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Fluids of hard ellipsoids: Phase diagram including a nematic instability
from Percus-Yevick theory
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An important aspect of molecular fluids is the relation between orientation and translation parts of the
two-particle correlations. Especially, a detailed knowledge of the influence of orientation correlations is needed
to explain and calculate in detail the occurrence of a nematic phase. The simplest model system that shows
both orientation and translation correlations is a system of hard ellipsoids. We investigate an isotropic fluid
formed of hard ellipsoids with the Percus-Yevick theory. Solving the Percus-Yevick equations self-consistently
and accurately in the high density regime gives, contrary to previous works, a clear criterion for a nematic
instability. We calculate in detail the equilibrium phase diagram for a fluid of hard ellipsoids of revolution. Our
results compare well with Monte Carlo simulations and density-functional thE®163-651X99)16311-§

PACS numbds): 61.25.Em, 61.30.Cz, 61.20.Gy

[. INTRODUCTION lation leads not only to a clear indication of a nematic insta-
bility but enables us also to calculate the equilibrium phase
Isotropic simple liquids formed of atomic systems with diagram of hard ellipsoids. Therefore we show that with re-
rotational symmetry are well understood. If the two particlespect to the description of a nematic instability PY theory is
correlation is given by a hard sphere interaction an integrahot inferior to the HNC.
equation like the Percus-YevicRY) [1] closure relation can
be solved analytically. For the liquid phase the PY equation IIl. INTEGRAL EQUATIONS
gives good results even in the dense liquid regiime to a
packing fractionp<0.49) above which the equilibrium state A fundamental relation that all closure relations for inte-
is crystalline, which PY fails to obtain. The packing fraction 9ral equations are based upon is the Ornstein-Zerf@k8
¢ is defined as the relation between the number density eduation(8]
and the volume of the particleg=(7/6)pa®, with o usu-
ally set to 1. For hard sphereg~0.64 corresponds to ran- h(ry,Q4,r,,Qz)=c(ry,Q4,r,,Q5)+p(c(ry,Q4,r3,Q3)
dom closed packing ang=2#7/6~0.74 to packing in a
dom closed packing and=2 packing X5, Q4.12.22), 0, ®
Molecular systems have usually complicated potentials
that are modeled, e.g., by Lennard-Jones potentials of eadhprovides the relation between the total correlation function
atom in a molecule. A very basic feature of molecular sysh(r1,€1,r>,Q,) and the direct correlation function
tems is the existence of orientation degrees of freedom th&(r1,€21,r2,{2). The product is given by
interplay in nontrivial ways with translational degrees of

freedom. The simplest model system that allows us to study 1
this interplay is a system of rotational symmetric hard ellip- (- ~)r3,03=—2f dﬂgf drg, , 2
soids. The equilibrium phase diagram is how—compared to 16m

hard spheres—enriched by an additional variable, the aspect
ratio X, of the ellipsoids, which is defined as the ratio be-wherer; is the position of the center of mass of the ellipsoid
tween the major axisa and the minor axish, Xo=a/b. iand(); is the orientation of this ellipsoid represented by the
Throughout the papeb=1 is chosen. As a function of the Euler anglesb, , ¢, (the third Euler anglg is not needed due
aspect ratio or density a fluid of hard ellipsoids can now alsdo the symmetry of the ellipsoigisDue to translational in-
undergo an isotropic to nematitN) transition. This is ex-  variance the functions depend op=r;—r; only. In the fol-
pected from the Onsager solution of hard spherocylindertowing subsections we transform the OZ equations and the
[2], and has been found by computer simulatiBisand also  PY closure relatiofEq. (14)] in such a way that we can use
by density-functional theorjA4]. it for a numerical treatment. With most of the definitions we
PY theory deals with the isotropic phase. It is not able tofollow the book of Gray and Gubbir[$].
describe a phase transition. However, it is known from the
hypernetted chaitHNC) closure relation for hard ellipsoids
[5] and for dipolar hard spherd$] that it is in principle
possible to identify a precursor phenomenon of a phase tran- An obvious orthogonal basis set to expand the angular
sition in an integral equation. Such a precursor phenomenodependence of the correlation functions is given by spherical
is not known for the PY closure relatidsee alsd7]). harmonics. The transformed correlation functiok
In this paper, however, we show that the PY closure re-{c,h, ...} is given by

A. Spherical harmonics
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(14=1,) space. This involves spherical Bessel functipiigr) due to
F(ly,lp,mir)=iti—2 J dQlf dQ,F(Q4,Q5,r) the expansion 09" within the basis of spherical harmonics:
m m% 0
XY Q)Y (€22). ©) F(|l,|2,|;q)=4w(—i)'f L@DF(g,l50. ()
0

