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Screening of a macroion by multivalent ions: Correlation-induced inversion of charge
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Screening of a strongly charged macroion by multivalent counterions is considered. It is shown that coun-
terions form a strongly correlated liquid at the surface of the macroion. Cohesive energy of this liquid leads to
additional attraction of counterions to the surface, which is absent in conventional solutions of the Poisson-
Boltzmann equation. Away from the surface this attraction can be taken into account by a new boundary
condition for the concentration of counterions near the surface. The Poisson-Boltzmann equation is solved with
this boundary condition for a charged flat surface, a cylinder, and a sphere. In all three cases, screening is much
stronger than in the conventional approach. At some critical exponentially small concentration of multivalent
counterions in the solution, they totally neutralize the surface charge at small distances from the surface. At
larger concentrations they invert the sign of the net macroion charge. The absolute value of the inverted charge
density can be as large as 20% of the bare one. In particular, for a cylindrical macroion it is shown that for
screening by multivalent counterions, predictions of the Onsager-Manning theory are quantitatively incorrect.
The net charge density of the cylinder is smaller than their theory predicts and inverts the sign with a growing
concentration of counterions. Moreover, the condensation loses its universality and the net charge linear
density depends on the bare 0f®81063-651X%99)11311-4

PACS numbes): 61.20.Qg, 77.84.Jd, 61.25.Hq

[. INTRODUCTION charge predicted by PBE were demonstrated numerically
[2,3] for the following problem. Consider screening of a
Many objects with a much larger size than atomic arecharged surfaces=0, of a membrane or a film by a water
strongly charged in a water solution and are called macrosolution occupying half-space>0. Assume that there is
ions. One can think about a rigid polyelectrolyte which, in aonly one sort of counterions with the charge>0 and their
water solution, dissociates into cylindrical macroion andconcentratiorN(x) = Ngexp(—Zey/kgT)—0 atx—ce. In this
monovalent small ions. DNA and actin are the best knowrcase the solution of Edq1) is very simple and has the Gouy-
examples of such biological polyelectrolytes. Other impor-Chapman form
tant types of macroions are charged lipid membranes and
charged spherical colloidal particles. Macroions are screened 1 1
by smaller ions of the solution. A correct description of the N(x)= ol (A +x)?’
screening of macroions is tremendously important for a cal-
culation of properties of individual macroions, for examplewhere N=Ze/(2wlo) is the Gouy-Chapman length,
the effective charge or the bending rigidity. Screening also=Z72|5, andlg=e?/(DkgT)=0.7 nm is the Bjerrum length.
determines forces acting between macroions and both theat largeZ ande, the length\ can become of the order of the
modynamic and transport properties of their solutions. size of the water molecule or even smaller. For example, at
This paper examines the screening of a rigid macroiorz=3 ando=1.0 e/nni, A=0.08 nm. This means that al-
with a fixed and uniform distribution of charge on its surface.most all ions are located in the first molecular layer at the
Three standard geometries are considered below—an infinitsurface or, in other words, they condense at the very surface
flat surface, an infinite cylinder, and a small sphere—eaclof a macroion. This raises questions about the role of their
uniformly charged with the surface densityc<<0. The lateral correlations and the validity of the solution E).
standard approach for a description of such problems is the |t was found by numerical method8] that for a typical
Poisson-Boltzmann equatiofPBE) for the self-consistent charge densityr, deviations from Eq(2) are not large for

@

electrostatic potential(r), monovalent counterions, but they strongly increase with the
charge of counteriona. It was suggested in Refg}—7] that
Ame Zey at Z=2, repulsion between multivalent counterions con-
V2y=— D E ZiNy; exp( T ) (1) densed at the surface is so strong that they form a two-
B

dimensional strongly correlated liquidbCL) in which the
short order of counterions is similar to that of a Wigner crys-
Here e is the charge of a protorD=80 is the dielectric tal (WC). This idea was used to demonstrate that two
constant of waterZ;e is the charge of a small ion of sart  charged surfaces in the presence of multivalent counterions
andNy; is their concentration at the point whege=0. The can attract each other at small distances.

number of papers using the analytical and numerical solu- A theory of the influence of SCL of multivalent counteri-
tions of Eq.(1) is extremely largd1]. On the other hand, ons on the density of screening atmosphere of a macroion
there is an understanding that Edj) neglects ion-ion corre- has been suggested recently by Perel and Shkloyskii
lations and is not exact. Deviations from the distribution of (PS. Their main idea is to treat separately two subsystems:
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two-dimensional SCL of multivalent counterions at the very In the case of a cylinder, the conventional picture of non-
surface and their gaslike dilute phase at some distance to thi@ear screening called the Onsager-Manning condensation
right of the surface. In the SCL, PS explicitly take into ac-should be strongly modified when dealing with multivalent
count strong correlations using the energy of WC as a simpl@ns. Consider a cylinder with a negative linear charge den-
approximation for the free energy of SCL. On the othersity — » and assume thaj> 5., wheren.=Ze/l. Onsager-
hand, the gaslike phase is treated in the PBE approximatiofanning theory[14], confirmed by the solution of the PB
while the effect of SCL is taken into account with the help of €quation[15], shows that such a strongly charged cylinder is
a new bounadary condition for PBE. partially screened by counterions residing at its surface, so

