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Screening of a macroion by multivalent ions: Correlation-induced inversion of charge

B. I. Shklovskii
Theoretical Physics Institute, University of Minnesota, 116 Church Street Southeast, Minneapolis, Minnesota 55455

~Received 24 May 1999!

Screening of a strongly charged macroion by multivalent counterions is considered. It is shown that coun-
terions form a strongly correlated liquid at the surface of the macroion. Cohesive energy of this liquid leads to
additional attraction of counterions to the surface, which is absent in conventional solutions of the Poisson-
Boltzmann equation. Away from the surface this attraction can be taken into account by a new boundary
condition for the concentration of counterions near the surface. The Poisson-Boltzmann equation is solved with
this boundary condition for a charged flat surface, a cylinder, and a sphere. In all three cases, screening is much
stronger than in the conventional approach. At some critical exponentially small concentration of multivalent
counterions in the solution, they totally neutralize the surface charge at small distances from the surface. At
larger concentrations they invert the sign of the net macroion charge. The absolute value of the inverted charge
density can be as large as 20% of the bare one. In particular, for a cylindrical macroion it is shown that for
screening by multivalent counterions, predictions of the Onsager-Manning theory are quantitatively incorrect.
The net charge density of the cylinder is smaller than their theory predicts and inverts the sign with a growing
concentration of counterions. Moreover, the condensation loses its universality and the net charge linear
density depends on the bare one.@S1063-651X~99!11311-4#

PACS number~s!: 61.20.Qg, 77.84.Jd, 61.25.Hq
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I. INTRODUCTION

Many objects with a much larger size than atomic a
strongly charged in a water solution and are called mac
ions. One can think about a rigid polyelectrolyte which, in
water solution, dissociates into cylindrical macroion a
monovalent small ions. DNA and actin are the best kno
examples of such biological polyelectrolytes. Other imp
tant types of macroions are charged lipid membranes
charged spherical colloidal particles. Macroions are scree
by smaller ions of the solution. A correct description of t
screening of macroions is tremendously important for a c
culation of properties of individual macroions, for examp
the effective charge or the bending rigidity. Screening a
determines forces acting between macroions and both t
modynamic and transport properties of their solutions.

This paper examines the screening of a rigid macro
with a fixed and uniform distribution of charge on its surfac
Three standard geometries are considered below—an infi
flat surface, an infinite cylinder, and a small sphere—e
uniformly charged with the surface density2s,0. The
standard approach for a description of such problems is
Poisson-Boltzmann equation~PBE! for the self-consisten
electrostatic potentialc(r ),

¹2c52
4pe

D ( ZiN0i expS 2
Ziec

kBT D . ~1!

Here e is the charge of a proton,D.80 is the dielectric
constant of water,Zie is the charge of a small ion of sorti,
andN0i is their concentration at the point wherec50. The
number of papers using the analytical and numerical s
tions of Eq. ~1! is extremely large@1#. On the other hand
there is an understanding that Eq.~1! neglects ion-ion corre-
lations and is not exact. Deviations from the distribution
PRE 601063-651X/99/60~5!/5802~10!/$15.00
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charge predicted by PBE were demonstrated numeric
@2,3# for the following problem. Consider screening of
charged surface,x50, of a membrane or a film by a wate
solution occupying half-spacex.0. Assume that there is
only one sort of counterions with the chargeZe.0 and their
concentrationN(x)5N0exp(2Zec/kBT)→0 at x→`. In this
case the solution of Eq.~1! is very simple and has the Gouy
Chapman form

N~x!5
1

2p l

1

~l1x!2 , ~2!

where l5Ze/(2p ls) is the Gouy-Chapman length,l
5Z2l B , andl B5e2/(DkBT).0.7 nm is the Bjerrum length
At largeZ ands, the lengthl can become of the order of th
size of the water molecule or even smaller. For example
Z53 ands51.0 e/nm2, l50.08 nm. This means that a
most all ions are located in the first molecular layer at
surface or, in other words, they condense at the very sur
of a macroion. This raises questions about the role of th
lateral correlations and the validity of the solution Eq.~2!.

It was found by numerical methods@3# that for a typical
charge densitys, deviations from Eq.~2! are not large for
monovalent counterions, but they strongly increase with
charge of counterionsZ. It was suggested in Refs.@4–7# that
at Z>2, repulsion between multivalent counterions co
densed at the surface is so strong that they form a t
dimensional strongly correlated liquid~SCL! in which the
short order of counterions is similar to that of a Wigner cry
tal ~WC!. This idea was used to demonstrate that t
charged surfaces in the presence of multivalent counter
can attract each other at small distances.

A theory of the influence of SCL of multivalent counter
ons on the density of screening atmosphere of a macro
has been suggested recently by Perel and Shklovskii@8#
~PS!. Their main idea is to treat separately two subsyste
5802 © 1999 The American Physical Society
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PRE 60 5803SCREENING OF A MACROION BY MULTIVALENT . . .
two-dimensional SCL of multivalent counterions at the ve
surface and their gaslike dilute phase at some distance to
right of the surface. In the SCL, PS explicitly take into a
count strong correlations using the energy of WC as a sim
approximation for the free energy of SCL. On the oth
hand, the gaslike phase is treated in the PBE approxima
while the effect of SCL is taken into account with the help
a new bounadary condition for PBE.

In this paper PS theory is developed in several directio
First, the phenomenon of charge inversion is studied
greater detail and the inverted charge as a function of
counterion concentration is found. In particular, the ma
mum possible value of the inverted charge is estimated. S
ond, the PS approach is generalized to a spherical macro
Third, I add the comprehensive discussion of approximati
made in this theory.

