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Pressure of correlated layer-charge and counterion fluctuations in charged thin films
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We predict the fluctuation contribution to the interaction between two surfaces with both mobile layer
charges and delocalized counterions. The correldtonpling between the layer-charge fluctuations and the
counterion fluctuationgaround a piecewise homogeneous mean-field density prifitaken into account in
the Gaussian approximation. We find that this correlation significantly increases the magnitude of the interlayer
fluctuation attraction. The counterion fluctuation pressure is calculated as a function of the intersurface distance
and we show how the large and small distance limits correspond to three-dimer(8bhand 2D fluctua-
tions, respectively. In addition, we predict the charge density-density correlation functions. Experimental
implications of the model are discuss¢81063-651X99)13911-4

PACS numbds): 68.45~v, 87.16—b, 82.65.Dp

I. INTRODUCTION AND SUMMARY OF RESULTS andoy is the total surface number density of mobile charges;
we show below that the Bjerrum length'=e?/(ek,T)
Fluctuation-induced attractive forces may be importantshould be small compared toin order that the harmonic
for many effects in charged systems, including membran@pproximation used in Ref1] be applicable.
adhesion, DNA condensation, colloidal stabilitsee, e.g., Several authors have addressed the problem with fluctu-
references ir{1]), shear responsg?], and modification of ating delocalized chargesvithin the volume between the
bending rigidity[3]. Early direct measurements of forces be-surface13-16; however, the layer charges were fixed in
tween charged surfaces immersed in aqueous electrolyte séese studies. The inhomogeneity of the mean-field counter-
lution suggested an anomalous long-range attractive compdn (and coion, if salt is addeddensity profile makes this
nent of the force[4]. Several experimental techniques problem extremely difficult to treat analytically. In the
developed recently have made it possible to measure vergresent work, we show how this inhomogeneity can be
weak forces between charged objects on a variety of lengtiieated in a simple, analytical approximation. Our new re-
scales and at various electrolyte concentratiffi§]. The  sults include predictions for the coupling of the layer-charge
ideas of counterion-mediated attraction were applied to stud@nd counterion fluctuations; surprisingly, this contribution is
the interaction between like-charged rigid polyelectrolyteslarger than the fluctuations of either the layer charges or the
[7]; the correlation effects in the counterion system withcounterions alone.
strong Coulomb coupling were investigated in H&f. Our theory is based on an extension of the Gaussian fluc-
Previous theoretical approaches to the problem ofuation approach introduced by Pincus and Safrah to
fluctuation-induced interactions in charged, thin films in-account self-consistently for the fluctuations of both layer
cluded both numerical and analytical methods. Guldbrangharges and delocalized counteridfise correlation of the
et al. [9] accounted for the correlated fluctuations in the ionfluctuations of layer and delocalized charges was not consid-
clouds of the two surfaces using Monte Carlo simulationsered in the references quoted abpwé/e approximate the
and found a net attractive interaction of the van der Waal$hhomogeneous mean-field counterion distribution by a
type; however, no analytical law for the interaction was es-{iecewise uniform one in two asymptotic regimés:in the
tablished at that time. Later, a number of numerical, integrarégime h<\, where the counterions are almost uniformly
equation studies confirmed their resylt®,11]. Since, there distributed between the surfacés) in the limith>\, where
have been several attempts to obtain the explicit analyticadlmost all counterions are localized in the vicinity of the
laws of attractive, double layer interactiofis12—17. All of ~ surfaces(condensed counteriongnd the remainde(delo-
them go beyond the mean-field Poisson-Boltzmdm®)  calized counterionsare almost uniformly distributed in the
treatment that predicts only a repulsive contribution to thespace between the surfaces.
total interaction. The problem where all mobile charges are We find in Sec. Il that thetotal fluctuation pressurdl
localized in the plane of the surfatse term these the layer- may be represented as a sum of two contributions:
charge fluctuationswas first considered by Attart al.[12] | .
using a thermodynamic perturbation theory. In the regime of =IT+11"
the asymptotically large intersurface separations they found a . |
—1/h% scaling law for the fluctuation pressure between thel e first termIl’= Mo+ g,y is the pressure due to the
surfaces separated by a distaritePincus and Safrafl] layer-charge fluctuat|or‘(<and condensed counterion fluctua-
have recently addressed a similar problem, and using a d,pons in the limith>\) Ilg, plus an additional contribution
ferent approach also considered the small distance I|m|tHcoup due to their coupling with the counterion fluctuations
They found that the fluctuation pressure scales agdelocalized counterion fluctuations in the linhit=)\); note
—1/(\?h) in the limit of small intersurface separatioms that onIyHI was considered in Ref1]. We find thatHCOup
<\, where \=(27/0,) ! is the Gouy-Chapman length scales as-1/(\%h) and —In(h/\)/h® in the limit h<\ and
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h>\, respectively. While the last resuttin(b/A)/h® is simi-
lar to that obtained before for a system with only counterions
[13,15, we show here that this largest contribution to the
total fluctuation pressureomes from the coupling between and the corresponding fluctuation pressure between the lay-
the fluctuating condensed charges and the delocalize@ls IS
charged18].
The second contribution to the fluctuation pressiifé, M=— iﬁ 3)
represents the fluctuation pressure of the free plasma of Ao dh’
counteriongdelocalized counterions in the lintit=>\). Our ] ) )
approach shows in an intuitive manner that the counterio§’h€ré Ao is the surface area, witAF being the second
behavior goes continuously from two-dimensional-ligp-  variation of the effective Hamiltonian,
like) to 3D-like, ash increases. The fluctuation pressiifé , ,
for smallh can be derived by considering the counterions as 5\ }f Sna(r) o(r—r’) N /
a 2D Coulomb gas with the smallest length scale equal to 2 3 No(2) [r—r']
that of the film thicknesk; of course, we also present a more
complex formula valid for the entire range lofx. In Sec. IlI 1 S(p—p' /
p g +§E jiso'i(l)) (p P)+
=12 oo lp—p'|