Note that our transformation differs by a factor of {)™
and by a factor ofi'1™'2 from the definition used in the
book of Gray and Gubbins]. The latter of these two factors

In the final step one goes from the rotational invariant rep-
resentation to thg frame and one gets a representatior of

gives us(in q frame only real elements of the correlation (21+1)

functions. For Eq(3) ther frame was used. This means the F(ly,lo,ma)=2, 2. FUulz.ha)

z axis of the coordinate system was chosen along the axis !

connecting the two particles that are correldi@ld Therefore X C(lq,15,I;m,—m,0). 7

we only need to deal with one inder In g space we use,

after Fourier transformation, the laboratory fixed frame,ghe Therefore Eqs(5)—(7) transform a two particle correlation

frame[9,8], where now all-dependent correlation functions function given in real space andrame into a function irg

are diagonal irm andm’. To be specifi&(I,l,,m,m’;q) space and frame.

=6m_m,E(I1,I2,m,m';q)EF(Il,IZ,m;q). Within the com-

plete set of spherical harmonics the OZ equation can be re-

written: Applying Egs. (5—(7) to the OZ equation, one can re-
write Eq. (4):

C. The Ornstein-Zernike equations inq space

h(ly,lz,m;r)=c(ly,l,,m;r)

p
+E 2 f droc(ly,1,m;rq)

Xh(l,l,,m;r—ry). 4

p
h(|11|21m;q):C(|11|2!m;q)+E El C(|1,|,m;q)

xh(l,l,,m;q). (8)

This can be written as a matrix equation for easland g

. . . . value:
This equation relates the total correlation function

h(l{,l,,m;r) with the direct correlation function p

c(l1,1,,m;r). The total correlation function has two contri- h(m;q)=c(m;q)+ z—c(m;q)h(m;q), 9
butions, a direct one that results from direct correlations and

is justc(ly,l2,m;r) plus an indirect contribution that aver- wherec,h are symmetric matrices with indicés, | ,.

ages over possible interactions mediated by another particle For the input into our numerical calculation we define an
in an indirect way. auxiliary correlation functiory in the usual way8]:

B. Transformation into q space 3=/(m;q): b(m;a) = ¢(m;a). (10

Due to the expansion in spherical harmonics a Fouriedsing this auxiliary function, the OZ equation is rewritten as
transform cannot be performed as usual. First one has to find
. . . . . B . p p
a representation df that is invariant with respect to rotation: ( 1- —g(m;q)) (m;q)= —4W[9(m;q)]2_ (11)

F(lq,l,,05r)= 2 (2|+1 ———F(I4,l,,m;r) This is a linear system of equations that determines
y(l1,15,m;q) if c(l¢,l,,m;q) is known.
XC(lq,15,I;m,—m,0), (5)
Ill. PERCUS-YEVICK CLOSURE RELATION

whereC(l4,l,,I;m;,m,,m) are the Clebsch-Gordan coeffi-  In a formal way one can define a product between two
cients. The next step is the Hankel transformation, whickcorrelation functions=axb [10]. In ther frame this prod-
uses the Rayleigh expansion to transfdfrffom r space tay  uct reads;

21+ D)2+ 1) 217+ 1)(215+1
c(|1|2mr>_—z \/( D215+ D(2IT+1)(215+1)

~ ” . P . '|1—|2+|”—|’
FADED) C11.17.,11:0,0,0C(15,15,1,;0,0,0i' 12+ 1211

Il|2
Iulr/

X D CI, 1y m ,m”myC(15,15, 1 —m',—m",—m)a(l;,15,m’;r)b(17,15,m";r). (12
ImII
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FIG. 1. For Xy=3.0 and ¢=0.49 already
close to the nematic instability matrix elements of
—40 5 y 2 3 the direct correlation functio(l,l,,m,r) are

20 . ‘ compared. The curves with dashed lines are ob-
tained with the exact ellipsoid overlap criterion,
while the curves with solid lines show the results
obtained with the Gaussian overlap model.
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The Clebsch-Gordan coefficients enter into the equation dughere ¢ are unit vectors along the symmetry axis of an
to spatial rotations that have to be performed. ellipsoid on positioni. This approximation models the inter-

The PY closure relation can now be expressed as action between two ellipsoids by the overlap of Gaussians.
The value ofy is related to the aspect ratio of the ellipsoids

c=b+g, (13 Xé—l

X241

X (18

whereg is the pair correlation function and via=1-—e?!
the pair potentiali enters into the equation. For the purpose
of solving the PY equation numerically it is better to rewrite
Eqg. (13) as a function of the auxiliary functioy

