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Diffusivelike buffering and saturation of large rivers
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We use mass balance data from Asian rivers together with a first-order diffusive simplification of the St.
Venant-Exner equations to characterize river floodplain processes and discuss the reaction of a large model
river to a hillslope supply of eroded masses. The simple analytical solution derived for the long-term profile of
the river bed shows thdt) the system converges towards a state in which it reacts to perturbations in erosion
of the landscape by small-amplitude oscillations around an average “stationary” (&tate have an effective
influence on the river plain profile, the perturbations need to have frequencies smaller than the characteristic
frequencies of the river system, arii) this river buffering might be linked with a possible long-term
saturation of the system carrying capac[i$1063-651X99)12711-9

PACS numbgs): 47.55-t, 92.40.Gc, 92.40.Fb

[. INTRODUCTION is linear and has a floodplai@ plain where sands and allu-
vium accumulate of lengthL (Fig. 1). The x axis is taken
Most of the models that attempt to explain the generablong the river bed, and its origin is located at the river

form of landscapes do it through slope processes whethanouth.
cascading, like avalanches or landslides, or diffusive coupled We start from a system of two equations known as the St.
to the development of a drainage network that carries th&enant-Exner equations. The equation of Exner defines the
mass out of the eroding regiofs—7]. All these models are conservation of the solid mass transported by a river. In our
constrained by several statistical laws, such as the Hortor{1+1)D approach it may be expressed as
Strahler laws of stream numbers and lend®9)], although
the geomorphological significance of these laws should be (1—p)drz+ dyqsdxu= d(X,t), 1)
questioned10—12. These models assume simple boundary
conditions at the outlet such as constant slppeor eleva- where p is the sediment porositygs is the sediment dis-
tion [5]. Some also assume that the drainage is able to transharge,z is the river bed elevation above some reference
port the product of their avalanchelike erosion formalism outdatum,u is the flow velocity, andg(x,t) is a source term
of the systenj13—15. But the way in which boundary con- characterizing mass input from adjacent slopes or tributaries.
ditions influence the solution of this formalism is seldom The equation of St. Venant defines the dynamics of a

discussed6,16,17. gradually varied unsteady flow
In typical drainage basins, the erosion products are
transported either by tributaries or by slope processes to the gdy(h+2)+ audu+du=—gJde, (2

main river or stream that carries these masses away from

places of high relief to the sea where the grains ultimatelywhereh is the flow depth« is the Coriolis or energy coef-
accumulate in sedimentary basif&g. 1). When leaving the ficient, andJ, is the energy slope of the flol25,23. The St.
mountain range, the main stream forms a floodplain or alluVenant equation expresses the conservation of energy prin-
vial plain, where sands and finer alluvium can temporarilyciple. J. represents the variation in the hydraulic head of the
accumulate. We focus here on the consequences on thver due to turbulent and friction lossegd,(h+2z) is the
floodplain behavior induced by a long-term constant outputvariation in potential energyd,u is the variation of kinetic
flux at a main stream outletsediment flux to the sea energy, andju is the time variations in momentum of the
whereas the upstream relief is quickly eroding; this is theriver. The basic assumption, attributed to St. Venant, who
case for the largest rivers of Asia for at least the past 2vas among the first to derive this equation, is that the energy
million years[18,19. Floodplain processes are modeled us-slope, or friction slope, of the flow is the same as that in a
ing a common first-order diffusive approximation resulting uniform flow and can therefore be estimated through the use

from simplification of the St. Venant-Exner equatid@d—  of uniform flow formulas such ag,~u?/C?h, whereC is
23]. Using a simple analytical formalism, we discuss in whatthe Chezy coefficieni23].
way fluvial systems react to both changes of flux from hill-  The simplifying assumptions we make are as folloyis:
slopes and from upstream catchments in order to maintain we assume a quasistationary form of the St. Venant-Exner
constant boundary condition at the oufl24]. equations, which is a reasonable assumption for large rivers
where the Froude number shows that the flow is clearly sub-
Il DIFFUSIVELIKE RIVER BED EVOLUTION critical (Fr=u/\Jgh<1); (i) we assume further that the

flow is quasiuniform ¢,u~0, d,h=0) and quasipermanent
Here we consider a very simple first-order (d,u~0). Equation(2) then reduces to
(1+1)-dimensional (1+1)D] model of a single floodplain
reaction to an external forcing mechanism. The main stream d,z=—Jo=—U?/C?h, ©)
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whereq is the unit flow dischargeq= uh) [20]. Differenti- The second boundary conditiof@t the river sourcex
ating this equation and substituting into Ed) leads to =L)is
vd2,z=dz+ P (x,1)0<x<L,0<t<oe, (4)