= J Déo1(p)DSoy(p)Dng(r)e PAF,  (2)

Sng(r’)drdr’

we find thatI1®~ —1/(\2h), if h<\, andII°~—1/h3, if h

>\. The scaling law in the limih<<A is different from that
of an asymptotically large system. In Sec. IV we give a com- X 8oi(p')dpdp’
prehensive picture of the scaling behavior of density-density

inter- and intralayer correlation functions, and analyze the , )
region of applicability of the model. Finally, the fluctuation +f oo1(p) —m oo,(p’)dpdp
attraction is compared numerically with the mean-field
(Poisson-Boltzmannrepulsion.

Z

éons(r’)dpdr’

— | So1(p) -
f Y lp—p) 7+ (2 —h)?
II. TWO LAYERS WITH DELOCALIZED COUNTERIONS

/
We consider two overall neutral layers separated by a — | b02(p) ——==—=55ns(r")dpdr’, (4
- - - - - N(p=p') +z

distanceh with negative mobile layer chargesr{ is the

average surface charge densignd positive counterions where o, {p) = 01 Ap) — 0o, anddny(r) =ng(r) —no(2) is

screening the layer charges. The layer charges are free {Qe flyctuation of the counterion density around its mean-
move within the planes and counterions are allowed to 0cCtig|g profile ny(z) [20];

cupy the entire volume between the plap&3]. The surfaces

are immersed in the solvent which is treated as a structure- n

. . . . 0
less continuum with a homogeneous dielectric constant ng(z)= ——m——, (5)
Our goal is to calculate the contribution to the pressure be- cos ko(z—h/2)

tween the surfaces arising from the thermal fluctuations of all . . . .

the mobile chargegboth layer chargekl] and counterions whereng is the number densny of counterions on the mid-

including their coupling ' planez=h/2, andkj=2mny/; ny is determined by the total
The electrostatic free enerdy of the systemthe effec- ~ Charge conservation condition

tive Hamiltonian in our problepmmay be represented as a h

sum of the entropy of charges in an ideal gas approximation j No(2)dz=20y, (6)

and the electrostatic interaction enef@y]: 0

which giveskgh tan(hk,/2)=h/\; here \=(27/ o) ! is
3 the Gouy-Chapman length.

BF=2, f dr ni(r)[In(n;(r)ve)—1] We proceed further by approximating the inhomogeneous
=1 distributionny(z) in Eq. (4) by a piecewise uniform ongsee
NN (r') below). There are two regimes in the problem associated

A L (1)  with the magnitude of the parametei\, when this approxi-
[r—r’| mation can be justifiedsee, e.g.[20]). These limits ofh
<\ andh>\ are analyzed in Secs. Il A and Il B, respec-
tively.
wheren,(r) = o4(p) 5(z—h) andn,(r) = o5(p) 5(2) are vol- O);ce one makes the approximation of a piecewise uni-
ume number densities of the layer charges in layers 1 and 3o, counterion density distribution, one can represent the
respectively, anchs(r) is the counterion densityy=(X,y); pressurdl in both asymptotic limits in the form
z; is the charge number of thi¢h speciesz;=z,=—1, z5
=1; v, is the volume per ion/=7 A, B=1/(k,T), ande m=11'+11°, (7
=80 for water.
The fluctuation contribution to the free ener@yis deter-  wherelIl€ is the pressure due to those terms in the free en-
mined by the average ergy corresponding to the thermal fluctuations of fhee

/ 3
+ = 2 Ziijdr dr’
2i=1
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(i.e., not correlated with the layer-charge fluctuatjoosun-  layer-charge fluctuation attraction. This coupling leads to a
terions(delocalized counterions in the limiit>\) confined  significant increase of the pressuié compared tdl}: I1'
within the finite volume of the filn{see the Appendix for a :51]'0_

derivation: We note that there is a contribution to the total pres$iire

‘ g y that comes from the thermal fluctuations of tliee coun-

T 9 q 4w/n ' c i
e Kl o 0, terions,I1° [see Eqgs(7) and(8) and explanation theteAs
= 2 oh % f (27T)2In 1+ k2 [1= e, shown in detail in Sec. Ill, we find
(8
. kT
with = (ay,qy), k*=g>+kZ, k,=27m/h, mis an integer, =T o (13

andw(k) is given by Eq.(A6); IT¢ will be discussed in Sec.
ll. Here we note that argument of the logarithm in E8).is 54 note thaflI¢ has the same scaling-1/h asTI'. The