Note thatD(Q4,Q,,r) is not invariant underxo—>X51,
which implies y— — x. To demonstrate the validity of the
Gaussian overlap model we have plotted in Fig. 1 several
(14) matrix elements of the direct -correlation function
c(l1,l,,m;r) for Xo=3.0 and¢=0.49 (already close to the
nematic instability. These are compared with results ob-
tained with the exact ellipsoid overlap criterion. Compare

f(Q,,Q,,r)=e A0 1 15  aso[12]

c=fx(y+1),

wheref is the Mayer function

The matrix elements dfin the basis set of spherical harmon- B. Symmetries of the solution
ics have to be computed using E@®). This equation(14)
determines the direct correlation functienf the auxiliary
functiony and the Mayer functioffi are known.

Due to the symmetries of the ellipsoid there are certain
simplifications in the calculation that can be applied.

(i) Due to the head-tail symmetry of the ellipsoids all
matrix elements of a correlation functida(l,,l,,m,u) u

A. The pair potential e{r,q} with |; odd are zero.
In order to determine the matrix elements of the Mayer (i) All elements ofF- are real both im space and) space.
function Using the definition of Eq(3) this is even valid for all linear
molecules.
0  for D(Qy,Q,,r)<r, (i) Therefore there is an additional symmetry
22071 11 for (0y.0pn=r, 39 FlnlLmu=F(1 1, ~mu).

(iv) Also thel occurring in the rotational invarianf&q.

we use the well known approximation of Berne and Pechu(5)] can only have even values following froi+1,+!
kas[11], whereD depends on the relative orientation of the =€ven, which results from inversion symmetry.

two ellipsoids: For a proof of(ii) and (iii) the reader may consuiL3]
and for (i) and (iv) one might look up[8]. There is one
1 [(cosf,+cosb,)? further feature we want to point out: For small argumant (
D(leQZ!r):[l_ EX(W or k), all nondiagonal elementd (1,) have to vanish, at

least in the isotropic phase:
-1/2

y (17) |imF(|1,|2,m;u)=O |f |17&|2. (19)

(cosal—cosaz)z)
u—0

1-x(e&)
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Using the definitionF(l1,l,,m,m;u)=F(l,,l,,m,u), this
follows from the transformation o under rotationsR:

limFE(l,

u—0

!|2|m|m1Ru)

=lim E Dn:# m(R)D:ﬁz,m(R)ﬁ(l1’|2’m1'm2;u)'

u—0 my.my

(20

This equation has to be valid for a, which results in

5'1x'25m1'mz' This can be seen by integrating both sites of the
above equation and by making use of the unitarity of the

rotation matrices:

J

dRIMF(l4,1,,m,m;Ru)

u—0

=8W2ﬁ(|l,|2,m,m;0)

mZm dRDl (R)D'nﬁ W(RF(I1,15,m,m,,0)
11112

Y 8T s (L 0 21
w2171 Ol zOmym, (I1,12,mq,my,0). (21

ThereforeF has to vanish for smalli for all nondiagonal
elements [;#1,). This symmetry can clearly be seen from
Fig. 2(c) and from Fig. &c). Further the value of the diago-
nal elements of (I 1,l{,m,u—0) with (2l,+1) differentm
cannot(for short ranged potentiglslepend orm.

C. Calculation procedure

In order to obtain a numerical solution of the equations

above the following steps have to be performed:
(& The matrix element$(l,,l,,m,r) of the Mayer func-
tion have to be computed using E®) and Eqs.(16)—(18).

For our calculation we used 100 points in the range &

min(1Xy) <r<max(1Xg), wherer is given in units of the
major axisa of the ellipsoids.

(b) An initial guess forc(l4,l,,m,r) has to be made and
a grid forr of N,,.,=400 points in the range<Qr <10 was
chosen.

(c) The iteration begins by using Eg®)—(7) to go from
c(ly,l5,m;r) in r space and frame toc(l,l,,m,q) in q
space and) frame using the Rayleigh transformation for the
direct correlation functiorc(l4,l,,m,r). It turned out to be
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crucial to use an analytic expansion of the spherical Bessel F'G- 2- In order to demonstrate the breakdown of the approxi-

functionsj(x) for small argumenxk.

(d) The auxiliary functiony(l,,l,,m,q) has to be calcu-
lated using the OZ equations in the form of Egl). As a
g-space grid we used 400 points in the rangeq3<50 were
g is measured in units df2#/a].

