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Diffusivelike buffering and saturation of large rivers

F. Métivier
UFR des Sciences Physiques de la Terre, Universite´ Paris 7, case 7011, 2 place Jussieu, 75251 Paris Cedex 05, France

~Received 28 January 1999; revised manuscript received 7 June 1999!

We use mass balance data from Asian rivers together with a first-order diffusive simplification of the St.
Venant-Exner equations to characterize river floodplain processes and discuss the reaction of a large model
river to a hillslope supply of eroded masses. The simple analytical solution derived for the long-term profile of
the river bed shows that~i! the system converges towards a state in which it reacts to perturbations in erosion
of the landscape by small-amplitude oscillations around an average ‘‘stationary’’ state,~ii ! to have an effective
influence on the river plain profile, the perturbations need to have frequencies smaller than the characteristic
frequencies of the river system, and~iii ! this river buffering might be linked with a possible long-term
saturation of the system carrying capacity.@S1063-651X~99!12711-9#

PACS number~s!: 47.55.2t, 92.40.Gc, 92.40.Fb
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I. INTRODUCTION

Most of the models that attempt to explain the gene
form of landscapes do it through slope processes whe
cascading, like avalanches or landslides, or diffusive coup
to the development of a drainage network that carries
mass out of the eroding regions@1–7#. All these models are
constrained by several statistical laws, such as the Hor
Strahler laws of stream numbers and lengths@8,9#, although
the geomorphological significance of these laws should
questioned@10–12#. These models assume simple bound
conditions at the outlet such as constant slope@7# or eleva-
tion @5#. Some also assume that the drainage is able to tr
port the product of their avalanchelike erosion formalism
of the system@13–15#. But the way in which boundary con
ditions influence the solution of this formalism is seldo
discussed@6,16,17#.

In typical drainage basins, the erosion products
transported either by tributaries or by slope processes to
main river or stream that carries these masses away f
places of high relief to the sea where the grains ultimat
accumulate in sedimentary basins~Fig. 1!. When leaving the
mountain range, the main stream forms a floodplain or a
vial plain, where sands and finer alluvium can tempora
accumulate. We focus here on the consequences on
floodplain behavior induced by a long-term constant out
flux at a main stream outlet~sediment flux to the sea!,
whereas the upstream relief is quickly eroding; this is
case for the largest rivers of Asia for at least the pas
million years@18,19#. Floodplain processes are modeled u
ing a common first-order diffusive approximation resulti
from simplification of the St. Venant-Exner equations@20–
23#. Using a simple analytical formalism, we discuss in wh
way fluvial systems react to both changes of flux from h
slopes and from upstream catchments in order to mainta
constant boundary condition at the outlet@24#.

II. DIFFUSIVELIKE RIVER BED EVOLUTION

Here we consider a very simple first-ord
(111)-dimensional@~111!D# model of a single floodplain
reaction to an external forcing mechanism. The main stre
PRE 601063-651X/99/60~5!/5827~6!/$15.00
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is linear and has a floodplain~a plain where sands and allu
vium accumulate! of length L ~Fig. 1!. The x axis is taken
along the river bed, and its origin is located at the riv
mouth.

We start from a system of two equations known as the
Venant-Exner equations. The equation of Exner defines
conservation of the solid mass transported by a river. In
~111!D approach it may be expressed as

~12p!] tz1]uqs]xu5f~x,t !, ~1!

where p is the sediment porosity,qs is the sediment dis-
charge,z is the river bed elevation above some referen
datum,u is the flow velocity, andf(x,t) is a source term
characterizing mass input from adjacent slopes or tributar

The equation of St. Venant defines the dynamics o
gradually varied unsteady flow

g]x~h1z!1au]xu1] tu52gJe , ~2!

whereh is the flow depth,a is the Coriolis or energy coef
ficient, andJe is the energy slope of the flow@25,23#. The St.
Venant equation expresses the conservation of energy p
ciple. Je represents the variation in the hydraulic head of
river due to turbulent and friction losses,g]x(h1z) is the
variation in potential energy,u]xu is the variation of kinetic
energy, and] tu is the time variations in momentum of th
river. The basic assumption, attributed to St. Venant, w
was among the first to derive this equation, is that the ene
slope, or friction slope, of the flow is the same as that in
uniform flow and can therefore be estimated through the
of uniform flow formulas such asJe;u2/C2h, whereC is
the Chezy coefficient@23#.