inversely proportional to the counterion density correlationcoup”ng contribution is also larger thah® by a factor of 2.
function. Our result for this function interpolates between 3D

behavior of the counterion fluctuations whier-c and the
Fourier transform of the Coulomb interaction scales &3,1/
and 2D behavior wheh—0 (for k,=0) and the Coulomb In the opposite limit ofh>\ (high charge density limit
interaction scales asd./What is new in our expression for it follows from the analysis of a mean-field solution for
I1' in Eq. (7) is the pressure due to the layer-charge fluctuano(z) that most of the counterions are localized very near the
tions modified by their coupling with the counterion fluctua- surfaces(condensed counterionsand the remainde(delo-
tions: calized counterionsare almost uniformly distributed in the
space between the surfaded]. In this limit h>\, we ap-
M'=TIy+ choup- (99  proximate[20] the delocalized counterion distribution be-

tween the surfaces by the volume number density equal to

Here H'O is the contribution exclusively due to the layer- that on the midplane=h/2:
charge fluctuationéonly I1}, was analyzed ifil]), andH'Coup -
is the contribution due to theoupling of the layer-charge No=m/(2/h%).

fluctuations with the counterion fluctuations. We now ex-

plain how we approximate the inhomogeneous counterior "€ Surface number density of the condensed countedigns
distribution by a piecewise uniform one and spedifyin the N €ach layer(in addition tooy due to the layer chargess
limits h<\ (Sec. Il A) andh>X\ (Sec. B. then

B. Limit of large intersurface separationsh>N\

- . _ o= 0o(1—m\/2h), (14)
A. Limit of small intersurface separations h<\
In the limit h<\ (ideal gas limi}, the counterions are as implied by Eq(6); of course, the condensed counterions
nearly uniformly distributed between the two layers. The to-are positively charged, while the layer charges are negative.

tal charge conservation condition, E6), then implies, Hence, in this limith>X, Eq. (1) should be extended to
include condensed counterions as an additional species of
Ng=20q/h. positive layer charges. The details of the calculation for this

. _ _ _ scenario are reported in Appendix A 2. The principal contri-
The idea is thus to approximatey(z) in Eqd. (4) by no  putions tolT}, andH'coupare
=20,/h. After the calculation of Eqgs(2) and (3), where

one expands in the small parameteiN, we obtain the £(3) k,T
asymptotic contributions tol}, H'Coup, andIl', respectively = — B 13 (15
(see Appendix AL ™ h
k T ka ar
| _ b SR _
II,=— m, (10) Hcoup_ h3 ( 2 |n(2h/)\) 2), (16)
kT where/( is the Riemann zeta function. We note that the am-
|

(11  plitude —¢(3)/(8m)=—0.048 is universal for this interac-

coup~ o } ) -2
m\“h tion, induced by the long-ranged fluctuations in the lilmit

>\ [12,27.
| 5k, T The pressurdI®, Eq. (8), due to the thermal fluctuations
I'=— an2h’ (12) of the free delocalized counterionia this limit h>\ (see

Sec. Il for detail$, is

We stress again that on[l;l'o was analyzed by Pincus and

Safran[1] in the problem where the purely layer-charge fluc- e~ — 4k_bT
tuations were considerd@ithout coupling to the counterion h3
fluctuations included Our results show that the coupling

contribution HLOUP is a factor of 4 larger than the direct and the total fluctuation pressurkin the limit h> N\ is thus
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{(3)
——+

:I+ C— _
II=I1"+11I 8

kpT
h3

ar
2+ EIn(Zh/)\)). (17)

For the case where the layer charges are fixenhfluctuat-
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kT
2m\2h

Cc_

(19

We now discuss a less formal and more intuitive derivation

ing), our results are similar to that obtained by Attard using 2of Eq. (19). Consider the uniformly negatively charged sur-

more complicated approa¢kq. (3.14) in [13]]:

kyT
h

£(3)

HAttard2 _
8

2+ gln(h/)\)>. (18)

The extra factor of 2 in the logarithm of Egd.6) and (17)
compared to Eq(18) is due to the extra fluctuating layer-

charge component considered in our model, with an average

surface number density of chargg (see Appendix A2 We
emphasize that only the coupling contributiﬂiOup to the
total fluctuation pressurdl depends om\ (and, hence, on
o) in this limit h>\. While our result, Eq(17), is not new,
we believe that it is still important becausg it shows that
the limit h>\ may be thought of as a piecewise uniform

system of fluctuating delocalized counterions coupled to th
purely two-dimensional system of the fluctuating condense

counteriongand the layer charggg(ii) our approach may be

easily generalized to any number of the fluctuating specie

within the surfaces(iii) we show explicitly and intuitively
that the largest contribution- —k,, T In(h/A)/h® to the pres-

sure IT comes from the coupling between the condense
counterion fluctuations and the delocalized counterion fluc:
tuations. This is somewhat surprising, since the density o¥

the delocalized counterions is extremely lomg~ 1/(/'h?)

in this limit. One should note finally that the
—k, T In(h/\)/h® law for the fluctuation pressure of the coun-
terions was also obtained in R¢L5] with different numeri-
cal prefactors.

