
caseL =IK are plotted as a function &f for K=100,500,1000,10 000. All the curves, except the one With100 (dashed ling collapse
onto the same straight line.

Ji=Se,+---Se_;+Re+Se .+ - +Sec+Uec g scenario we can distinguish two cases=M—-K<K
(termed small unrealizability when the excess of teacher
+---Uey, hidden neuron& is small compared to the large number of

student hidden neuron& [so thatL is of O(€%], and L

wheree,, n=1,... M, are the orthogonal set of teacher " -
vectors. Using this expression for the student vector, one can, K (termedstrong unrealizability when the teacher excess

easily derive a constraint between the order param@ess of resourcesL is of the same order of magnitude of the

U, Q, andC: student resource, so thatL=IK =le~*, with a finite fac-
tor of proportionalityl of O(1). In both cases we find the
Q=R?+(K—-1)S*+(M—-K)U?, fixed pointQ*,C* ,R*,S* ,U* up to O(€%). In the follow-
(4) ing, we discuss the standard SCM architecture. Analytical
C=2RS+(K—2)S*+(M—K)U?2. expressions for the approximated optimal fixed point in the

small and strong unrealizability cases are given in Appendix
Unfortunately, the solutions of the truncated equations ofA. The dependence of the order parameters at the fixed point
motion, even when using the geometric constraint, still canfrom the unrealizability degrek is shown in Fig. 2. Exact
not be obtained analytically. However, we can obtain thenumerical results are included in the figures in order to vali-
optimal fixed point in the limit of a large network, when the date our theoretical predictions. Ho=0, the realizable case
number of student hidden neuroks>1 is large(but still  fixed point Q*=R*=1,C*=S*=0 is recovered ( is
N>K). We expand both the constrai@®) and the truncated meaningless for realizable scenajiobhe corresponding re-
equations of motion in the small parametes 1/K. In this  sidual generalization error is

an LL(=3+m) 3 L(2474»\/§—429])e+ 3 L(—859 925+ 496 432/3+18 324 /331 659.) €?
° 6 m 2 (-9+8\3)3x 2 (—9+83)%x

in the smallL case, and

o 11(273-144J3-917+48\37) 1 1(—561+326/3)
o 2 7(—9+843)2% 2 7(—9+843)2

1 1(864 —2732+29 658+ 144./312— 472 /3-17088/3) €
48 m(—9+84/3)2

in the strong unrealizability cas@vith the L=1K scaling that the solution obtained fdr<K (dashed ling becomes
assumption To examine the accuracy of our approximation, more and more inaccurate &sincreases, as one expects,
theoretical results are compared with values obtained nuwhile the scaling assumption=IK gives accurate results
merically. Dependence & on K whenL is fixed is shown  also for a very small value df, where it coincides with the
in Fig. 3(a). Both the theoretical predictions of the residual L<K solution. It is interesting to note that for lardg the
error,E3"andEy, are shown in Fig. ®) as a function of the  residual error is proportional tb only, giving a direct indi-
relative number of teacher units in excéssL/K. We see cation for the number of additional hidden units required to
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make the problem realizable. Indeed, all the lines for the 2 2-3+23
residual generalization error corresponding t& Ng=— e 3 .
=100,500,1000,10 000 collapse onto one straight line if plot-
ted as a function ok, as shown in inset of Fig.(B). for the L<K case. and
In order to describe the approach of the system to the ’
optimal fixed point, we take into consideration terms of order 1 -9+83 2 —-3+2\3
O(7?) in the dynamical equation@®). In this paper we will M=~z —  MNTo 3
concentrate on the annealed learning rate o/, since
this is the optimal annealing schedule, as in the realizable 1 144/3-393 —777+2963
(K=M) noisy casd9]. To solve the asymptotics of the sys- Ng=——— - ,
tem, we expand the full equations of motion to first order me 444a 444 ©
around our estimation of the optimal fixed point
Q*,C*,R*,S*,U*. We find five linear coupled differential Ng=— 1 363 15| o T 43
equation for the five order parameters represented by the mE 111w 11lr
vectoru,
| . 2 ., —9+443 - —25+14\/3
=——+4 |+
g U= maMu+72b, (5) ©ome T n(-9+8V3)  m(—9+843)
where for the L=1/e case. Results turn out to be in good agree-
ment, especially for largK, with the exact numerical values
u=(Q—-Q*,C—C* R—R*,S—S*,U—-U*)T of eigenvalues of the Jacobian matrix evaluated around the
true optimal fixed point, which can be found numerically.
=(g,c,r,s,u)’, (6)  While A, and\, do not depend or andl, all other eigen-