The simplifying assumptions we make are as follows:~i!
we assume a quasistationary form of the St. Venant-Ex
equations, which is a reasonable assumption for large riv
where the Froude number shows that the flow is clearly s
critical (Fr 5u/Agh,1); ~ii ! we assume further that th
flow is quasiuniform (]xu;0, ]xh50) and quasipermanen
(] tu;0). Equation~2! then reduces to

]xz52Je52u2/C2h, ~3!
5827 © 1999 The American Physical Society



-

5828 PRE 60F. MÉTIVIER
FIG. 1. Sketch of the model floodplain stud
ied and terms used in the text.
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whereq is the unit flow discharge (q5uh) @20#. Differenti-
ating this equation and substituting into Eq.~1! leads to

n]xx
2 z5] tz1F~x,t !0,x,L,0,t,`, ~4!

where n5]uqsC
2h/@2u(12p)# is a diffusivity coefficient

andF(x,t)5f(x,t)/(12p). The assumptions we make im
ply that ~i! the simplified parabolic form of the river be
elevation is realistic for characteristic distances much lar
than the flow depth, which is always true~we are looking for
effects on scales of kilometers to hundreds of kilomet
compared to flow depths of a few meters, hencex@3h/Je),
~ii ! the problem is to be considered only for very large tim
scales~which is also the case here, as climatic oscillatio
during the past 2 million years have had characteristic p
ods on order of 104 years!, and finally~iii ! we deal only with
large streams where subcritical quasiuniform and quasi
manent flow is a reasonable approximation~the behavior we
are trying to understand concerns rivers that have allu
plains of length on the order of 1000 km!. Thus we can
reasonably assume, to the first order, a constant diffusi
n(t)'Cte @22#.

III. BOUNDARY CONDITIONS

Through a mass balanced reconstruction of the volum
accumulated at the outlet of large streams in Asia, our ea
work has shown that present-day measured fluxes of m
carried by large streams to the sea are equal to the avera
these fluxes over a 23106-year period@known as the qua-
ternary, Fig. 2~a!# @18,19#. It can further be shown that thes
average fluxes are maximum with regard to the long-te
history of these rivers„over periods larger than 107 years
@Fig. 2~b!#…. As we are interested in the study of rivers ov
the past 2 millions years, the first boundary condition, at
mouth of the river~in x50), we assume is

]xz~0,t !5
^Qf&
nw

, 0,t,`, ~5!

where ^Qf& is the average sediment discharge at the ou
~L! of the catchment andw is the floodplain width at the
outlet.
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The second boundary condition~at the river sourcex
5L) is

a]xz~L,t !1bz~L,t !5 f ~ t !, 0,t,`, ~6!

wherea(@L#) andb ~dimensionless! are two constants and
f (t)(@L#) is a function of time. This Neuman-type bounda
condition defines the very general relationship existing at
source of the river between the topography and its gradi
We will see later that, depending on the values of the para
eters a, b, or the function f (t), simple flux-type or
elevation-type boundary conditions can be explored. T
value of the functionf (t) physically depends on the cond
tions prevailing in the upper part of the river basin above
floodplain @22,26#.

Eventually the initial conditions are taken as

z~x,0!5z0~x!, ~7!

wherez0(x) is the initial topographic profile along the rive
bed.

IV. SOLUTION AND DISCUSSION

The floodplain model defined above has never been a
lytically studied. Previous analyses have focused on porti
of a river assuming the river to be infinite or semi-infinite
length and leading to erfc-type behaviors@20#. Interesting
numerical analyses have focused on the evolution of allu
plains under different types of parametrization@21,22#. We
therefore give and discuss the exact solution we obtain u
a general eigenvalue solution of the problem.