The next section starts with a review of the thermod
namic properties of a two-dimensional SCL, which were o
tained by Monte Carlo and other numerical methods. It
shown that forZ>2 and typical charge densitys, SCL is
characterized by a large negative chemical potential of io
In other words, due to their lateral two-dimensional corre
tions, ions are more strongly bound to the surface than in
PBE approximation. This phenomenon can be understoo
the attraction of aZ-valent counterion to its correlation hol
in SCL. While PBE fails to describe this surface correlati
effect, it works well at a distance from the surface, where
energy of attraction to the correlation hole is smaller th
kBT and alsoN(x) is small enough that three-dimension
correlations are very weak. It is found below that PBE b
comes valid atx@ l /4@l and that the characteristic scale
the PBE solutionL@ l /4. Thus SCL together with the inter
mediate boundary layer,l,x, l /4, from the point of view
of PBE, provide only a new boundary conditionN(x)
5N(0) at x50 for the concentrationN(x) of multivalent
counterions. It is derived in Sec. III from the condition
equilibrium of the gaslike phase with SCL. Due to the lar
negative chemical potential of SCL, the new boundary c
dition requires thatN(0) is exponentially small in the dilute
phase. Section III also discusses the structure of the inter
diate layerl,x, l /4 between SCL and the dilute phas
where exponential decay ofN(x) actually takes place.

In Secs. IV–VI, PBE is solved with the boundary cond
tion for N(0) for the standard problems of screening of
charged flat surface, a cylinder, and a sphere for different
compositions of the bulk solution. In planar geometry a
for the bulk concentration ofZ:1 saltN(`)50, I found that
at x. l /4 the concentration of counterions,N(x), obeys Eq.
~2!, in which l is replaced by an exponentially large leng
L. At finite N(`), consequences of correlation-induc
binding of counterions to the surface become even stron
Even at exponentially smallN(`)5N(0), the positive
charge density of SCL completely compensates2s. At
N(`).N(0), it becomes even larger thans, so that the total
charge of the surface becomes positive. This phenomeno
called charge inversion. First, it was noticed in numeri
calculations@3#. This paper presents an analytical theory
charge inversion for the case of screening by small size io
It is totally based on correlation effects. Recently a num
of publications discussed similar phenomena for screenin
macroions by charged polymers@9–13#.
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In the case of a cylinder, the conventional picture of no
linear screening called the Onsager-Manning condensa
should be strongly modified when dealing with multivale
ions. Consider a cylinder with a negative linear charge d
sity 2h and assume thath.hc , wherehc5Ze/ l . Onsager-
Manning theory@14#, confirmed by the solution of the PB
equation@15#, shows that such a strongly charged cylinder
partially screened by counterions residing at its surface
that net~total! linear charge density of the cylinder,h* , is
equal to the negative universal value2hc . The rest of the
charge is screened at much larger distances according to
linear Debye-Hu¨ckel theory.

The Onsager-Manning condensation does not take
account lateral correlations of counterions. In Sec. V, the r
of these correlations is considered and an analytical exp
sion forh* as a function ofh and the concentrationN(`) of
Z:1 salt is derived@see Eq.~34!#. It is shown that due to
additional binding of multivalent counterions provided b
their SCL on the surface of the cylinder, the absolute va
of the negative net charge density,h* , is smaller than in the
Onsager-Manning theory. Moreover, it strongly depends o
bare linear density,2h, so that attractive universality of th
Onsager-Manning theory is destroyed. When concentra
of counterions in the bulkN(`) grows, the net charge den
sity, h* , changes sign from negative to positive at the po
whereN(`)5N(0). Thus, the charge inversion takes pla
for a cylindrical geometry, too. Positiveh* continues to
grow with N(`) until it reaches a critical value,e/ l B , for the
Onsager-Manning condensation of monovalent nega
ions.

Finally, this paper studies screening of a uniform
charged small sphere with a negative charge2Q and radius
a. For a strongly charged sphere, the solution of PBE is w
known @16–18# and is approximately valid for monovalen
counterions. It shows that, in contrast with a charged pl
or cylinder, a sphere has no condensed counterions
N(`)50. This happens because the potential energy o
counterion on the surface of a totally ionized sphe
2QZe/Da, is finite. At N(`).Nc , where Nc
}exp(2QZlB /ae) is an extremely small concentration, a fra
tion of positive screening charge condenses at the surfac
the sphere and partially compensates its charge, so tha
net charge of the sphere,Q* , changes in the range 0.Q*
.2Q. In this regime,Q* does not depend onQ. This uni-
versality is similar to that of the Onsager-Manning theo
The rest of the screening atmosphere can be described i
Debye-Hückel approximation. WhenN(`) grows, Q* be-
comes smaller in absolute value but remains negative.

It is shown in Sec. VI that in the case of screening
multivalent counterions due to additional binding by SC
the net charge,Q* , behaves differently. WhenN(`),Nc ,
all counterions are still lost. But atN(0).N(`).Nc , a
larger amount of counterions condense at the sphere
PBE predicts. As a result, atN(`)5N(0) the net charge,
Q* , changes sign. AtN(`)@N(0), positiveQ* continues to
grow and saturates at the valueQ* .AQZe. It should be
emphasized that when correlations are taken into acco
the above-mentioned universality disappears andQ* be-
comes a function of the bare charge,Q.

Note that the net linear charge densityh* of a cylinder
and the net chargeQ* of a sphere are measurable quantitie
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5804 PRE 60B. I. SHKLOVSKII
In both cases they include only counterions whose bind
energy exceedskBT. These counterions move together with
cylinder or sphere, for example in the electric field. The
fore, h* andQ* can be studied in an electrophoresis expe
ment. In the case of charge inversion, a cylinder, sphere,
any other macroion should drift in an anomalous directio

In Sec. VII, approximations of this theory are discuss
In the Conclusion, Sec. VIII, several possible extensions
this theory are mentioned.

II. WIGNER CRYSTAL AND STRONGLY CORRELATED
LIQUID

It is shown below that fors>1 e nm22 and Z>2, al-
most all charge of the plane is compensated by SCL of co
terions at its surface, which has a two-dimensional conc
tration n5s/Ze. In this section, I discuss thermodynam
properties of this two-dimensional system. The minimum
the Coulomb energy of counterion mutial repulsion and th
attraction to the background is provided by a triangu
close-packed WC of counterions. Let us write energy
unit surface area of WC atT50 asE5n«(n), where«(n) is
the energy per ion. One can estimate«(n) as the interaction
energy of an ion with its Wigner-Seitz cell of the backgrou
charge @a hexagon of background with charge2Ze and
counterion in the center, which can be approximately view
as a disk with radiusR5(pn)21/2#. This estimate gives
«(n);2Z2e2/DR. A more accurate expression for«(n) is
@22#

«~n!52an1/2Z2e2D21, ~3!

wherea51.96. Equation~3! can be rewritten in units of the
room-temperature thermal energy,kBT, as

«~n!.21.4 Z3/2~s nm2/e!1/2kBT. ~4!