values do. We find thats<<A ;<<\ 3<<\,<<\;<<0 for all val-
7a= 70/ @, and both the zero-order termand the Jacobian yes of 0<I<1/e and 0O<e=<0.5 (i.e., all values of interest
maitrix M are functions of the student network sik@nd of  g<| <Kk2 andk>2).
the degree of unrealizability. The asymptotic equations of |t )\. are the eigenvalues of the matti, andD is the
motion (5 are derived by dropping terms of order matrix of the eigenvectors, such that
O(7,/|u||?) and higher, and terms of ord@(7?%u). The
latter are linear in the order parametersbut are negligible AN O 0O 0 O
in comparison to thep,u and nib terms in Eq.(5) as « D lMmD= ’ (10)
— 00,

Since as our estimation of the optimal fixed point we use
an expansion around=0 truncated at the third order, then
also the vectob and the Jacobian matrid of the first
derivatives computed at the fixed point are in the form of u(a)=DL(a,aq)D u(ag)+DO(a,ag)D b, (11)
truncated series ia.

Equations(5) can be exactly solved if one computes ana-whereL (a,a) and ®(«a,a,) are diagonal matrices whose
lytically the eigenvalues and eigenvectors of the matvix ~ elements take the form
Finding analytically exact eigenvalues and eigenvectors of

0 0 0 0 g

then, following[9], the solution of Eq(5) is

A
M is hampered by technical difficulties. We therefore keep ) _[e)t
. . . Lll(a-ao)
the first two orders in the expansion
M=My+eM+ Myt - - - (7) and (12)
and use the theory of perturbation for nonsymmetric matrices — 773 i
(e.g., as iM10,11) in order to compute the eigenvalues and Oii(a,a0)= 775~ 77O[a_l—axi’"’ao 7.
|

eigenvectors. We stop at the first-order correctiore,in\;

=\t e\, where the eigenvalue degeneracy which existsas the first contribution in Eq(11) depends on the actual
in the leading-order terms is removed, to find five differentinitial conditionsu(«,), and since we are interested mainly

negative eigenvalues: in the asymptotic regime, it will be neglected in what follows
as it decays more rapidly than the second contribution.
N 1 (—9+843) __2 (—3+243) We expand the explicit expression of the generalization
17 36 T ot 3 T ’ error, given in Eq(B1), around the optimal fixed point to the
second order i, to obtain
1 1-3+2\3
- - - - = = asy__ T T
A3 e 3 - , gq =Eot+tEjutuEsu.
(8 Elements of both the vectd, and the matrixE, are trun-
Ny = — i_ i —21+843 cated series in the small paramegersince the optimal fixed
4 I

me 12 T point is known analytically up t®(e?).
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opt 8000 asy__ + 2 Cl(L!K) CZ(LYK) -1
20.6091 fgol(;o (b) K= 100 e Eot (=Nsmo—1)  (—A2m—1) “
20.609 e 1
2o 6080 f 4000F e K=50'N'“.~ :E0+f(L,K,770)Z, (13)
2000]
20.6088 K=10 wherec, andc, for both cases <K andL=IK are given in
e .
20 10 60 Appendix B.
o For optimal decay of the asymptotic error, one has also to

minimize the prefactof(L,K, ) in Eq. (13). In the case of
L<K, the optimal value ofy, is independent ok, while in
Solid line is 75P(€) for the caseL<K. In the inset, the optimal the case oL =IK it shows a rather weak dependencelon

prefactor of error decay scaled with f(L,K, ngp‘)/L, is shown as The values _Of’70_opt(L’K) for1=0.05,0.5,1 as a function Qf

a function ofK. For all values ofL=1,100,2000 the plots collapse are shown in Fig. @), where 7oP(K) for the cased <K is

onto the same curve, correspondingth=40.3 K. (b) The scaled ~ also included. For larg&, the optimal prefactomS™, for

prefactorf (L,K, 7,)/L as a function ofy, for student network size both the small and strong unrealizability case, tends to the

K =10 (solid line), K=50 (dotg, andK =100 (circles. All values  same value 45"~ 20.609).

of L give the same result.(=1,10,100). The sensitivity of the generalization error decay factor

f(L,K, 7o) to the choice ofyq is shown in the inset of Fig.