(e) Using Egs.(5)—(7), but transforming frong to r, we
get the functiorny(l4,l,,m,r) in r space ana frame.

(f) With the help of the PY equatiofl2) one can obtain
the next iteration forc(lq,l,,m,r).

mate symmetry between prolate and oblate ellipsokis—1/X)
we plotted forX,=2.0 andX,=0.5 elements o8§(l,l,,m,q), (&
l;=1,=m=0, (b) I;=1,=2,m=0, (¢) I;,=2,I,=m=0. Theq
axis was scaled by a factor o”.

(g) Steps(c)—(f) have to be iterated until a fix point of the
equations has been reached with a given accuracy. In this
way a self-consistent solution can be found.

As a test for self-consistency we choose the mean square
deviation ofc between two steps of iteration,
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€{0,2, ... Jmag, me{0,1,2,3... Myt and at the enc
was typically chosen to be smaller thex 20 ° as a condi-
tion for convergence.

In this way one can obtain a stable self-consistent solution
for the correlation functions. This has already been done for
a fluid of ellipsoids in Refs[5,14—1§ and also in Ref[17]
for a single ellipsoid in a fluid of hard spheres. In this work
we have extended the calculation to a much higher density
regime than has been done in previous works. In order to
reach the high densities we were forced to restrict the maxi-
mum numbers folN,,,4 to 400 and ,,,x andm,, ., to 4. The
value of | in the rotational invariants was restricted ko
e{0,24 ...,2 4"

IV. RESULTS FROM THE PY EQUATION

The virial expansion of hard ellipsoids of revolution is
symmetric with respect t&,— 1/X, up to the second order
in density. This approximate symmetry is violated for higher
densities. This is shown in Fig. 2 where we have plotted
three matrix elementS(0,0,0q), S(2,2,0q), andS(2,0,0q)
of the static structure facto®(l,,l,,m,q) for ¢ = 0.62,
which is related to the total -correlation function

h(|11|2=m1q) by

S(|11|2!m!q): §|l,|

p
2+ Eh(llJZ!m!Q)!

S(m,)=1+ z-h(m.q),

-1

(23)

—[1-~
S(m!q)_(:l' 47T§(m:Q)

The q axis has been stretched by a factor3df,. It can be
clearly seen that a symmetig— 1/X is not exactly valid at
such high densities.

A. Nematic instability

Close to the nematic instability the matrix element
S(2,2m,q) of the static structure factor develops a diver-
gence afg—0. This was already discussed[H] for results
based on the HNQhypernetted chainclosure relation. In
Fig. 3(b) such a precursor of a divergence is seen where for

FIG. 3. The static structure factors of two systems of ellipsoids¢»=0.55 two system,=1.3 (far from the nematic phage
close to and far away from the nematic instability are shown byand Xo=2.5 (close to the nematic instabilityare compared.

comparing theS(l,,l1,,m,q) components foryp=0.55 for X,=1.3

(far away from the nematic instabilijpand forX,= 2.5 (close to the
nematic instability. In part(a) the S(0,0,0q) is plotted, in partb)

S(2,2,0q), and in partc) S(2,0,0q). Note that the5(2,0,0q) com-
ponents vanish aj=0 due to the symmetries.

1
(I max 1)(mmax+ 1)Nmax

€=

><\/ > [P l,mr ) —cP(ly,l,,m )1,

I1.0o,mn
(22)

where the summation indices were in the regidpgl,

For X,= 1.3 theS(0,0,0q) matrix element dominates, as can
be seen from Fig. 3. Note also from Fig. 3 that the
S(0,0,0g) components and th§(2,2,0q) seem to change
their role when going fronX,=1.3 to Xy=2.5. The static
structure forXy=1.3 is dominated by th&(0,0,0q) compo-
nent, while the orientational correlat®(2,2,0q) is small.
This behavior is reversed when lookingXg=2.5. Here the
static structure is dominated by the orientational correlations
S(2,2,0q), while the center of mas3$(0,0,0q) only shows a
weak structure. Due to the fact that all the nondiagonal ele-
ments ofS at g—0 vanish[as can be seen in Fig(d3 for
S(2,0,0q)] only the ¢(2,2m,0) component governs the
nematic instability and we get as a condition for such an
instability
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FIG. 5. For a system with an aspect ratiogf= 3.0 the reduced
inverse Kerr constaritS(2,2,0q=0)] ! is plotted as a function of
density. The thin lines are taken from Rg§] where the thin dashed
lines are PY results, and the thin solid and thin dotted line are