adyz(L,t)+ Bz(L,t)=1f(t), 0<t<oo, (6)

where v=,0,C?h/[2u(1—p)] is a diffusivity coefficient

and®(x,t) = ¢(x,t)/(1—p). The assumptions we make im- wherea([L]) and 3 (dimensionlessare two constants and

ply that (i) the simplified parabolic form of the river bed f(t)([L]) is a function of time. This Neuman-type boundary

elevation is realistic for characteristic distances much largegondition defines the very general relationship existing at the

than the flow depth, which is always trwe are looking for  source of the river between the topography and its gradient.

effects on scales of kilometers to hundreds of kilometerdVe will see later that, depending on the values of the param-

compared to flow depths of a few meters, herge3h/J,), eters «, B, or the function f(t), simple flux-type or

(ii) the problem is to be considered only for very large timeelevation-type boundary conditions can be explored. The

scales(which is also the case here, as climatic oscillationsvalue of the functiorf (t) physically depends on the condi-

during the past 2 million years have had characteristic peritions prevailing in the upper part of the river basin above the

ods on order of 1Dyears, and finally(iii) we deal only with ~ floodplain[22,26.

large streams where subcritical quasiuniform and quasiper- Eventually the initial conditions are taken as

manent flow is a reasonable approximatitine behavior we

are trying to understand concerns rivers that have alluvial 2(x,0)=2o(X), @)

plains of length on the order of 1000 kmThus we can

reasonably assume, to the first order, a constant diffusivity ) L ) . )

v(t)~Cte [22]. \tI)Vh<jereZO(X) is the initial topographic profile along the river
ed.

Ill. BOUNDARY CONDITIONS

Through a mass balanced reconstruction of the volumes IV. SOLUTION AND DISCUSSION

accumulated at the outlet of Iarge streams in ASia, our earlier The f|oodp|ain model defined above has never been ana-
work has shown that present-day measured fluxes of masgtically studied. Previous analyses have focused on portions
carried by large streams to the sea are equal to the average@¥a river assuming the river to be infinite or semi-infinite in
these fluxes over a210°-year periodlknown as the qua- |ength and leading to erfc-type behavidi0]. Interesting
ternary, Fig. 2a)] [18,19. It can further be shown that these numerical analyses have focused on the evolution of alluvial
average fluxes are maximum with regard to the long-ternplains under different types of parametrizati@i,22. We
history of these rivergover periods larger than 10/ears  therefore give and discuss the exact solution we obtain using
[Fig. 2b)]). As we are interested in the study of rivers over g general eigenvalue solution of the problem.
the past 2 millions years, the first boundary condition, at the
mouth of the river(in x=0), we assume is
A. Solution of the IBVP
0,2(01)= @ O<t<oo, ) The initial boundary va_Iue problem formed_ by Eqs:
W (4)—(7) can be solved analytically through separation of vari-
ables and eigenfunction expansion. Changing the variable
where(Qs) is the average sediment discharge at the outle(x,t) to z(x,t)—z(x,t) +[Q¢(a+ BL) —vwi(t)/vwL(2«
(L) of the catchment anav is the floodplain width at the + BL)]x?>—(Q;/vw)Xx, the final solution of the problem is of
outlet. the form
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)

where the eigenvalues, are the solutions offig. 3

_ Bt 9
tan(\n)= an, 9
and the coefficienta,, and ¥ ,(t) are of the form
3 2\,
A= (sin2x,+ 21,)
L Qila+BL)—vwi(t) , Q
Xfo 2000t T Zar gl ~

ApX

X cog ——|dx, (10
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An L 2Q¢(a+BL) of the floodplain implies that the input flux from the slopes is
Wh(t)= mjo (‘P(X.t)— WL(2at BL) larger than the output flux at the mouth of the river.
" " In both cases, upward concavity of the profiles reflects the
2vf(t)—a,f(1)x? ApX process by which the river actively stores sediments in its
TL(2atpu) )08 L )9x (1) floodplain.