lIl. FINITE-SIZE EFFECTS ON COUNTERION PRESSURE

face layer with charge number density2and the screening
fluctuatingpositive counterions localized within the layer ap-
proximated as a two-dimensional system, with the same
mean surface number densityog as required by total
charge neutrality. The fluctuation free ener@?® of this
two-dimensional system jd]

2d =
G 5 In| 1+ A

_Aokafqmdq q
B 0 2

Aok, T
=— In(\ ,
7 (NOIm)

(20

where q,,, is an upper cutoff for the wave vectayr. The
elf-energy is subtracted from E¢RO); in any case it is

dependent oh. The approximation of a two-dimensional
system for the counterions is appropriate for length scales
thuch larger tharh. We thus replace the cutoff,, by q,,
=b/h whereb is a constant of order unity. We then find that
g. (19 for the pressurél® arises from the derivative of the
ree energy of Eq(20) with respect tdh, independent of the
alue ofb. We note thatG?? in Eq. (20) follows from II¢
(1/Ap)9G®loh of Eg. (8), if we expand forhgq<1 at
k,=0 [the contribution from all the other modds#0,
~kyT/(h?\), is irrelevant; it corresponds to the self-energy
and is canceled by the contribution fog>1].

In conclusion, we have shown that in the lirhi&\, TI°¢
may be obtained from the fluctuation free energy oftthe-
dimensionakounterion system, provided the minimal length
scale is set to be of ordér.

In the previous section, we showed that within the ap-

proximation of a mean-field homogeneous counterion den-

sity ng(z) =ny, the total fluctuation pressutld can be rep-
resented as a sum of two contributiod$=1I1'+1I¢. Here
we consider in more detail the contributidh® due to the
fluctuations of thefree counterion gas, Eq(8). We stress
again that ‘fre€’ includes those terms in the free energy

corresponding to the fluctuations of the counterions that are

not correlatedwith the layer-charge fluctuatior{this corre-
lation is captured by['coupterm as explained in the previous

B. 1€ in the limit of large intersurface separation

In the limit h>\, one approximates the density of the
delocalized counterionss ny=7/(2/h?). It thus follows
from Eq. (8) that
4k, T

h®

IMe=— (21

section; this result is the direct consequence of the approxi-! NS iS the scaling one would predii4] from the expres-
mation of piecewise homogeneity of the mean-field counterSion for the flug/tzuatlon free energyzof a 3D syste@fy~
ion distribution, with no further assumptions. We report here= kpTAoh(no/)™, where no~1/(/h?). If one considers

the results fodlI® in both asymptotic limith<\ andh>X\

only the delocalized counterions, there is an extra, cutoff-

as derived from Eq(8) (these results have been alreadydependent term coming from E¢B), corresponding to the

quoted in Secs. IIA and Il B, respectivelyOf course, the
theory yields anumerical interpolation formula as well.

A. TI€ in the limit of small intersurface separation

In the limit h<\, whereny=20,/h, the straightforward
calculation of Eq.(8) yields the asymptotic contribution to
I1¢, expanded as a function of the small paramétex:

self

self-energyG:®"'~ky, TAghqmng/’, whereq,,~1/a anda is

an atomic length scale. However, this is exactly canceled by
the contribution of thecondensed counterion#f they are
approximated as two thin slabs of thickness.
=1/(2n/o.), where o.=0y(1—m2\/2h), the volume
number density, of the counterions within each slab is then
n.= o./\., and the volume of each slabAg\.. Calcula-
tion of Eq.(8) with ng=n, andh=\ for each slab yields a



5852 D. B. LUKATSKY AND S. A. SAFRAN PRE 60

contribution to the free energy exactly equal -Hﬁﬁe”/Z, TABLE |. Scaling results for the inter- and intralayer charge
providing an exact cancellation of the self-energy of the dedensity-density correlation functions, whete-2.1, «'=2.37, and
localized counterions. 7=0.15. K {(p) andKZ(p) are the interlayer and intralayer cor-

relation functions, respectively, for the system with purely lateral
charge fluctuationgno coupling with the counterion fluctuations
K °UP(p) is the contribution to the layer charge correlation func-

In Sec. Il we observed that there was long-range scalin jons exclusively due to the correlation between the layer charge
behavior of the interlayer fluctuation pressd@ in both uctuations and the counterion fluctuations. The definitions and de-
asymptotic limitsh<\ andhs\. This corresponds to scale ta}iled fjiscussion of all correlation functions, includikig’}(p), are
free density fluctuations. In this section, we trace the conne@Venm sec. IV.
tion between the pressurél' and the interlayer- and