Using the eigenvalues of E¢8) or Eq.(9) and the solu-  4(b), wheref(L,K,70)/L is plotted as a function ofy, for

tion (11), the generalization error can then be rewritten as & =10, 50, 100, and.=1,100. Curves for different values

combination of the mode®;; , whose coefficients are func- of L collapse onto the same line, showing thét,K, 7)/L

tions of e andL. is a function of K and 7y only. The optimal prefactor
We find that only two modes®,, and ®s, associated f(L,K,73") is shown as a function df in the inset of Fig.

with eigenvalues\., andAs, survive in the linear term of the 4(a); it seems thaf(L,K,ngpt) can be well approximated as

generalization error when we truncate the expansioB;@f proportional to the produdtK.

to the second leading order in We verified numerically

FIG. 4. (@ The optimal learning ratend?(1,K) for |
=0.05,0.5,1(circled lines, from down to upas a function ofe.

that the mode®d;;, @33, and ©,, are orthogonal to the V. NORMALIZED SCM ARCHITECTURE
first-order term in the generalization error, and therefore do )
not contribute to its decagt all orders ine, but contribute In the standard SCM architecture, the output of the stu-
only to the decay of the second-order term with the corredent and teacher network range, respectively[ 4K K]
sponding eigenvalues\2, 2\3, and 2,. and[ —M,M]. Therefore, not only is the complexity of the
Therefore, the critical learning ratg,, above which the Student and teacher mapping different, but also the range of
generalizations®® decays as ¥, is values that the outputs can assume. We examine in this sec-
g tion unrealizable scenarios for normalized SCM architecture,
in which hidden-to-output weights are normalized, so that
1 1 1 1 1 output values for networks of different sizes always range
Ne=Max —s—,——,~ 55—, 55—, — ; _
72 VD W) W) W U over the same intervdl—1,1].
We look for the optimal asymptotic solution, following
1 187 the procedure that we have described in the preceding sec-
= Z_M:TS\E tion. Using relations(3), we expand both the equation of

motion (2) truncated at orde®(#) and the constraintg}) in
the small parametear. We find the fixed point solution itera-
in both theL<K [Eq. (8)] andL=IK [Eq. (9)] cases. tively for the casd. <K, but unfortunately a solution cannot
For ny,> 7., the generalization error decays likenlfo  be found analytically in the.=I1K case. Therefore, in the
the residual erroE,; neglecting second-order terms, sincerest of the paper we will focus on the small unrealizability
they decay as &7, one finds an asymptotic error decay of case [ <K). The optimal fixed point solutions up to order

the form O(€% are given in Appendix A. The dependence of the op-
L
5 10 15 20 .01 o _
O FIG. 5. Theoretical(lines) vs numerical re-
S*, Cc* ‘\\f\\ U* sults (circles for the optimal fixed point
N\ \\\_ Q*,C*,R*,S*,U* in normalized SCM architec-
-0.0005 N .‘\:"\TT‘\-\» ture, as a function of at K=100. (a) The over-
: AN el 0.009 lapsC* (upper ling andS* (lower line), (b) the
\\.\ overlapU*, and in the inseQ* (upper ling and
'1\\ R* (lower ling). This is to be compared with
-0.001 (a) \\ . Figs. 2a) and 2b) for un-normalized SCM archi-
’ .. 0.008 - tecture.
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(b) 202.65411
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FIG. 6. (a) Residual erroEg(L,K) in normal-
ized SCM architecture: theoreticadashed ling
vs numerical resultgsolid lineg for K=50,100
(from up to down. (b) The optimal learning rate
7SP{L,K) in normalized SCM architectures for
L=1,20,200,1000 as a function ef All lines
collapse onto the same curvg”=20.27 K. In
the insetySP{(L,K) is shown forK =10 as a func-
tion of L.
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timal fixed pointQ*,C* ,R*,S* ,U* onL is shown in Fig. 5, ~ corresponding eigenvalues in the standard SE. (8)]. It
validated by comparison with numerical solutions. Contrary!S again the case tha<\;<\3<A;<\;<0 for the range
to the un-normalized architecture, here the fixed point pro®f valuesK,L which we are interested ifall L>0 andK
duces negative values for the order parameterand S >1).