The inverse dimensionless temperature of SCL is usu
written in units

G5
Z2e2

RDkBT
50.9

u«~n!u
kBT

. ~5!

For example, ats51.0 e/nm2 and room temperature, Eq
~5! gives G51.2, 3.5, 6.4, and 9.9 atZ51, 2, 3, and 4.
Thus, for multivalent counterions one deals with a lo
temperature situation.G is the large parameter of this theor
In its terms,R/l.2G@1 and l /R.G@1. For example, at
Z53 and s51.0 e/nm2 lengthsl, R, and l are equal to
0.08, 1.0, and 6.3 nm, respectively. The small value ol
means that almost all counterions are located in the first
lecular layer at the surface and literally form a tw
dimensional system.

It is known, however, that due to the small shear modu
WC melts at a very low temperature nearG.130 @21#. Nev-
ertheless, the disappearance of the long-range order
slightly changes thermodynamic properties of the syst
They are determined by the short-range order, which, in
range 5,G,15, should not be significantly different from
that of the WC @4,5,7,8#. This statement is confirmed b
numerical calculations@19–21# of thermodynamic propertie
of the two-dimensional SCL of Coulomb particles on t
neutralizing background or so-called one-component plas
g
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In the large range, 0.05,G,5000, the excess internal en
ergy of SCL per counterion~the difference between interna
energy and energy of the ideal gas with the same concen
tion!, «(n,T)5kBT f(G), was fitted by the expression@19#

f ~G!521.1G10.58G1/420.26 ~6!

with an error less than 8%~less than 2% in the range 0.
,G,5000). The first term on the right side of Eq.~6! domi-
nates at largeG and leads to Eq.~3!. The other two terms
provide a relatively small correction to the energy of WC.
is equal to 11% atG55 and to 5% atG515. The reason for
a such small correction is that short-range order in SCL
similar to that of WC. For the free energy of unit area,F, one
can write

F5F~G50.05!1nkBTE
0.05

G

f ~G8!dG8/G8, ~7!

so that for the chemical potential which is used below
describe the equilibrium of SCL with the gaslike phase, o
obtains

m~n,T!52kBT ln~nw /n!1ms1mc~n,T!, ~8!

mc~n,T!52kBT~1.65G22.61G1/410.26 lnG11.95!.
~9!

Here mc is a contribution of correlations to the chemic
potential. The high-temperature chemical potential,m(G
50.05), with sufficient accuracy is replaced by the chemi
potential2kBT ln(nw /n)1ms of an ideal two-dimensional so
lution of ions in the surface layer of water with a two
dimensional concentrationnw . The termms is the hydration
free energy per ion at the surface, and atn!nw it does not
depend on the concentration of ionsn @23#.

The first term of Eq.~9! corresponds to the WC picture
Indeed, one can find directly from Eq.~3! and Eq.~5! that

mWC5
d@n«~n!#

dn
5

3

2
«~n!521.65 GkBT. ~10!

At largeG, the chemical potentialmWC dominates in Eq.~9!.
The last three terms ofmc give 20% correction to the WC
term at G55 and only 10% correction atG515. Thus, if
necessary, at 5,G,15 one can usemWC as a first approxi-
mation. Belowmc is always calculated using the full Eq.~9!.

All necessary information about two-dimensional SC
has been presented. It is time now to study its equilibri
with the rest of the screening atmosphere.

III. A NEW BOUNDARY CONDITION
FOR THE POISSON-BOLTZMANN EQUATION

When an ion moves away from SCL, it leaves behind
negatively charged correlation hole. IfU(x) is the correla-
tion energy of attraction to the hole, the condition of eq
librium between SCL atx50 and the gaslike phase at
distancex can be written as

m~n!1Zec~0!5m~N!1Zec~x!1U~x!. ~11!
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Here m(n) is given by Eq.~8!, Zec(x) is the counterion
energy in the self-consistent potential,

m~N!52kBT ln Nw /N1mb ~12!

is the chemical potential of the bulk gas-like phase,Nw is the
bulk concentration of water, andmb is the bulk hydration
free energy@23#, which does not depend onN. According to
the terminology of Ref.@23#, Eq. ~11! means that the elec
trochemical potential of counterions is constant.

It will be shown below thatU(x) becomes less thankBT
at x. l /4. On the other hand, in many important cases
surface is screened so strongly that the self-consistent po
tial changes bykBT only at exponentially large length,L,
which is defined below. Therefore, the condition of equil
rium between SCL and the layerl /4!x!L is

m~n!5m~N!. ~13!

Using Eq.~8! and Eq.~12! and solving Eq.~13! for N(x),
one obtains that atl /4!x!L concentrationN(x) does not
depend onx and equals

N~0!5
n

w
expS 2

umc~n,T!u
kBT D , ~14!

wherew5(nw /Nw)exp@(mb2ms)/kBT)]. Below it is assumed
for simplicity thatmb5ms , i. e., surface and bulk hydratio
free energies are equal. In this casew is the length of the
order of size of the water molecule~for estimates,w
50.3 nm is used below!.

The notationN(0) reflects the fact that this value play
the role of a new boundary condition atx!L for important
solutions of PBE which have large characteristic lengthL
@ l /4. In such a class of solutions,N(0) provides a universa
description of the role of SCL. This paper deals only w
this class of problems. Situations when one has to go bey
the universal boundary condition~14! and start directly from
Eq. ~11! will be studied in the next paper.