IV. DISCUSSION

. g . ~ i ’CCOUp
intralayer-charge correlation functions. We shall first define () @(lné—a)
all the correlation functions and then summarize the results a2\ h h<\, p<h
for their scaling in Table I. After doing that, we analyze the o
range of validity of the results obtained so far within the —20
model and of the model itself. 2h h>\, p<h
. . . )
A. Inter- and intralayer correlation functions = h<\, p<h
The inter- and intralayer correlation functions provide in- K %,(p) oo
sight into the fluptugtions QUQ to the layer cha}r.@:sd con- e h<\, p>h
densed counterion® the limit h>\) as modified by the
coupling with the fluctuations of the counteriof@elocalized 1
counterionsin the limit h>\). For simplicity, in what fol- w2/ h? h>\, p<h
lows until the end of this section, whenever we consider the 1
limit h>\, we calculate the fluctuations of treondensed 2,3
counterionscorrelated with thelelocalized counterionsvith 2wsp h>X, p>h
the layer charges held fixesee Sec. IIB The density- K%(p) oo
density interlayerkC,5(p) and intralayerkC;1(p) correlation v h<\, p<A
functions Cjj (p) =(d0(p) 60;(0)) are defined as the aver- oy
age of the product of the charge fluctuatiahs;(p) 60(0) T mp h>\, p<\
with the probability density proportional & #*F, wherep
=(Xx,y) is the in-plane vector. This averaging yields _ﬂ:]co( )
. Kip)=KAp) +KPRp)  —mh 2P h<en, p<h
~dqq
Kij(p)= fo 2 Kii(@Jo(ap), (22) 70
2h? h>\, p<h
with [Cj;(q)=(dai(q) 6o;(—q)) being a 2D Fourier trans- . o .
form of Kj;(p), where K11(p) =Kii(p) + K" Xp) —ﬂ_—)\szgl(p) h<\, p<h
N—A\, _ 90 _yo
Kia)= )i N, TP Ku(p) h>N\, p<<A
112
)\1+)\2 in —2(|nﬁ—a’)
Ki(a)= IV K11(p) N h<\, p<h
112 -
Jo is the Bessel function, and; ,A,,\9, A9 are eigenvalues w2/ h® h>X\, p<h

of the free energy as defined in the Appendix for both
asymptotic limits. We stress that in the cagiéhout coupling
betwee_n the Iay_er—charge Jluctlf:\tlons and the counteriop equivalent to the formal definitiof25] K%(p) =K %,(p)
fluctuations, the interlayekC 1,(p) =(d01(p) 602(0))o and  _ 5 5(,), so that the nonphysical self-interaction of the
intralayer K 3y(p)=(804(p) 804(0))o correlation functions  charges is subtracted out. In what follows, this renormaliza-
are defined by the same expressifires, Eqs.(22) and(23)]  tion will be applied to all intralayer correlation functions.
ask1Ap) andKyy(p), respectively, provided the substitution The results forkC2,(p) andK;(p) are shown in Table I.
Ni—\{ is performed. The intralayer correlation function | order to capture the effects exclusively due to the cor-
K%4(p) is divergent. This artificial divergence is due to the relation between the counterion fluctuations and the layer-
infinite increase of fluctuations due to the self-interaction ofcharge fluctuations, we consider the difference

charges ap—0 (g—»). Instead oflC‘fl(p) we will con-

sider the renormalized correlation functid?;: K9,(q) .
=K9y(a)—lim K 3y(a)=K2(q) —200. This procedure K5 (p)=Kij(p)— Kij(p), (24)
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inl analogy with what Was done before for the pressuryhereA,; andA;, in both regimes are defined in the Ap-
Icoyp; this differencelCi®N(p) =K "X(p), i,j=1.2,isthe  pendix; they would be equal %, andA?%,, respectively, if
same for inter- and intralayer correlation functions in bothp,q coupling of thecondensed-chargéuctuations with the
asymptotic limits. The Iegdlng order terms fo*°“%(p) are  e|ocalized-chargdluctuations[18] would exist in the sys-
the following (see Table)t tem. Hence, one concludes that the correlatiupling of
the layer-charge fluctuations and the counterion fluctuations
JCSOUR( ) = 209 (n(\/h)—a), h<\, p<h, (25 results in a clontribution from the i_nFraIayer correlations to
A2 the pressurédl' that leads to an additional attraction.

)

K Coup( ) = ,
(p) ™

h>\, p<h, (26) B. Applicability of the theory

We now discuss the range of applicability of the results.

wherea=2.1. Here we address two questior(§) Under what conditions
In order to gain a more physical, intuitive understandingare the fluctuations weak enough that the harmonic approxi-

of the coupling contributioriC ““/(p), let us consider a new mation we adopt is valid for our modél) Under what con-

correlation functionCY}: ditions is the effective Hamiltonian, Eq1) (i.e., the model
. itself), applicable and how are these conditions consistent
KTy(@)=K9ya)— lim £9y(q); @7 with (i)?
h—oo

The inter- and intralayer fluctuations of the layer charges
are weak if the correlation functions for their fluctuations
obey K1x(p)/oi<1 andKq4(p)/o5<1. The former condi-
tion implies a restriction on the minimal intersurface separa-
tion h (in the limit h<\) when the pressure i§I'~
—1/(\?h) and the interlayer correlation function i§;»(p)

—a2//h, while the latter condition determines the lower
bound onp in the intralayer correlation functioK ,(p)~
o —a'g//p (in both asymptotic limitthh<\ andh>\). It fol-

Ki(p)= %[I”(Mh)_a']’ h<\, p<h, (29 lows from Table | that these conditions are equivalenhto