Moreover, Q and R decrease with. much faster than in ~ Agdain, we find that only two mode$), and ®ss, sur-
un-normalized architecture. This configuration correspond¥ive in the linear term of the generalization error, while all
to a residual generalization error: other modes contribute only to the decay of the second-order
term. The critical learning rate is therefore
2
. 1(m-3)Le
°6 7 ) 1 1 1 1 1 1
nC:maX T Ay 'Y v Ay v Ay Y ([T Ay
NE (— 4203+ 750+ 4873~ 917) L2 2hi7 A2t 2hy 2N A5) 2N
2 7(—9+84/3)2 187
1 (326y3-561)L (—9+813)e

€, (14)

+ e —
2 m(-9+83)? . y .
exactly K times the critical learning rate for the standard
which, apart from the ¥? normalization factor, is lower SCM architecture. For optimal decay of the asymptotic error,
than the one obtained in un-normalized SCM. Numerical valone has to minimize numerically the prefactgn,,L,K) in
ues of the residual error are compared with the theoreticag. (13). The value of»3P(L,K), shown in Fig. €b), turns
results(14) in Fig. 6(a). As we expect, the agreement is good out to be almost proportional t& only, with a very weak
whenL is much lower tharK, and improves for larg&. dependence oh [inset of Fig. @b)]. It is to be compared
In the annealed learning ratg= 7,/ schedule, the dy- with the corresponding solid line in Fig.(& for non-
namics of the system in the vicinity of the optimal fixed normalized networks and<K.
point is described by the linearized equations of motion The optimal error decay prefactd( ngp‘,L,K) is shown
whose solution is given by E@11). The leading order in the in Fig. 7(a). It turns out to be well fitted byf(y;gpt,L,K)
Jacobian matrix, this time, i©(e°), in contrast with the =583 /K, i.e., about K? times smaller than the optimal
non-normalized SCM case, where it was@fe *). Keep-  prefactor in the un-normalized architecture. The sensitivity
ing only the first two orders in the expansionef and using  of the generalization error decay factbfL,K,7,) to the
again the perturbation theory for nonsymmetric matrices, onghoice of 7, is shown in Fig. ).
obtains the following approximations for the five eigenval-

ues:
1.5
1 e(—9+843) 2 e(—3+2\3) o (@) 4/L (b)
)\lz__—y 2=__—1
36 T 3 T 4 1
3 .
1 2 0.5 )
No=— = +¢(0.18898-0.18192 ), : :
. e B
10 20_30 40 50 0 1000 2000 3000
K Mo

1
Ng=——+€(—0.04912-0.1820%.),
& FIG. 7. (a) The optimal prefactor of the asymptotic error decay
in normalized SCM scaled with, f(L,K,7S")/L, is shown as a
Ng= — E +€(—0.09842-0.364 70Q.), function ofK. For all values of. =1,10,20 the plots collapse on the
T same curvd/L =5.83K. (b) The prefactorf (L,K,7y)/L as a func-
tion of 7, for student network siz&K=10 (solid line), K=50
where analytical results have been replaced by the numericadots, and K =100 (circles. All values of L give the same result
equivalent for brevity, and; and\, are exactlye times the  (L=1,10,100).
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VI. SUMMARY AND DISCUSSION L\/§€3

Solving the dynamical equations numerically in unrealiz- s _2—9+8\/§’
able scenarios, where the student network does not have

enough resources to imitate the teacher mapping, shows that 5
the residual generalization error increases with the learning U*r=et+|1— _\/§) €2

rate and is therefore minimal when the learning rate is an- 3

nealed toward zero. The optimal fixed point of the dynamics

is found analytically for large network siz€. It shows a + i (48L\/§_ 108 +760y3- 1299 €°
different behavior in the standard and normalized SCM ar- 24 -9+843
chitectures: In the normalized architecture, the ovefdp
between each student vector and the teacher vector it imitates

decreases witlh. much faster than in the corresponding un- Q*=1+

L
—9———+L|e

normalized architecture; in addition, contrary to the un- ~9+843
normalized case, each student vector is anticorrelated with

all the other student vector<Ct <0) and with the set of +( _ %L 3+ @L>e3
teacher vectors on which the other student vectors specialize 4107 1369 ’

(S*<0). This configuration also turns out to give a much

lower generalization error than that of the un-normalized ar- L(16y/3—25)€3
chitecture. In the un-normalized architecture, each student C*=Le?+2———m———
vector also keeps a positive correlation with the set of ~9+8y3

teacher vectors on which the other student vectors specialize o )
to make up for the disparity in the output ranges. HoweverWhile in the strong unrealizability scenario,
the student network is unable to make up completely for the
output range differences. . € ) )
Solving the asymptotic equations analytically for large R¥=1- §T8\/§+(0-2444 +0.6958)€
system siz&K, one can analyze the approach of the system to
the optimal fixed point. It turns out that the generalization +(0.1672%+0.52753%—0.197) €,
error decays to the asymptotic residual error like if/ the
learning rate is annealed ag/a and 7> 7§". We found J3l 2
that the critical learning ratgS™ is independent of. in both S = 2—6
the standard and normalized SCM. The optimal decay of the -9+843
generalization error is achieved at an optimal learning rate
value 73", which shows only a weak dependenceloand 1 (—91+41\3-50+28y3)¢?
K in standard SCM, and is proportional Koin the normal- U*=e+ 2
ized SCM architecture. The optimal prefactor of the ~9+8\3
asymptotic error decay turns out to be proportional to the +(0.148+ 0.467 +0.08242) €,
productLK in standard SCM, and is significantly smaller in
normalized SCM, where it is proportional to the ratitk.
It would be interesting to extend the analysis of unrealiz- x_
. . ) Q*=1+
ability to general two-layer neural networks in which the
hidden-to-output parametetsare adaptive, and not of fixed