Due to the large value ofumc(n,T)u, the concentration
N(0) can be very small. For example, ats51.0 e/nm22

andZ52, 3, and 4, at whichG53.5, 6.4, and 9.9, accordin
to Eq. ~9! one getsumc(n,T)u/kBT54.5, 8.8, and 14.3, re
spectively. This givesN(0)530 mM, 0.3 mM, and 0.8mM
for Z52, 3, and 4 (1 M5631026 m23). It is clear now
that umc(n,T)u plays a role similar to the work function fo
thermal emission, to the free energy of chemosorption, o
the evaporation energy for the cases of equilibrium g
liquid or gas-solid interfaces. The concentrationN(0) is
similar to the density of the saturated vapor.

Thus, correlation effects in SCL provide additional stro
binding of counterions to the macroion surface. We wo
like to stress that such binding does not happen atZ51.
Indeed, ats51.0 e/nm22 one obtains from Eq.~5! and Eq.
~9! that G51.2 and mc(n,T)/kBT51.3. Therefore, the
boundary condition Eq.~14! does not produce nontrivial ef
fects and standard solutions of PBE remain approxima
valid.

Below, I justify the role of the distancel /4 and give an
idea how N(x) evolves fromn/l at x;l to N(0) at x
5 l /4. Let us move one ion of SCL along thex axis. As is
mentioned above, it leaves behind its correlation hole. In
e
n-

nd

to
-

d

ly

e

range of distancesl!x!R, the correlation hole is approxi
mately a disk of the surface charge with radiusR ~the
Wigner-Seitz cell! and the ion is attracted to the surface
its uniform electric fieldE52ps/D. Therefore, ifl were
larger thanw, one would getN(x)5(n/l)exp(2x/l) at x
!R. In the cases of our interest,l,w and atx,w one can
defineN5n/w, while atw!x!R

N~x!5
n

w
exp~2x/l!. ~15!

At x@R, the correlation hole radius grows and becomes
the order ofx. Indeed, SCL on the uniform background ca
be considered as a good conductor in the plane (y,z). It is
known that a charge at a distance,x, from a metallic plane
attracts an opposite charge into a disk with the radius;x or,
in other words, creates its pointlike image on the other s
of the plane at the distance 2x from the original charge. The
same thing happens to SCL. The removed counterion
repels other ions of SCL and creates a correlation hole in
form of a negative disk with the charge2Ze and the radius
x @24#. It is interesting to note that the correlation hole a
tracts the counterion and decreases its potential energy b
Coulomb term

U~x!52Z2e2/4Dx. ~16!

This effect provides the correction to the activation energy
N(x) :

N~x!5
n

w
expS 2

um~n!u2Z2e2/4Dx

kBT D ~x@R!. ~17!

The similar ‘‘image’’ correction to the work function of a
metal is well-known in the theory of thermal emission. T
correction decreases withx, and atx5 l /4 it becomes equal to
kBT, so thatN(x) saturates at the valueN(0). Thedramatic
difference between the exponential decay of Eqs.~15! and
~17! and the 1/x2 law of Eq. ~2! is obviously related to the
correlation effects neglected in PBE. Recall that it was
sumed in the beginning of this paper that the charge of
surface is almost totally compensated by SCL. Exponen
decay ofN(x) with x confirms this assumption and atG
@1 makes this theory self-consistent.

Consider now what happens withN(x) at distancesx
@ l /4. At such distances, correlations of the removed
with its correlation hole in SCL are not important and t
correlation between ions of the gas phase are even we
becauseN(x) is exponentially small. Therefore, one can r
turn to PBE. In the next section, solutions of PBE for t
planar geometry for a different concentration of salt are d
cussed.

IV. PLANAR GEOMETRY

The solution of PBE with the boundary condition~14! and
N(`)50 is similar to Eq.~2!:

N~x!5
1

2p l

1

~L1x!2 ~x@ l /4!. ~18!
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5806 PRE 60B. I. SHKLOVSKII
where the new renormalized Gouy-Chapman length,L, is
exponentially large,

L5@2p lN~0!#21/25A w

2pnl
expS umc~n,T!u

2kBT D . ~19!

For example, ats51.0 e/nm22, Eq. ~19! gives L.1.8,
12.3, 166 nm atZ52, 3, 4. These lengths should be com
pared withl /450.7, 1.6, 2.8 nm, respectively. We see th
L@ l /4 for Z>2. This justifies the use of Eq.~14! as the
boundary condition for the large distance solution of PBE

Using Eq. ~18!, one finds that the total surface char
density located at distancesx, l /4 is

s* 52AN~0!/~2p l B!52s~l/L!. ~20!

For s51.0 e/nm22, one obtains thats* 5731022s at Z
52, s* 5731023s at Z53, ands* 5431024s at Z54.
Corrections tomc(n,T) and N(0) related to such smalls*
can be, of course, neglected.

One can compare these results with predictions of Eq.~2!.
Integrating Eq.~2! from l /4 to `, one findss* 52Ze/p l 2,
i.e., s* 5531022 e/nm22 at Z53 and s* 52
31022 e/nm22 at Z54. These values ofs* are much
larger than Eq.~20!. Thus, binding to the surface is strong
enhanced by correlation effects.

Until now, this paper has addressed the case of extrem
dilute solution, whenN(`)50. Consider the case of a finit
concentration,N(`), of aZ:1 salt in the bulk of solution, or
in other words, of a concentrationN(`) of Z-valent counte-
rions and concentrationN2(`)5ZN(`) of neutralizing ions
with the charge2e. This adds the Debye-Hu¨ckel screening
radius

r s5@4p lN~`!~111/Z!#21/2 ~21!

to the problem. IfN(`)!N(0), thescreening radiusr s@L,
and the fact thatN(`) is finite changes only the very tail o
Eq. ~18!, making the decay ofN(x) at x@r s exponential. At
x!r s , still N(x)@ZN2(x) and all previous results are valid
However, when N(`) approachesN(0), the solution
changes dramatically ands* vanishes. Indeed, whenN(`)
5N(0) concentration,N(x)5N(`)exp(2Zec/kBT) stays
constant and potentialc(x)50 at x. l /4. This means tha
the surface is completely neutralized at distances 0,x, l /4.