TN >/ andp>/, respectively; in the limit of large intersurface
separationsy> \, the interlayer-charge fluctuatiofsorrela-

as K“"(p) when p<h [compare with Eq(25), see also tjong) are always weak, of course.
Table I], wherea’=2.37. Thus, we see that as long fas Returning to the total free energy of E@) we note that
<\, the counterion fluctuations modify the layer-chargethe first term is the ideal gas entropy of counterions and layer
fluctuations in much the same way as purely lateral chargeharges. The condition th&t>/" and p>/ means that the
fluctuations in one plane mOdlfy the lateral Charge ﬂUCtua'layer-Charge surface densityo and the counterion volume

tions in the other plane. densityn, should be dilute enough; i.e., the mean electro-
To trace the connection between the presdlif@nd the  static energy of two ions~e?/r, (r, is the mean distance

layer-charge correlation functions, we note that the scalingetween ionsg ,~ o5 2 for layer charges, anch~ng *® for

for the short-distancep(<h) density correlations ok3x(p)  counteriony should be small compared with the entropy
coincides with the scaling for the pressuii, within the ~k,T; this impliesr,>/; i.e., the system is entropy domi-
corresponding regimesc J,(p)~—ao/(Ah), if h<\, and  nated. One can check that the last inequality is equivalent to
K?z(p)~ —1/(/h%), if h>\. This again is not an accidental A>/".

here “in” stands for “induced”; this is the correlation func-
tion of the charge fluctuations within the first layer induced
by the direct interaction with the charge fluctuations within
the second laye(no coupling to the counterion fluctuations
In the limit h<\, the correlation functioriC’}(p) has the
same scaling behavior,

coincidence. One can check that the pres$lijés expressed Summarizing these conditions, one estimates the region of
through the interlayer correlation functidﬁgz(q): validity of the results:(i) in the limit h<X\ we requireh
>/ (\>/ is satisfied automatically (ii) in the limit h>\
1 dq ﬁAgz we requirer>/". Thus all length scales must be larger than
H'O— - —f IC?z(q) , (29)  the Bjerrum length for the fluctuations to be considered as
2J (2m)? n small.

0 _ . —gh : . The experimentally interesting situation where the fluc-
where Ajp,=(2m//q)e""" is the Fourier transform of the yation attraction is largest, corresponding to the limitX,
direct interaction between the charge fluctuations,(p)  may be realized, e.g., in the measurements of forces between
andda;(p) within the two layergthird term of Eq.(4)], and  gyrfactant bilayers, adsorbed on mica surfd@& or within

the integral, Eq(29), is proportional toC 3,(p) in the limit 4 plack film[6,27]. Taking the reasonabl,26] valuesa,

p<h. Therefore, only interlayer correlations contribute to —10'3 ¢m~2 (this corresponds to one charge per 1008, A
the pressurdly, while IT' is determined by both inter- and \~22 A) andh~10 A, one can estimate the fluctuation
intralayer correlation functions, in fact: attractive pressurfl =II'+11¢, Egs.(12) and(13):

__ 1 49
1 2J(2’7T)2

JA 1 A1 7 kyT dyn
’Cll(Q)a—h+’C12(Q)[?—h, (30) H————h——5><1 —.
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The Poisson-Boltzmann repulsive pressilfé® is (see, how- 1 o
ever, Ref[28]) BAF= EJ onz(r)Agg(r—r")éns(r’)dr dr’

1

T dyne t3. 2, | ooilpAf(p=p)doi(p )dpdp
PB: = — —_— ’ ’
PE=kpTno=——+ 8><1050mz,

+i2212J Sai(p)A(p—p',2')ons(r')dpdr’,

[this is derived in Ref[20], Eq. (5.96]; the values oh and (A1)
\ are at the upper bound of the linkitg A and, of course, the 0. ) )
corresponding scaling results for pressiifeand correlation WhereAjj is a 3x3 symmetric matrix:
functions are accurate deep inside this region and only ap-
proximately correct at its boundaries. We also note that the 0, a0, o Sp— P) 4
; - AL(p=p")=Ay(p—p')= + ,

pressure of the order of $0dyne/cnt is measurable in cur- To lp—p'|
rent force balance experimerigs—6]. Even in the case when
the fluctuation attraction is not dominant, it is still of the /
same order of magnitude as Poisson-Boltzmann repulsion, A p—p')= —s,
and combined with van der Waals interactiorhat50 A, it N(p=p)"+h
may overcome the repulsive interaction completely, or may )
combine with the repulsion to give an optimal, minimal en- A p—p' .2 )=~ 4

. . 13 pP—pP Z ) ’
ergy interlayer spacing. V(p—p')2+ (2 —h)?