If one assumes a linear steady profile of the river plain,
then it is possible to estimate the diffusivity coefficient pro-
vided one has the knowledge ¢f(L),L,Q¢,w) in the first

The predictive nature of E@8) reveals some information case and4,z(L),Q¢,w) in the second case. Using the pa-
concerning the way changes in hillslope erosion can inducgameters derived by Humphrey and Hell2g] in a numeri-
reaction of the floodplain. For large time spans, the solutionsg| model of a steady evolving floodplajiz(L) =200 m,

B. Asymptotic profile of a river floodplain

asymptotically tends towards L=1C° m, 9,z~0,02,w=10° m, Q;=5000 n¥yr 1], we
. Qr Qila+BL)—wwi(t) Iin(tjhin bothtrc]asedth_e same diffusivity=250 nfyr ! equal
Z(X, )_WX owL(2a+ BL) o the one they derive.
n=oo
)\nx t o -, 20+ . . . .
+ E COST j e WLy (rdr|. C. Hillslope perturbations and reaction of the river
n=1 0

The second term in Eq12), the hillslope and tributaries
(12) : \ . \ :

mass flux ternithis flux is modeled in very different ways in
Equation (12) has two components. The second-orderthe literature, i.e., avalanches, diffusion, or kinematic wave
polyrpmial function reflects the. importance of Fhe boundarypropagatiol, expresses the time dependence of the river bed
conditions for the average profile of a floodplain. It also re-elevation. This control is exerted through the integral term

flects Fhe_ evoIL_mon of a river system that will Fend to achieve te—()\n\s‘?/L)z(t—r)\I,n(T)dT, which is dependant on the form
a profile in which the elevation at the outlet is at a constan
level (in this case sea levelThe cosine series represents the
induced perturbations of this profile through a direct contri-

bution from hillslopes and tributaries to the floodplain.

f d(x,t) andf(x,t) [see Eq(11)], hence on time variations
of hillslope transport to the floodplain.
Thus a river will aggradddeposit its loayl or degrade

Depending on the values af B and the form off(t) that (erode and transport grains order to buffer hiIIsIop_e_ flux
define the boundary condition at the upper reach of th&Ycles and keep a constant mass flbrundary conditions
floodplain, the average profile will be concave, linear orat the mouth of the river. This hillslope and tributaries flux
convex. Given the fact that most present-day, long-distancd®'™m. Which may be controlled either by climate, tectonics
alluvial river profiles are linear or very slightly concave up- (Uplift), or internal instabilities, thus acts as a perturbation
wards(average gradients for a large river are on the order oftgainst the establishment of a linear steady-state equilibrium

107374), we getf(t)=Q(a+ BL)/vw. profile of the river.

In the casea=0,8+0, we getz(L)="f(t)/8=Q:L/vw For example, assuminf(t) =Aq(1+ sinwt) and ®(x,t)
(and the eigenvalues, are of the form\,=n=/2), which  =(®q/L)xsin(&), two very simple oscillatory functions that
means that the elevation of the floodplain scales its lengtistand for the supply from the upper end part of the catchment
and with the output flux. and from the side slopes of the river plain through time,

In the casen#0,8=0, we getd,z(L)=f(t)/a=Q¢/vw respectively, Eqs(11) and (12) lead to an asymptotic sta-
(and the eigenvalues, are of the form\,=n). Concavity tionary solution of the form
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Q¢ Qf(a+ BL)— vWAy(1+ sinwt) react to perturbations by cyclic aggradati@eposition and
Z(x,t)= v_w - wwL(2a+ BL) x? degradatior(erosion waves along the plain.
Thus for perturbations from the slopes to induce a com-
n=c ApX 1 1 plex reaction of the alluvial plain, the frequency of the per-
+ 2 co{ T) X b,+ 5 tubation has to be much less than those of the river bed. Very
n=1 nn 1+ ﬂ) seldom is this the case in reality, where the last known cli-
n matic perturbations have frequencies on the order of

sinwt—— cogot mum frequencies or the order of 10°® yr~1[27,19.

7n

10~ 4 yr~1[28], whereas large Asian river plains have mini-
: |

Cn

D. River saturation

w
—dn<COSwt+—Sinwt) ) o )
n One question that remains in the end is why should the

river maintain such a constant flux at the outlet? The sim-

e, 1 2<sin§t— i cos gt) . (13 plest answer is that the average trgnsport capacity 0; a river
1+ i may reach some long-term maximum val({eence d;,z
7n ~0), as suggested by Fig(l8. Fluctuations may be ob-

served at places through time but the average transport ca-
wherenn=)\ﬁv/L2 are the characteristic reaction frequenciespacity along the entire river bed is approximately constant,
of the river plain associated to the eigenvalues, and  and maximum. Returning to E(B), we can see that the time
b,.c,,d,, ande, are constant values for eanland are such derivative of the mass fluxd(z) is going to be of the form
that lim (b, /Np),(Ca/Nn), (dn/Np),(€0/N5)=0.