If N(`)@N(0), negative charges dominate atx!r s . In-
deed, in the PBE approach,

N~x!5N~`!exp~2Zec/kBT!, ~22!

N2~x!5N2~`!exp~ec/kBT!, ~23!

and when concentrationN(x) decreases with decreasingx,
the electrostatic potential,c(x), grows andN2(x) increases.
One can derive a boundary condition forN2(x) at x50
from Eqs.~22! and ~23!. For this purpose, one should fir
expressc(0) throughN(0) with the help of Eq.~22!, and
then findN2(0) from Eq.~23!. This gives

N2~0!5ZN~`!@N~`!/N~0!#1/Z, ~24!
t

ly

whereN(0) is given by Eq.~14!. Then the solution of PBE
for N2(x) at x!r s has a form similar to Eq.~18!,

N2~x!5
1

2p l B

1

~L21x!2 , ~25!

where

L25@2p l BN2~0!#21/2 ~26!

and l B5e2/(DkBT) is the Bjerrum length. To compensa
for the bulk negative charge, the positive surface charge d
sity of SCL becomes larger thans, so that the net surface
charge density,s* , becomes positive. Similarly to Eq.~20!,
it is

s* 5e AN2~0!

2p l B
5

e

2p l BL2
. ~27!

This phenomenon is called charge inversion and is,
course, impossible in the framework of the standard PB
Technically, charge inversion follows from the small valu
of N(0) in Eq. ~14!. Its physics is related to the strong bind
ing of counterions at the charged surface due to the for
tion of SCL. Remarkably, whenG@1, this phenomenon hap
pens under the influence of a very small concentration
salt.

According to Eqs.~27! and ~24!, the net densitys* con-
tinues to grow withN(`) at N(`)@N(0). It is interesting to
study how far it can grow and how strong the charge inv
sion can be.

The use of PBE with the boundary conditions Eqs.~14!
and~24! is valid if L2. l /4. To estimate the maximum valu
of s* , which can be reached within the range of validity
this theory, one can substituteL25 l /4 into Eq. ~27!. This
gives

s* .
2e

p l Bl
5s

2R2

ZlB
2

. ~28!

For example, atZ53 ands51.0 e/nm22 one obtainss*
.0.15 s. To find s* as a function ofN(`) in the whole
range whereL2@ l /4, one should solve Eq.~27! self-
consistently substitutingn5(s1s* )/Ze into Eqs. ~14!,
~24!, and~26!.

One can show that atR,L2, l /4, when our theory based
on the universal boundary condition Eq.~14! is not valid,s*
continues to grow. IfL2 becomes smaller than the radius
a Wigner-Seitz cellR, negative ions screen each counteri
separately. The effective charge of counterions becom
smaller thanZ. This weakens their lateral interactions an
makesN(0) larger. Therefore,s* starts to decrease. Th
maximum value of the net surface charge density,smax* , is
reached atL2.R and is close toe/(2p l BR). For Z53 and
s51.0 e/nm22, this givessmax* .0.24 s.

I will not try here to make the above estimates ofsmax*
more accurate because of sensitivity of this estimate to
ion size for the following reason. It was assumed above t
whensmax* is reached, all salt molecules are still fully diss
ciated in water, so that the concentration,N(`), of ions with
chargeZ is equal to the concentration of the salt,Ns(`). In
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reality, at very largeNs(`), the concentration of fully ion-
ized counterions,N(x), saturates at the level

Nmax~`!;b23 exp~2Ze2/bDkBT!, ~29!

where2Ze2/bD is the Coulomb interaction energy of th
positiveZ-valent ion with the negative monovalent one at t
minimum distance between them,b. In this case, the major
ity of counterions keep a negative ion. One can refer to s
a complex as a (Z21) ion. The transition to such a regim
happens when the concentration of salt,Ns(`), reaches
Nmax(`).

SubstitutingNmax(`) into Eq. ~25! and then Eq.~25! into
Eq. ~27!, one finds that atZ53, s51.0 e/nm22, and b
>0.4 nm, this limitation of dissociation is not importan
For smallerb, charge density,s* , saturates at the valu
Nmax(`), which is smaller than Eq.~29!, and stays at this
level until the concentration of (Z21) ions becomes so larg
that they replace fully ionized ions at the surface. This le
to the drop ofs* .

Note once more that dramatic changes of the scree
atmosphere described above do not happen atZ51 when
G;1 andumc(n,T)u/kBT;1. The standard Gouy-Chapma
solution of the PBE, Eq.~2!, remains valid in this case.

V. SCREENING OF UNIFORMLY CHARGED CYLINDER

Consider screening of an infinite rigid cylinder with
radiusa, a negative surface charge density2s, or, in other
words, with a negative linear charge density2h522pas.
Assume thats is large enough so that the surface of t
cylinder is covered by a two-dimensional SCL withR
!2pa and withG@1. Such a cylinder can be a first-ord
approximation for the double-helix DNA, wherea
51 nm,h55.9 e/nm,s50.94 e/nm2, and for Z53 the
radius of the Wigner-Seitz cellR.1 nm andl 56.3 nm.

A screening atmosphere of a cylinder is described by
concentrationN(r ), wherer is the distance from the cylinde
axis. The solution of PBE is known@15,1# to confirm the
main features of the famous Onsager-Manning@14# picture
of the counterion condensation. This solution depends on
relation betweenh andhc5Ze/ l 5kBT/eZD. For a weakly
charged cylinder withh!hc , the screening is linear and ca
be described by the Debye-Hu¨ckel approximation. Forh
.hc , screening becomes nonlinear and most of the scre
ing charge,h2hc, is located at the cylinder surface, while
N(`)50 the rest of the screening charge,hc , is spread in
the bulk of the solution. This means that at large distanc
the net charge density of the cylinder,h* , equals2hc and
does not depend onh. Note that this is different from the
planar geometry where all the charge is bound to the surf
so that far enough from the surface, the net surface den
vanishes~the finite s* was defined atx, l /4). At a finite
N(`), the charge densityh* is screened only at linea
screening radiusr s .