Y
0 -
V. CONCLUSION Ap(p=p' 2 )= — ——5,
V(p—p')?+2'?
In summary, we derived the fluctuation contributions to
the pressure between surfaces with mobile layer charges in S(r—r") /

0 ry —
the presence of delocalized counterions without added salt. Agr—r")= no(2) + TR (A2)
The correlation of the layer-charge fluctuatigasd thecon-

densed counteriofluctuations in the Ilmlth>)\) with the The integration with respect to tleecoordinate in Eq(Al)
counterion fluctuationgdelocalized counteriorluctuations  (and everywhere in the texis performed within the finite
in the limit h>\) was taken into account; this correlation width h of the film: f[;dz. As explained in Sec. Il, we ap-
(coupling gives rise to a different significant contribution proximate the counterion density(z) by a piecewise uni-
choupto the fluctuation pressure in each asymptotic regimEform one; we thus approximate'o(z):no_ In order to per-
h<\ [y~ —1/(A2h)] andh>\ [Ty, ~ —In(A)/h®];  form the functional integration in Eq2), we can rewrite the
we stress that the termIn(h/\)/h® arising from the coupling  free energy(shifting on3) of Eq. (A1) in Fourier representa-
represents the dominant contribution to the total fluctuatiortion with periodic boundary conditions, so that it is a qua-
pressurdl in this limit. We also showed in an intuitive way gratic function ofsn, and do; separately:

that the counterion fluctuation presstité€ goes continuously

from 2D-like to 3D-like behavior ak increases; for smaH, 1 ~

I1¢ can be derived by considering the counterions as a 2D BAF= A > > oi(@)A;(q)daj(—q)+ BAFS,
Coulomb gas with the smallest length scale equal to that of L=z 4 (A3)
the film thicknessh. The correlation functions obtained

within the model show long-range power law behavior butynere
no indication of the phase transitions was obtained.

1 ~ 0Ly
BAFC:m; ong(k)Agg(k)dng(—k),  (Ad)
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[1-w(K)]; (A5)

herek=(q,k,), k*=q*+ kﬁ, k,=2mm/h, mis an integer,
andw(Kk) is the contribution due to the finite size of the film:
APPENDIX: DETAILS OF CALCULATIONS FOR SEC. Il

. . . . : (1—e~"9 g2—k2
In this appendix we summarize the details of calculations w(k)= )

(A6)
performed in Sec. Il. Let us rewrite E¢4) in the form hq k?
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We note that the Fourier transform of the counterion fluctua- koT @ dq
tion free energythe first term of Eq(A1)] also includes the Ih=— > o5 —zln()\fl’)\g/ag), (A12)
nondiagonalcoupling wave vectork, andk,) contribution (27)

due to the finite size of the system. This nondiagonal term is
omitted in Eq.(A4) for the following reasons: Finite-size ith )\O,)\g being the eigenvalues of22 matrixAio-(q) Eq.
corrections reduce the free energy of the fluctuations; th?AS): !
lowest fluctuation contributions are obtained for wave vec-
torsk,=0. Thus, the nondiagonal terms do not contribute to
the lowest free energy modes of the system. More detailed 1 2w/
calculations show that the largest contribution to the pressure g
comes from the terrk,= 0. Because of the finite size, there
is a gap in the spectrum. In the limit<X all the higher )
modes contribute to terms in the pressure that are high order )\o:iJr ZL”/(lJre—qh) (A13)
in h/\. In the opposite limith>\, the nondiagonal term is 2" 0y '
higher order in 1 for any k,#0.

The layer-charge interactiofrenormalized by the cou-
pling with the counterion fluctuatiopsmatrix elements

We stress again thit'coup= IT' - I1}, would be equal to zero

if no couplingof the layer-charge fluctuations with the coun-

Aij(a) are terion fluctuations would exist in the system. In what fol-
~ . lows, we specify in detail howll' is obtained in both
_AO _
Aj(@=Agj(a)-Ty(a), 1.j=1.2, (A7) asymptotic regimef<\ andh>\.
with
, 1. Limit of small intersurface separations
0 0 1 27/ - .
An(@)=Az(0)=—+——, In the limit h<\ analyzed in Sec. Il A, one has,
o 4 =20¢/h. In this limit T=T; is
0 21/ _on. 2¢? (1—e )2
A(Q)= Te ) (A8) '=— (A14)

0o x[x3+4s(x—1+e’x)]’
A94(q),A%(q) are the Fourier transforms of the correspond-

ing matrix elements due to the purely layer-charge fluctuayherex=qh, ande=h/\ is a small parameter in the limit
tions in Eq.(A2); T'j;(q) is the contribution which modifies p<). The coupling contributiodl!,  is then
the layer-charge interactions, due to the coupling of the P

layer-charge fluctuations with the counterion fluctuations;

' (q) is specified below in both asymptotic limits. | | | k,T o dq 2r
Having obtained\F, Eq. (A3), in diagonalized form, one Heoup= Il —1lg=——- %J W'” 1- NIk

can perform the functional integration in E@). Integrating " ’ (A15)

out 8nj first (note thatDsns=Désns), one can obtaidl® in

the following form: o . - )
The explicit scaling laws foflg, IT¢q,p, andIl' reported in

k.T & d Sec. Il A, Egs.(10), (11), and(12) are obtained from Egs.

c b a 0

=== > ——In[noAg(k)].  (A9)  (A12), (A15), and (A10), respectively, where one usés
ke J (2) determined by Eq(A14), and

Equation(A9) is identical to Eq(8) quoted in Sec. Il without
derivation. Integrating in Eq2) with respect todo() and A =AY,
So5(p), we immediately find

i kyT af dq Ao=\0—2T, (A16)