A. Solution of the IBVP

The initial boundary value problem formed by Eq
~4!–~7! can be solved analytically through separation of va
ables and eigenfunction expansion. Changing the varia
z(x,t) to z(x,t)→z(x,t)1@Qf(a1bL)2nw f(t)/nwL(2a
1bL)#x22(Qf /nw)x, the final solution of the problem is o
the form
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FIG. 2. ~a! Present-day average mass flux
(^Qp&) carried by large rivers of Asia at thei
outlet ~drainage basins or catchments have ch
acteristic size on the order of 1052106 km2)
compared to the total mass accumulated in
depressions at the outlets and averaged ove
3106 years (̂ Qf&). Each point represents on
river. Note the remarkable one-to-one correlati
between these two independant estimates.~b!
Evolution of this mass flux ratiôQf&/^Qp& since
approximately the last 25 million years for thre
different rivers of Asia, showing long-term con
vergence towards maximum present-day fluxe
z~x,t !5 (
n51

n5`

ane2(Anln /L)2t cos
lnx

L

1 (
n51

n5`

cos
lnx

L F E
0

t

e2(Anln /L)2(t2t)Cn~t!dtG
2

Qf~a1bL !2nw f~ t !

nwL~2a1bL !
x21

Qf

nw
x, ~8!

where the eigenvaluesln are the solutions of~Fig. 3!
tan~ln!5
bL

aln
~9!

and the coefficientsan andCn(t) are of the form

an5
2ln

L~sin 2ln12ln!

3E
0

LS z0~x!1
Qf~a1bL !2nw f~ t !

nwL~2a1bL !
x22

Qf

nw
xD

3cosS lnx

L Ddx , ~10!
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FIG. 3. Graphical representation of the eige
value problem defined by Eq.~9! for a steady-
state concave profile of the river bed;a51, b
521, L5100. Solid line:f (l)5tan(l); dashed
line: f (l)5bL/al; dots are solutions of the ei
genvalue problem: tan(l)5bL/al.
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Cn~ t !5
2ln

L~sin 2ln12ln!
E

0

LS F~x,t !2
2Qf~a1bL !

wL~2a1bL !

1
2n f ~ t !2] t f ~ t !x2

L~2a1bL ! D cosS lnx

L Ddx. ~11!

B. Asymptotic profile of a river floodplain

The predictive nature of Eq.~8! reveals some information
concerning the way changes in hillslope erosion can ind
reaction of the floodplain. For large time spans, the solut
asymptotically tends towards

z~x,t !5
Qf

nw
x2

Qf~a1bL !2nw f~ t !

nwL~2a1bL !
x2

1 (
n51

n5`

cos
lnx

L F E
0

t

e2(lnAn/L)2(t2t)Cn~t!dtG .
~12!

Equation ~12! has two components. The second-ord
polynomial function reflects the importance of the bound
conditions for the average profile of a floodplain. It also
flects the evolution of a river system that will tend to achie
a profile in which the elevation at the outlet is at a const
level ~in this case sea level!. The cosine series represents t
induced perturbations of this profile through a direct con
bution from hillslopes and tributaries to the floodplain.

Depending on the values ofa, b and the form off (t) that
define the boundary condition at the upper reach of
floodplain, the average profile will be concave, linear,
convex. Given the fact that most present-day, long-distan
alluvial river profiles are linear or very slightly concave u
wards~average gradients for a large river are on the orde
102324), we get f (t)>Qf(a1bL)/nw.

In the casea50,bÞ0, we getz(L)5 f (t)/b>QfL/nw
~and the eigenvaluesln are of the formln5np/2), which
means that the elevation of the floodplain scales its len
and with the output flux.

In the caseaÞ0,b50, we get]xz(L)5 f (t)/a>Qf /nw
~and the eigenvaluesln are of the formln5np). Concavity
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of the floodplain implies that the input flux from the slopes
larger than the output flux at the mouth of the river.