Here I deal with a strongly charged cylinder, for whic
h@hc . It is easy to check that this inequality follows from
our assumptions thatR,2pa and G@1. It is also fulfilled
for the case of DNA, for whichh/hc.4Z. The goal in this
case is to verify whether in the case of multivalent counte
ons elegant statements of the Onsager-Manning theory@14#
h
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should be changed due to SCL at the surface of a stron
charged cylinder.

As in the preceding section, the boundary condition E
~14! is used below to allow for additional binding of coun
terions by SCL. One can introduce a radiusr T , at which
energy of interaction between a counterion and its corre
tion hole, U(r ), becomes of the order ofkBT, so that the
boundary conditionN(r )5N(0) can be used. For a cylindri
cal geometry,r T , strictly speaking, differs from its analo
for a planar probleml /4. Indeed, atr @R, energyU(r ) can
be calculated as the energy of attraction of the chargeZe to
an infinite metallic wire with the radiusa:

U~r !52Z2e2/4D~r 2a! ~R,r 2a,a!,

U~r !52pZ2e2/4Dr ln~r /a! ~r @a!. ~30!

One can findr T from the equationuU(r T)u5kBT:

r T5a1 l /4 ~ l /4,a!,

r T5
p l

4 ln~ l /4a!
~ l /4@a!. ~31!

At distancesr T,r ,r s , the electrostatic potential of the lin
ear charge densityh* is not screened and the boundary co
dition of Eq. ~14! can be used to write

N~r !5N~0!expS 2
Ze@c~r !2c~r T!#

kBT D
.N~0!expS 2h*

hc
ln~r /r T! D . ~32!

At r 5r s concentration,N(r s).N(`). The solution of this
equation forh* is

h* 52hc

ln@N~0!/N~`!#

ln~r s /r T!2 . ~33!

According to Eq.~31!, at a not very largel /4a one can use
the estimater T; l /4. Substituting Eq.~21! into Eq. ~33!, one
arrives at

h* 52hc

ln@N~0!/N~`!#

ln„4/@pN~`!l 3#…
. ~34!

It is clear from Eq.~34! that if two logarithms are close to
each other, i.e., if

ln
N~0!2l 3

N~`!
@1, ~35!

the Onsager-Manning theory is approximately correct a
h* approaches2hc . If G;1 andmc(n,T);kBT, concen-
tration N(0);n/w is large and inequality~35! is fulfilled at
any reasonableN(`). Thus, for a typical charge densitys
and Z51 the Onsager-Manning result is rederived. Ho
ever, for screening by multivalent ionsG@1, umc(n,T)u
@kBT, and concentrationN(0) is exponentially small.
Therefore, values ofN(`) at whichh* is close to2hc are
extremely small. For example, to geth* 520.75hc one
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5808 PRE 60B. I. SHKLOVSKII
needsN(`)5N0.7550.02N(0)2l 3. At s51.0 e/nm22 and
Z53, it is shown above thatN(0)51.731023 m23

50.3 mM and, therefore,N0.755231020 m2350.3 mM.
Switching to Z54, one has N(0)5531020 m23

50.8 mM, which results in an unrealistically smallN0.75
52.531015 m23.

On the other hand, in disagreement with the Onsag
Manning theory, one obtains from Eq.~34! that uh* u!hc
when a concentrationN(`) of the salt is still exponentially
small, namelyN(0)2l 3!N(`)!N(0). Moreover, according
to Eq. ~34!, h* vanishes atN(`)5N(0). This result is easy
to understand without calculations. Indeed, in this c
N(r )5N(`)exp@2Zec(r)/kBT#5N(0) stays constant an
c(r )50 at all r . l /4, so that all of the charge of the poly
electrolyte is compensated inside cylinder withr 5 l /4.

The difference from the Onsager-Manning theory b
comes even more apparent atN(`).N(0) when the density
h* becomes positive. Note that this charge inversion ta
place still at exponentially smallN(`). A positive h* con-
tinues to grow withN(`) until it reaches critical density

hmax* 5e/ l B ~36!

and the standard Onsager-Manning condensation of mon
lent negative ions starts. According to Eq.~34! this happens
at N(`)5Nsat, where

Nsat; l 23@N~0!l 3#1/(Z11). ~37!

At N(`).Nsat, charge densityh* remains fixed at the leve
e/ l B . Condensed negative ions eventually screen latera
teraction of counterions in SCL,umc(n,T)u decreases, and
h* drops. Comparing Eq.~37! with Eq. ~29! for the maxi-
mum concentration,Nmax(`), of fully dissociatedZ:1 salt,
one sees that they are quite close, if ion sizeb is not too
small. For a very small distance of the closest approacb,
the growth ofh* is limited earlier by the conditionN(`)
,Nmax(`).

To summarize, the net chargeh* as a function of salt
concentrationN(`) is given by Eq.~34!. It changes in the
rangee/ l B.h* .2hc whenN(`) grows. Strictly speaking
to quantitatively describeh as a function ofN(`), one
should use the self-consistent concentration,n5(h
1h* )/2pa, in Eq. ~34! for N(0).

Finally, it should be emphasized that this result does
demonstrate the attractive universality of the Onsag
Manning theory. According to Eq.~34!, h* depends onh
throughm(n) in Eq. ~14!. Thus, for the screening by multi
valent ions atG@1, and at any reasonableN(`), the predic-
tions of Refs.@14,15# are qualitatively incorrect.

Return now to the case of a small concentration of aZ:1
salt,N(`)!N(0), andconsider what happens toh* when a
1:1 salt with a larger concentration,N1@N(`), is added to
the solution. This is a realistic experimental situation. Suc
problem can be solved with the help of Eq.~33!, if one
substitutesr s5(8p l BN1)21/2 instead of Eq.~21!. The result
is

h* 52hc

ln@N~0!/N~`!#

ln@2Z2/~pN1l 3!#
. ~38!
r-
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Equation~38! shows how at a givenN(`)!N(0), theabso-
lute value of the net negative charge density increases
N1. At large enoughN1, monovalent counterions replac
counterions with chargeZe at the surface of the macroion
This replacement happens when the corresponding chang
free energy vanishes, i.e., at

mc~n,T!2kBT ln~nw /n!2ZkBT ln~Nw /N1!