n=oo
. . . An
From Eq.(13), two interesting cases arise. P z(x,t)= a.f(t)— 2 sm( ) Fo(t),
(a) The frequency of the perturbation is larger than some tx L(2a+pBL) " =1 L
characteristic frequency of the river system3k 17
e IN/(w/ n,)>1n<k(&/ 5,>1). In this case the solution
reduces to where
Qs Q(a+pL)—vWhA(1+ sinwt) t ,
200 = X wwi(2a+ BL) X Fo(t)= foe—“”n’” I (r)dr. (18
" ApX
z« 2SO +0(k), (14 Equation(17) is made up of two terms that will tend to
Mn7n cancel each other. The first term on the right-hand side cor-
where responds to the temporal variations of the mass input at the

upper end of the floodplain. The second term corresponds to

n=c N.X the reaction induced by these changes in fluxes.

O(k)= 2 S( E ){cn Sinwt—d, coswt Foratzx(x,t) to be approximately equal to zero, one needs
"= ”77” to have either these two terms canceling each other or the
+e, sinét} (15) condition that these two terms are negligible, heAddt)

~0 andg,P(x,t)~0. In the first case, the river reacts very
represents very-small-amplitude perturbations\ag, rap-  rapidly to changes in input fluxes, whereas in the second one,
idly tends towards infinite values. The temporal oscillationsslope erosion and mass coming in from the upstream end of
of slope, tributaries, and upper catchment inputs are bufferethe floodplain are basically constant. This latter condition is
(apart from the first-order oscillation of the second-orderpossible for rivers that have a catchment in high mountains
polynom). such as the Himalayas. In these regions it has been shown
(b) The frequency of the perturbation is always smallerthat rapid active uplift can lead to a strong control on river
than the characteristic frequencies of the river systeém: incision [29]. Rivers in the upper catchment may therefore
eIN, w/ 7,<1(&/n,<1). In this case the solution tends to- be forced to incise at a constant rapid rate despite climate

wards oscillations. The Indus river, for example, has been carving
deep gorges at about 1 cm/yr in its upper coutsefore it
Qs Qf(a+pL)—vWAG(1+ sinwt) , forms a large alluvial plain in order to keep pace with the
2060 =X vwL(2a+BL) x rapid uplift of the Nanga Parbat Haramosh masgifestern

Himalaya$ [29]. In these regions, erosion in the catchment is

. NnX _ so high that changes in climate do not seem, on average, to
+ nzl PP e {b,+c, sinwt—d, coswt affect erosion fluxeghences, f(t)~0 anda,®(x,t)~0]. In

that case, the commonly used assumption of constant rate
+e, sinét}. (16)  lowering of the base level, which mimics constant and uni-
form erosion rates, may then be taken as a reasonable bound-
Temporal oscillations of slope, tributaries, and upper catchary condition for models trying to catch stationary forms of
ment inputs are not buffered and the alluvial plain is going tolandscape evolutiof3,6].
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V. SUMMARY sion fluxes leaving mountainous areas seem to be maximum

. . e ... with regard to the present size of the river systems
Under the first-order linear diffusion approximation, o 2
. . : ; . ' [~10° km?, Fig. 2b)] suggests that the reason for the satu-

simple analytical solutions can be derived. Assuming a rlve; : f the i | h id uplift of di
of finite length and realistic boundary conditions especiallyratlon of the river may rely on the rapid upliit of eroding
the boundary specifying the flux of mass carried by a river a{'nountaln ranges. This uplift may exert strong control over
. ysp 9! : : yar erosion rates, an influence that is common to most landscape
its mouth can lead to simple analytic solutions carrying a . o

. . . evolution models through the use of a boundary condition
wealth of information. Indeed, it seems that present-day flux ~

o . . such asdz(r),-o= constant.
of large Asian rivers at their mouth remains on average con-
stant. This can be explained by diffusive buffering of the
floodplain reacting to changes in the erosion on hillslopes
and fluxes from the tributaries. We suggest that the charac- This work benefited from fruitful discussions with E.
teristic frequencies of the river system control the frequenClement, Y. Gaudemer, Alan Howard, Steward Gilder, and
cies of the perturbation that can pass through and induc&eoffrey King. We acknowledge funding by the French pro-
oscillations of the river plain. The fact that, at present, erogram PROSE. This is IPGP contribution No. 1630.
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