In both cases, upward concavity of the profiles reflects
process by which the river actively stores sediments in
floodplain.

If one assumes a linear steady profile of the river pla
then it is possible to estimate the diffusivity coefficient pr
vided one has the knowledge of„z(L),L,Qf ,w… in the first
case and„]xz(L),Qf ,w… in the second case. Using the p
rameters derived by Humphrey and Heller@22# in a numeri-
cal model of a steady evolving floodplain@z(L)5200 m,
L5105 m, ]xz;0,02, w5103 m, Qf55000 m3 yr21], we
find in both case the same diffusivityn5250 m2 yr21 equal
to the one they derive.

C. Hillslope perturbations and reaction of the river

The second term in Eq.~12!, the hillslope and tributaries
mass flux term~this flux is modeled in very different ways in
the literature, i.e., avalanches, diffusion, or kinematic wa
propagation!, expresses the time dependence of the river
elevation. This control is exerted through the integral te

*0
t e2(lnAn/L)2(t2t)Cn(t)dt, which is dependant on the form

of F(x,t) and f (x,t) @see Eq.~11!#, hence on time variations
of hillslope transport to the floodplain.

Thus a river will aggrade~deposit its load! or degrade
~erode and transport grains! in order to buffer hillslope flux
cycles and keep a constant mass flux~boundary conditions!
at the mouth of the river. This hillslope and tributaries flu
term, which may be controlled either by climate, tecton
~uplift!, or internal instabilities, thus acts as a perturbat
against the establishment of a linear steady-state equilibr
profile of the river.

For example, assumingf (t)5A0(11 sinvt) and F(x,t)
5(F0 /L)x sin(jt), two very simple oscillatory functions tha
stand for the supply from the upper end part of the catchm
and from the side slopes of the river plain through tim
respectively, Eqs.~11! and ~12! lead to an asymptotic sta
tionary solution of the form
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z~x,t !5
Qf

nw
x2

Qf~a1bL !2nwA0~11 sinvt !

nwL~2a1bL !
x2

1 (
n51

n5`

cosS lnx

L D S 1

lnhn H bn1
1

11S v

hn
D 2

3FcnS sinvt2
v

hn
cosvt D

2dnS cosvt1
v

hn
sinvt D G

1en

1

11S j

hn
D 2 S sinjt2

j

hn
cosjt D J D , ~13!

wherehn5ln
2n/L2 are the characteristic reaction frequenc

of the river plain associated to the eigenvalues, andln ,
bn ,cn ,dn , anden are constant values for eachn and are such
that lim

n→`
(bn /ln),(cn /ln),(dn /ln),(en /ln)50.

From Eq.~13!, two interesting cases arise.
~a! The frequency of the perturbation is larger than so

characteristic frequency of the river system:'k
PIN/(v/hn)@1,n<k(j/hn@1). In this case the solution
reduces to

z~x,t !5
Qf

nw
x2

Qf~a1bL !2nwA0~11 sinvt !

nwL~2a1bL !
x2

1 (
n51

n5`
bn

lnhn
cosS lnx

L D1O~k!, ~14!

where

O~k!5 (
n5k

n5`
1

lnhn
cosS lnx

L D $cn sinvt2dn cosvt

1en sinjt% ~15!

represents very-small-amplitude perturbations aslnhn rap-
idly tends towards infinite values. The temporal oscillatio
of slope, tributaries, and upper catchment inputs are buffe
~apart from the first-order oscillation of the second-ord
polynom!.

~b! The frequency of the perturbation is always smal
than the characteristic frequencies of the river system:;n
PIN,v/hn!1(j/hn!1). In this case the solution tends to
wards

z~x,t !5
Qf

nw
x2

Qf~a1bL !2nwA0~11 sinvt !

nwL~2a1bL !
x2

1 (
n51

n5`
1

lnhn
cosS lnx

L D $bn1cn sinvt2dn cosvt

1en sinjt%. ~16!