5Zm12ZkBT ln~nw /Zn!2kBT ln„Nw /N~`!….

~39!

Here the left side is the free energy of aZ-valent counterion
at the surface andZ monovalent ones in the bulk, while th
right side is the free energy ofZ monovalent ions at the
surface and aZ-valent ion in the bulk.m1 is the correlation
part of the chemical potential of a monovalent ion. AtZ
@1 one can neglectZm1 in comparison withmc(n,T) be-
cause, as was mentioned above,m1 is numerically small and
the latter quantity is proportional toZ3/2. Solving Eq.~39! for
N1, one finds

N15
n

w S N~`!

N~0! D
1/Z

. ~40!

Substituting thisN1 into Eq. ~38!, one sees that at the mo
ment of replacementh* .2hcZ52kBT/e, providing a
natural crossover to the case of screening by exclusiv
monovalent counterions.

Concluding this section, I would like to note that quan
tative use of Eq.~9! obtained for a two-dimensional syste
may be subjected to some limitations when considerin
cylinder with a small enough radius, such as, for examp
DNA. Even if the circumference of the cylinder 2pa is
much larger than the radius of the Wigner-Seitz cell,R, ther-
mal fluctuations can play a larger role for a cylinder than
the real two-dimensional system. This can happen beca
strictly speaking, at large distances a cylinder is a o
dimensional system. However, the role of long-range fl
tuations in thermodynamic properties of this system is sm
and these effects do not change my estimates beyond
uncertainty and, definitely, do not change my qualitat
conclusions.

VI. SCREENING OF A UNIFORMLY CHARGED SPHERE

Consider application of this theory to a sphere with
small radiusa5225 nm and with a charge2Q screened
by Z:1 salt with concentrationN(`) in the bulk. At large
enough surface charge densitys52Zen052Q/4pa2, the
surface is covered by SCL ofZ-valent counterions. The goa
is to find a concentrationn of this SCL and the net charge o
the sphere,

Q* 54pa2nZe2Q, ~41!

as a function ofa, Q, Z, T, andN(`). In the case of a sphere
the screening atmosphere is characterized by a concentr
of Z-valent ions,N(r ), as a function of distancer from the
sphere center. For simplicity, assume thata. l /4 so that the
boundary condition Eq.~14! is valid atr 5a1 l /4, where the
curvature of the sphere can be neglected. At distances f
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the surfacer 2a!r s , one can neglect screening and find t
concentration,N(r ), similarly to Eq.~32! as

N~r !5N~0!expS 2
Ze@c~r !2c~a1 l /4!#

kBT D
.N~0!expS Q* Ze~a212r 21!

DkBT D . ~42!

At the distancer 5a1r s , where the linear Debye-Hu¨ckel
theory starts to work, one has

N~a1r s!.N~`!. ~43!

Solving this equation in the caser s@a, one obtains

Q* 52
ae

l BZ
ln

N~0!

N~`!
52

a

l BZS ln
n/w

N~`!
1

umc~n,T!u
kBT D .

~44!

This equation is similar to Eq.~34!. It is to be solved forQ* ,
n, and umc(n,T)u together with Eq.~41! and Eq.~9! @or its
low-temperature version Eq.~10!#.

In the case of monovalent counterions, whenG;1,
mc(n,T)/kBT;1, so that correlations do not play any role
Eq. ~44! and the solution does not differ from the solution
PBE. In this case, the concentrationN(0).n/w;n0 /w is
much larger than any reasonableN(`) so that
ln„N(0)/N(`)….0 andQ* ,0. Thus, Eq.~44! describes the
partial compensation of charge2Q by positive chargeQ
1Q* 54pa2Zen of counterions condensed at the very s
face of the sphere. The rest of the screening charge,2Q* , is
situated at the distancer s from the sphere in Debye-Hu¨ckel
atmosphere. It is clear now that nonlinear screening o
sphere is similar to Onsager-Manning condensation in
case of a cylinder@16–18#. In both cases there are two sep
rate groups of counterions: condensed and free. Moreo
for a sphere there is a similar universality of the net cha
Q* . Indeed, whenN(`)!n0 /w the dependence ofQ* on Q
is negligible.@One can evaluate this dependence substitu
n0 for n in Eq. ~44!.# The only qualitative difference betwee
the screening of a sphere and a cylinder is that at unrea
cally smallN(`)<Nc , where

Nc5
1

4pa2w
expS 2

QlBZ

ae D , ~45!

the last counterion leaves the surface@15# andQ* 52Q.
On the other hand, in the case of screening by multiva

ions, correlations significantly change the above-descri
mean-field dependence ofQ* on N(`). These changes star
however, only atN(`).Nc , because without condense
counterions correlations cannot play any role. AtN(`)
@Nc , whenn grows and becomes comparable withn0, one
obtains thatG@1, mc(n,T)@kBT, and, according to Eq
~14!, N(0) is exponentially small. Therefore, it follows from
Eq. ~44! that the negative net charge,Q* , grows~decreases
in the absolute value! faster than it does in the case
monovalent counterions. Eventually,Q* , vanishes at expo
nentially smallN(`)5N(0).
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At N(`).N(0), the netcharge,Q* , becomes positive
and continues to grow. As in other geometries, this cha
inversion happens because of strong binding of counter
by SCL. At large enoughN(`), one can neglect the firs
term in parentheses of Eq.~44!. Then using a low-
temperature expression Eq.~10! for mc(n), one finds thatQ*
saturates at the positive value

Qmax* 5bAQZe, ~46!

whereb53a/4Ap.0.84. For example, atZ53 for a sphere
with bare charge250e (Q550e) one arrives at the ne
chargeQmax* .110e. Equation~46! is remarkably simple and
universal:Qmax* does not depend on a sphere radiusa.