+(0.1778—0.1619%) €,

|
9+

-9+8y3

strength, as has been considered here. —0.01059—-86.9°—103.0) €*+(0.092 00°

+1.278%2-0.07) €3,
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APPENDIX A: THE FIXED POINT

5909

In the normalized SCM architecture, far<K we find

The optimal fixed point is derived for large. The fol-
lowing approximation is exact up to ord€¥(e®). For the

standard SCM architecture, in the small unrealizability case, g« — 1_6L(_3+2\/§)E +(0.528.2—1.330) €2
the approximated optimal fixed point is of the forfsome -9+843 '
analytical results have been replaced by the numerical

equivalent for brevity L\3e2

=—-2——+0.00001316(23930.0
Ry Le (162 o 1233 ) ~9+843
= —_—— —_ € ,
2 _9+83 1369 1369 +80930.0) €2,
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(—18L+14L+/3— 143+ 25)¢? _ R
U*=e— —2K arcsi
-9+8.3 J2+20Q

+(1.591.%2+0.001L +0.149 €3, r( U /
—2LK arcsi T B1
J2+2Q (1)

i L(—3+2y3)e _
Q =l—12?8\/§—0.006 869 (—200. for the standard SCM architecture and

+243.0 €2+ (—0.602.%—0.533.2—0.300) 3, [ Q - [ C
arcsi 140 +(K 1)arcsi 140 +1 -

Eq= e
L(4\/§—9)62 g K K 6 L+K
=———+0.0000394&(8110.0

*

~9+8y3 (K 1)arcsir( > ) arcsir( R
+22380.0) €. _5 veraQ) V2t2Q
L+K L+K
APPENDIX B: GENERALIZATION ERROR U
ASYMPTOTIC DECAY L arcsii ——
o ] ] o r( V2+2Q
Explicit expressions obtained for the generalization error -2 1K / T (B2)
eg=(e(J,8))y are _
for the normalized SCM network.
When the learning rate is annealed ®s 7./« and 7,
[ Q [ C > ., then the generalization error decays proportionally to
g4=K arcsn‘(m +(K=1)K afCS"’(m) 1/, as in Eq.(13), to the residual erroE, corresponding to
the optimal fixed point.
1 S In standard SCM architecture, in the cds&€K we find
+Z(L+K)m—2(K—1)K arcsir{ ) the following form for the factorg; andc, in Eq. (13) for
6 V2+20Q the asymptotic error decay:

1 L(9744% 1+ 1218- 4067 + 227,37 — 681,/3—5448,/3%1)
C —_— — -
Y6 73(131/3— 144 €

1 L(—432+393\/3— 13137+ 1447+ 3144/3%1— 3456% 1)
6 73(131/3— 144) €2 ’

6

1
%1= arcsir(—\/g) ,

1 3 1 1
2=~ 5 L[ 1152 arcsiéz) —236\3—96\37+ 2627 — 6288 arcsiég\@ ) +2304/3 arcsir6 gﬁ) -210

—1048 arcsi(é) ﬁ} / [73(131/3— 144 €],

while in the casd.=IK it is

_ 1(—1017%/3+19296%1- 8047 — 8136/3% 1+ 2412+ 3393 )|
Y6 73(5/3+96)(— 9+ 84/3) €2

( 1 —29256/3% 1+ 6570- 21907 + 52 560% - 36573+ 121937
6 73(5\/3+96)(—9+81/3)€?

1 17 352/3%1— 72337 — 2232+ 744mr— 17 856% 1+ 21693 |
6 m3(5/3+96)(—9+84/3) €3
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1
%1= arcsir(—\/g) ,

6

1 1 3 3
Co=— 6[ 14467 — 34704 arcsiegﬁ +5952 arcsi(nz) —1404/3—1362-5784 arcsi(vz> J3—-496\37

1
+11 904\/§arcsir(g\/§) |/[Tr3(5\/§+96)(—9+8\/§)62].
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