Temporal oscillations of slope, tributaries, and upper cat
ment inputs are not buffered and the alluvial plain is going
s

e

s
d

r

r

-
o

react to perturbations by cyclic aggradation~deposition! and
degradation~erosion! waves along the plain.

Thus for perturbations from the slopes to induce a co
plex reaction of the alluvial plain, the frequency of the pe
tubation has to be much less than those of the river bed. V
seldom is this the case in reality, where the last known
matic perturbations have frequencies on the order
1024 yr21 @28#, whereas large Asian river plains have min
mum frequencies or the order of 102526 yr21 @27,19#.

D. River saturation

One question that remains in the end is why should
river maintain such a constant flux at the outlet? The s
plest answer is that the average transport capacity of a r
may reach some long-term maximum value~hence ] tx

2 z
;0), as suggested by Fig. 2~b!. Fluctuations may be ob
served at places through time but the average transpor
pacity along the entire river bed is approximately consta
and maximum. Returning to Eq.~8!, we can see that the tim
derivative of the mass flux (]xz) is going to be of the form

] tx
2 z~x,t !5

2x

L~2a1bL !
] t f ~ t !2 (

n51

n5`
ln

L
sinS lnx

L D ] tFn~ t !,

~17!

where

Fn~ t !5E
0

t

e2(Anln /L)2(t2t)Cn~t!dt. ~18!

Equation ~17! is made up of two terms that will tend t
cancel each other. The first term on the right-hand side c
responds to the temporal variations of the mass input at
upper end of the floodplain. The second term correspond
the reaction induced by these changes in fluxes.

For ] tx
2 (x,t) to be approximately equal to zero, one nee

to have either these two terms canceling each other or
condition that these two terms are negligible, hence] t f (t)
;0 and] tF(x,t);0. In the first case, the river reacts ve
rapidly to changes in input fluxes, whereas in the second o
slope erosion and mass coming in from the upstream en
the floodplain are basically constant. This latter condition
possible for rivers that have a catchment in high mounta
such as the Himalayas. In these regions it has been sh
that rapid active uplift can lead to a strong control on riv
incision @29#. Rivers in the upper catchment may therefo
be forced to incise at a constant rapid rate despite clim
oscillations. The Indus river, for example, has been carv
deep gorges at about 1 cm/yr in its upper course~before it
forms a large alluvial plain!, in order to keep pace with the
rapid uplift of the Nanga Parbat Haramosh massifs~western
Himalayas! @29#. In these regions, erosion in the catchmen
so high that changes in climate do not seem, on averag
affect erosion fluxes@hence] t f (t);0 and] tF(x,t);0]. In
that case, the commonly used assumption of constant
lowering of the base level, which mimics constant and u
form erosion rates, may then be taken as a reasonable bo
ary condition for models trying to catch stationary forms
landscape evolution@3,6#.
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V. SUMMARY

Under the first-order linear diffusion approximatio
simple analytical solutions can be derived. Assuming a ri
of finite length and realistic boundary conditions especia
the boundary specifying the flux of mass carried by a rive
its mouth can lead to simple analytic solutions carrying
wealth of information. Indeed, it seems that present-day
of large Asian rivers at their mouth remains on average c
stant. This can be explained by diffusive buffering of t
floodplain reacting to changes in the erosion on hillslop
and fluxes from the tributaries. We suggest that the cha
teristic frequencies of the river system control the frequ
cies of the perturbation that can pass through and ind
oscillations of the river plain. The fact that, at present, e
u

si
ter
r
y
t

a
x
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s
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sion fluxes leaving mountainous areas seem to be maxim
with regard to the present size of the river syste
@;106 km2, Fig. 2~b!# suggests that the reason for the sa
ration of the river may rely on the rapid uplift of erodin
mountain ranges. This uplift may exert strong control ov
erosion rates, an influence that is common to most landsc
evolution models through the use of a boundary condit
such as] tz(r ) r 505 constant.
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