Equation~46! for Qmax* is valid until one of the two fol-
lowing events happens. First, a concentrationN(`) can
reach maximum concentrationNmax(`) of fully dissociated
Z:1 salt @see Eq.~37!#. Second, a condensation of monov
lent negative ions on the positive sphere can start. C
densed counterions eventually screen the lateral interac
of counterions in SCL and effectively change their char
from Z to Z21. As a result,umc(n,T)u decreases andQ*
starts to drop. Similarly to Eq.~37!, condensation starts a
N(`)}exp„2mc /(Z11)kBT…. This concentrations is clos
to Nmax(`) if ion size,b, is not too small. For a very smallb
condition, N(`)!Nmax(`) is more restrictive. For a smal
sphere with radiusa5225 nm, both restrictions start to
work while r s@a. Therefore, I do not consider here the ca
r s,a. For larger spheres,r s can become smaller thana at
the point at which the above-mentioned other limits onN(`)
start to work. In this case, the sphere effectively works a
flat surface and one can use the results of Sec. IV.

VII. DISCUSSION OF APPROXIMATIONS

In this section, approximations used in this paper are d
cussed. First, it was assumed that charges at the surface
macroion are fixed and cannot move. In the case of a soli
glassy surface, for example colloidal particles and rigid po
electrolytes, such as double-helix DNA, this approximati
seems to work well. On the other hand, for charged lip
membranes it can be violated. If the surface charges are
bile, they can accumulate nearZ-valent counterions, forming
short dipoles directed perpendicular to the surface. Th
dipoles interact weakly with each other so that the energy
their lateral correlations is smaller than in SCL on the u
form background. On the other hand, such a concentratio
the surface charge under the counterion by itself create
additional binding of counterions to the surface. As a res
the negative chemical potential,m(n,T), becomes larger in
the absolute value and the boundary concentrationN(0) be-
comes smaller. The theory of this paper expresses everyt
through N(0). Therefore, the unusual effects of comple
compensation of macroion charge and of the charge in
sion become stronger.

The second approximation made above is the assump
that fixed charge is uniformly distributed at the surface. L
calized charges are actually discrete. Therefore, it ma
sense to discuss whether2e charges, for example randoml
distributed on the surface, work as a uniform background
the limit Z@1, the repulsion betweenZ-valent counterions is
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much stronger than their pinning by the surface charges
that the concept of a uniform background works exactly.
Z>3, the uniform background is still a good approximati
for realistic values of the radius of closest approach,bs , of
counterions and discrete surface negative charges. On
other hand, this approximation fails atZ51 because all
counterions and discrete negative surface charges have a
dency to form neutral Bjerrum pairs instead of SCL ifbs
!R. In this case,N(0) can be small even forZ51. When
negative charges are clustered, for example form com
triplets, even atZ53 interaction with such a cluster can b
as important as interaction with the neighboring counterio
Each counterion tends to neutralize one cluster formin
neutral dipole. Again, this leads to stronger binding to
surface and smallerN(0).

This discussion naturally leads us to the third approxim
tion used above in the calculation of the chemical poten
of SCL. Equation~9! was obtained for pointlike counterions
Actually, counterions have a finite size and one wonders h
this affects these results. Our results, of course, make s
only if the counterion radiusbc is smaller than the radius o
a Wigner-Seitz cell,R, so that counterions occupy a sma
fraction of the surface. In other words, the idea of SCL
WC works only when objects of large charge density arra
themselves on a background with much smaller charge d
sity. For trivalent ions on the surface with the charge den
s51.0 e/nm22, the radius of the Wigner-Seitz cellR
51 nm, so that for a counterion withbc50.5 nm this con-
dition is easily satisfied. Positive corrections to the ene
per ion of WC are proportional (bc /R)2 and appear due to
the fact that the charge finite-size counterion cannot be s
ated exactly in the potential minimum created by its nea
neighbors.

Finally, all estimates in this paper are based on the us
dielectric constant of a waterD.80. For the lateral interac
tions of counterions near the surface of an organic mate
with a low dielectric constant, the effective dielectric co
stantD can be substantially smaller.~In a macroscopic ap
proach it is close toD/2.! As a result, absolute values o
um(n,T)u can grow significantly andN(0) may become even
smaller.

VIII. CONCLUSION

In conclusion, the role of strong lateral correlations
Z-valent counterions condensed on a charged surface is
ied. It is argued that a strongly correlated liquid~SCL!, or, in
other words, a two-dimensional one-component plasma,
good model for these correlations. It is shown that, due to
h
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additional binding provided by SCL, the concentration
counterions close to SCL is exponentially small@see Eq.
~14!#. This concentration depends only onZ and the surface
charge density of the macroions and serves as a bounda
condition for the Poisson-Boltzmann equation~PBE!, which
is still valid far from the surface. PBE is solved with th
boundary condition~14! for all three standard geometrie
For a charged cylinder, it is shown that in the presence
SCL the Onsager-Manning condensation is strongly mo
fied. The increasing bulk concentration ofZ-valent counteri-
ons, N(`), makes the net negative charge of the cylind
smaller than in the Onsager-Manning theory, drives
through zero, and makes it positive. Similar changes are
dicted for a charged sphere with charge2Q. In this case,
charge inversion can result in a positive net cha
0.84AQZe. All these phenomena happen while the conce
tration of Z:1 salt is still exponentially small. Technicall
they follow from the boundary condition~14!, which in turn
is a result of a strong correlation of counterions of the s
face layer.

This theory can be applied to a variety of other problem
First, one can study more complicated solutions where a s
stantial concentration of 1:1 salt is added toZ:1 salt. We
gave only one example of such a problem in the end of S
V. Second, this theory should be extended to a finite conc
tration of macroions. In this case, problems of a global
stability of such a solution should be addressed, too. Th
one can use a similar theory for counterions of a larger s
and nonspherical shape@7#, provided they have larger charg
density than the macroion’s surface. For example, a p
tively charged rigid flat surface can be screened by a solu
of a rodlike polymer such as double-helix DNA@25#. If pro-
jected to the plane the negative surface density of DNA
larger by absolute value than the charge density of the pla
then DNA rods form strongly correlated nematic liqui
which provides strong binding of DNA to the surface. A n
charge density of the plane can experience correlat
induced charge inversion. These and other problems wil
addressed in future publications.
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