In this paper PS theory is developed in several directionsthat net(total) linear charge density of the cylinder”, is
First, the phenomenon of charge inversion is studied irequal to the negative universal valaey.. The rest of the
greater detail and the inverted charge as a function of theharge is screened at much larger distances according to the
counterion concentration is found. In particular, the maxi-linear Debye-Hukel theory.
mum possible value of the inverted charge is estimated. Sec- The Onsager-Manning condensation does not take into
ond, the PS approach is generalized to a spherical macroiofccount lateral correlations of counterions. In Sec. V, the role
Third, | add the comprehensive discussion of approximationgf these correlations is considered and an analytical expres-
made in this theory. sion for »* as a function ofp and the concentratioN(«) of

The next section starts with a review of the thermody-Z:1 salt is derivedsee Eq.(34)]. It is shown that due to
namic properties of a two-dimensional SCL, which were ob-additional binding of multivalent counterions provided by
tained by Monte Carlo and other numerical methods. It istheir SCL on the surface of the cylinder, the absolute value
shown that forZ=2 and typical charge density, SCL is  of the negative net charge density;, is smaller than in the
characterized by a large negative chemical potential of iongonsager-Manning theory. Moreover, it strongly depends on a
In other words, due to their lateral two-dimensional correla-bare linear density;- , so that attractive universality of the
tions, ions are more strongly bound to the surface than in th©nsager-Manning theory is destroyed. When concentration
PBE approximation. This phenomenon can be understood a8 counterions in the bullN(>) grows, the net charge den-
the attraction of &-valent counterion to its correlation hole sity, »*, changes sign from negative to positive at the point
in SCL. While PBE fails to describe this surface correlationwhereN(e)=N(0). Thus, the charge inversion takes place
effect, it works well at a distance from the surface, where thdor a cylindrical geometry, too. Positivg* continues to
energy of attraction to the correlation hole is smaller thangrow with N(2) until it reaches a critical value/lg, for the
kgT and alsoN(x) is small enough that three-dimensional Onsager-Manning condensation of monovalent negative
correlations are very weak. It is found below that PBE be-ions.
comes valid ak>1/4>\ and that the characteristic scale of  Finally, this paper studies screening of a uniformly
the PBE solution/A>1/4. Thus SCL together with the inter- charged small sphere with a negative charg® and radius
mediate boundary layeh <x</4, from the point of view a. For a strongly charged sphere, the solution of PBE is well
of PBE, provide only a new boundary conditiod(x)  known[16-18 and is approximately valid for monovalent
=N(0) atx=0 for the concentratioiN(x) of multivalent  counterions. It shows that, in contrast with a charged plane
counterions. It is derived in Sec. Il from the condition of or cylinder, a sphere has no condensed counterions, if
equilibrium of the gaslike phase with SCL. Due to the largeN(*)=0. This happens because the potential energy of a
negative chemical potential of SCL, the new boundary concounterion on the surface of a totally ionized sphere,
dition requires thalN(0) is exponentially small in the dilute —QZe&Da, is finite. At N(«)>N,, where N,
phase. Section Il also discusses the structure of the interme-exp(—QZlz/a€) is an extremely small concentration, a frac-
diate layern<x<I/4 between SCL and the dilute phase, tion of positive screening charge condenses at the surface of
where exponential decay dof(x) actually takes place. the sphere and partially compensates its charge, so that the

In Secs. IV-VI, PBE is solved with the boundary condi- net charge of the spher®*, changes in the range>0Q*
tion for N(0) for the standard problems of screening of a>—Q. In this regime Q* does not depend oQ. This uni-
charged flat surface, a cylinder, and a sphere for different saltersality is similar to that of the Onsager-Manning theory.
compositions of the bulk solution. In planar geometry andThe rest of the screening atmosphere can be described in the
for the bulk concentration d2:1 saltN(«)=0, | found that Debye-Hickel approximation. WhemM(=) grows, Q* be-
at x>1/4 the concentration of counteriord(x), obeys Eq. comes smaller in absolute value but remains negative.
(2), in which \ is replaced by an exponentially large length It is shown in Sec. VI that in the case of screening by
A. At finite N(e«), consequences of correlation-induced multivalent counterions due to additional binding by SCL,
binding of counterions to the surface become even strongethe net chargeQ*, behaves differently. WheN(«) <N,
Even at exponentially smalN(«)=N(0), the positive all counterions are still lost. But a(0)>N(*)>N,, a
charge density of SCL completely compensates. At  larger amount of counterions condense at the sphere than
N(c)>N(0), it becomes even larger than so that the total PBE predicts. As a result, a(«)=N(0) the net charge,
charge of the surface becomes positive. This phenomenon §*, changes sign. Al(«)>N(0), positiveQ* continues to
called charge inversion. First, it was noticed in numericalgrow and saturates at the val@* =.QZe. It should be
calculationg[3]. This paper presents an analytical theory ofemphasized that when correlations are taken into account,
charge inversion for the case of screening by small size ionghe above-mentioned universality disappears &id be-
It is totally based on correlation effects. Recently a numbercomes a function of the bare chargg,
of publications discussed similar phenomena for screening of Note that the net linear charge densi§ of a cylinder
macroions by charged polyme8—13. and the net charg®* of a sphere are measurable quantities.
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In both cases they include only counterions whose bindindn the large range, 0.85I'<5000, the excess internal en-
energy exceedsgT. These counterions move together with aergy of SCL per counteriofthe difference between internal
cylinder or sphere, for example in the electric field. There-energy and energy of the ideal gas with the same concentra-
fore, »* andQ* can be studied in an electrophoresis experi-tion), £(n,T) =kgTf(I"), was fitted by the expressidi9]
ment. In the case of charge inversion, a cylinder, sphere, and
any other macroion should drift in an anomalous direction. f(I')=-1.1+0.58"*4-0.26 (6)