LRI e 2
> 7n (ZW)ZIn()\lkzlaO), (A10)
) ) ) ) and expands in the small paramelei .
wherea, is a microscopic area, and;,\, are the eigenval-

ues of 22 matrix A;; (q):
. (@ 2. Limit of large intersurface separations

N=Au(a)—A10), As we explained in Sec. Il B, in the limit=\ one should
N B reformulate the problem to includmndensed counteriorzs
No=A(q)+A1Q). (A11)  an additional species of positive charges localized within the

layers(the layer charges are negatiweith the average sur-
The contributionexclusively due to the layer charge fluctua- face number density of charge.= oo(1— 7w2\/2h). There-
tions Iy, is similar to Eq.(A10), provided the substitution fore, instead of Eq(1), the effective Hamiltonian in this
)\lﬂ)\g and xﬁxg is performed, limit is the following:



5856

BF = E dr n®(n){In[n&(r)vo]—1}

I+N

+f dr ng(r){In[ng(r)ve]l—1}
i (Onf(r’) ni(rn/(r’)

fdd
3 Ir=r'|

fd LMo

[r—r’|

I\JI\

i,]
a,y=

a=

/ na(r)ng(r')
+ Zf drdr —|r—r’| , (A17)
with ng(r)=o$(p) 8(z—h), n5(r)=o5(p) 8(2), a==+, 2/

=2,=1, andz; =z, =—1; here oy (p)=01(p), o, (p)
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(p—p')?+2'?
0 S(r—r") /
Ag(r—r")= , (A20)
No [r—r’]
whereo, = oo and oy = o= 0o(1— 72\/2h) are the aver-

age surface number densities of the layer charges and the

condensed counterions respectively, in each layerig ex-
plained in Sec.ll B, ng=7/(2/h?) is the volume number
density of the delocalized counterions.

One findsAF in Fourier representation:

=a,(p) are the surface number densities of the negative'nere

layer charges on layers 1 and 2, respectively, ajdp),

o, (p) are the corresponding surface number densities of the
positivecondensed counterionss(r) is the volume number

density of thedelocalized counterions
One defines the thermal fluctuation contributi@rto the
free energy in analogy with Eq2),

eBG—H

Déal(p)Déng(r)e AR, (A18)

a:+

where the second variatiakiF of F has a form similar to Eq.

(4) [compare with Eqs(Al) and (A2)]:

1
BAF= - f5n3(r)A( —r")éng(r’)dr dr’

J&T. P)AF(p—p")daf(p)dpdp’

a,B—
+22 Sl (p)Afs(p—p'.2')dng(r’)dpdr’,
(A19)
with
aq ! aa i 5(p_pl) /
AT (p—p")=A%(p—p")= —+ T
Jp |P_P |
AS(p—p ) =21 ——5.
(p—p)%+h

Ady (p=p)=Az (p—p)=— P

o=p)?+(Z —h)*

Afp—p' 2" )=2]

1
BAF=ga- 2, 2 S0l (@A (@dof(~q)+ BAFS,
" (A21)
AfP(@=AfP(a)-T{P(a) (A22)
and
rif(q)=2'2Z'T. (A23)

Within this limit ng=/(2/h?) (see Sec. Il B andI’ can
be represented in the form

m3h/ (1—e %)2 coth(3 x*+27°)
NG V2272

wherex=qh. In Eq. (A22), Aﬁﬁ(q) is a 4x4 symmetric
matrix, analogous to EqA8):

(A24)

e e 1 2w/
A (=A% (q)=—+ :
o5 q
2w/
A (@=Ay (@)=~ o

Af§<q>=zi’z§¥eqh- (A25)
Substituting Eq(A21) into Eq. (A18), and first integrating
out 8ns (DSns=Ddns), one obtaindI®, Egs.(8) and(A9),
with ng=7/(2/h?) in this limit. Integrating out the layer-
charge and condensed counterion contributidns'(p), i
=1,2, =+, we find expressions analogous to E¢s10),
(A12), and(A15), respectively:

keT 4 ( dqg -
= = —| —— aByra4
1 2 (7hJ (Zw)zln(de(Au 11ag), (A26)
kpT @ dq

l__ 2
Mo=="5n (2)

sIn(defAfPl/ag),  (A27)
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y . kT 9 dg |
Hcoup_ — T % —(277)2 ni1— —)\Izarge , (A28)
wherel is determined by EqA24), and
1 2/
large__ _— —qgh
Ny 200+_q (1+e™ 9, (A29)

is similar to A3, Eq. (A13), provided the substitutionry
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ions results is just to double the surface number density of
charge, compared to the case of the single layer-charge com-
ponent. The results reported in Sec. Il B 116{), Eq. (15),
and H'Cou , Eq. (16), may be found from Egs(A27) and
(A28), respectively, by expansion with respect to the small
parameten/h. We stress that EqA28) is obtained within
the approximationr®=o; the corrections to Eq.A28) are
of higher order inn/h.

Finally we note that the eigenvalugsg,\, that should be
substituted in Eq(23) for the correlation functiondC;,(q)

— 20, in A\ is performed. Therefore, the effect of the extra and K11(9) in the limit h>\ are analogous to EqA16)
layer-charge component, i.e., due to tendensed counter- with I' determined by Eq(A24).
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