33 hypernetted chaitHNC) results and from HNC extrapolated val-

S ues, respectively. The thick solid line is a result of this work ob-
:‘]. tained with the PY approximation. The points marked with squares
T2 are calculated, whereas the values at the circles were obtained using
oJ§ a quadratic extrapolatiofsee text

I

L]

ted, which becomes the inverse $2,2,0,0) atq=0. For
Xo=2.5, the critical density wherg(2,2,0,0) diverges i
=0.593, according to such a quadratic extrapolation. We
want to mention that the convergency of the PY equations
o 2 becomes extremely sloke.g., for $=0.55 for X,=2.5)

a 7] close to the nematic instability. For the highest densities con-
sidered, we had to do more than“l@eration steps to
densities. The curves fap=0.53,0.54,0.55 were obtained by a so- achieve convergency, even when S.tarting with a We”. con-
lution of the PY equations, whereas the curves dor 0.57,0.59 verged result for the next lower densig.g.,¢=0.54). This
were obtained by applying a quadratic extrapolation to higher den-

sities toc(2,2,0q). The important part for the nematic instability is ‘ o
plotted in (b) where the function % (p/4)c(2,2,0q) is drawn,
which becomes aj=0 the inverse 0f5(2,2,0q=0).

FIG. 4. In(a) c(2,2m,q) is plotted forq—0 and for different

0.8
Q
. P = /
lim ( 1- c(2,2m,q)> —0. (29 ﬁ%w /
q—0 Am bé /,/
Il /
This expression is the inverse of the Kerr constinfor < )g”gbﬁ
nondipolar potentials: 0.6 r L4V G c S——— —fquadratic extrapolation\l‘\\& \
p E// , L---mmm-- Ahighest density considered AA\
—-1_ 5 7 !
K (:Imo( 1 4 C(Z’Zm’q)) ' (25) /7 & ———— —olinear extrapolation

density functional theory [4]

A detailed analysis of thg— 0 behavior therefore givesusa g4 ‘
condition for the nematic instability such as is also discussed 0.3 1 5 3
in a similar way in[6] where dipolar fluids in the HNC 073

approximation have been considered. The instability is dem- FIG. 6.

onstrated _in Fig. 4. In _par(a) for XQ_:2'5 the function Percus-Yevick calculation. The highest densities considered are
¢(2,2,0q) is plotted for different densities close to the nem- pioiteq with triangles. From there an extrapolation is done to deter-

atic instability. The first three densitie$=0.53,0.54,0.55  mine the instability byc(2,2,0q—0)=4/p. This was done with a
were the highest ones we could reach with the numericajnear (circles and a quadratiésquaresinterpolation. For compari-
solution of the PY equation, and the two higher densiles son we plotted the IN transition, which arises from density-
=0.57,0.59 are quadratic extrapolations. In Figh)4his is  functional theory4]. Also the results from Ref3] are plotted with
shown in greater detail where—1(p/4m)c(2,2,0q) is plot-  black crosses.

Isotropic to nematic instability as it arises from a
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is probably the reason why the nematic instability has not V. CONCLUSION
been discovered in previous works 7]. For comparison we
have plotted in Fig. 5 our result fot,= 3.0 together with the Orientational degrees of freedom in molecular systems

result of Ref.[5]. We do not only find a nematic instability can drive a phase transition into an orientationally ordered

with the PY approximation but also get a density where thisnematic liquid crystal phase. In principle, integral equations

|nStab|I|ty OoCcurs, which is much closer to the Monte CarIOhave the ab|||ty to describe a precursor phenomenon of such
simulation results of3] (p.~0.32) than the result from the an grientational transition. Until now this is well known for,

hypernetted chain approximation of RgB). e.g., hypernetted chaitiNC) theory. In this work we dem-
onstrate that Percus-Yevick theory also shows a clear precur-
B. Equilibrium phase diagram sor of the nematic phase. We therefore were able to calculate

Using the above conditiofEq. (24)] we get the phase the equilibrium phase diagram of hard ellipsoids of revolu-
tion. The obtained phase diagram is in good agreement with

diagram for the hard ellipsoids as it arises from the PY ap- ) ‘ i -
proximation as shown in Fig. 6. For all densities considerefens'ty'f'*'nCt'Onal theory4] and Monte Carlo simulations

there results a clear indication for a nematic instability. Thi
phase boundary still depends on the way the extrapolation to
higher densities is donéhere linear or quadraticbut is in
good agreement with other works. For example, the density- ACKNOWLEDGMENTS

functional theory of Groh and Dietridl#] is in a reasonable

good agreement with our results. However, due to their ap- M.L. thanks Mike Allen for making his results of com-
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