In Sec. VII, approximations of this theory are discussed.
In the Conclusion, Sec. VIII, several possible extensions ofvith an error less than 8%ess than 2% in the range 0.5

this theory are mentioned. <I"<5000). The first term on the right side of E§) domi-
nates at largd” and leads to Eq(3). The other two terms
Il. WIGNER CRYSTAL AND STRONGLY CORRELATED provide a relatively small correction to the energy of WC. It
LIQUID is equal to 11% al'=5 and to 5% al"=15. The reason for

a such small correction is that short-range order in SCL is

It is shown below that for=1 e nm™? andZ=2, al-  gjmilar to that of WC. For the free energy of unit aréapne
most all charge of the plane is compensated by SCL of counsgn write

terions at its surface, which has a two-dimensional concen-

tration n=¢/Ze. In this section, | discuss thermodynamic r

properties of this two-dimensional system. The minimum of F=F(F=O.05)+nkBTf f(rHdar/r’, (7)
the Coulomb energy of counterion mutial repulsion and their 005

attraction to the background is provided by a triangular

close-packed WC of counterions. Let us write energy perso that for the chemical potential which is used below to

unit surface area of WC at=0 asE = ne(n), wheres (n) is desc_rlbe the equilibrium of SCL with the gaslike phase, one
. ) . . obtains

the energy per ion. One can estimaig) as the interaction

energy of an ion with its Wigner-Seitz cell of the background NT)=—KaT NN /M) + ot (N T 8

charge[a hexagon of background with chargeZe and w(n.T) pTIn(M/n)+ pst e, T), ®

counterion in the center, which can be approximately viewed 11o(N,T)= — ke T(1.65 — 2,617 Y4+ 0.26 Inl" + 1.95).

as a disk with radiusR=(an) Y?]. This estimate gives )
e(n)~ —Z%e?/DR. A more accurate expression fe(n) is
[22]

Here u. is a contribution of correlations to the chemical
e(n)=—an?72e?D "1, 3) potential. _The h_ig_h-temperature_ chemical potential,I" _

=0.05), with sufficient accuracy is replaced by the chemical
wherea=1.96. Equatiorn(3) can be rewritten in units of the potential—kgT In(n,,/n)+ us of an ideal two-dimensional so-

room-temperature thermal enerdgT, as lution of ions in the surface layer of water with a two-
dimensional concentratiam, . The termug is the hydration
- 312 1/2) . S -
e(n)=-1.4 Z%%(o nnt/e)"%gT. (4 free energy per ion at the surface, anchatn,, it does not

depend on the concentration of ion$23].
Y The first term of Eq(9) corresponds to the WC picture.
Indeed, one can find directly from E(B) and Eq.(5) that

The inverse dimensionless temperature of SCL is usuall
written in units

z2%e?
= RbigT

d
R

all ) d[ne(n)] 3
keT MWC=%: Se(M=—165TkeT. (10
For example, ar=1.0 e/nn? and room temperature, Eq.
(5) givesI'=1.2, 35, 6.4, and 9.9 a=1, 2, 3, and 4. Atlargel’, the chemical potentigk,,c dominates in Eq(9).
Thus, for multivalent counterions one deals with a low-The last three terms qf. give 20% correction to the WC
temperature situatiod: is the large parameter of this theory. term atI'=5 and only 10% correction df =15. Thus, if
In its terms,R/A=2I">1 and|/R=I'>1. For example, at necessary, at&§['<15 one can usg.c as a first approxi-
Z=3 ando=1.0 e/nn? lengths\, R, and| are equal to mation. Belowy, is always calculated using the full E@).
0.08, 1.0, and 6.3 nm, respectively. The small valuex of All necessary information about two-dimensional SCL
means that almost all counterions are located in the first moaas been presented. It is time now to study its equilibrium
lecular layer at the surface and literally form a two- with the rest of the screening atmosphere.
dimensional system.

It is known, however, that due to the small shear modulus, 1. A NEW BOUNDARY CONDITION
WC melts at a very low temperature ndae=130[21]. Nev- FOR THE POISSON-BOLTZMANN EQUATION
ertheless, the disappearance of the long-range order only
slightly changes thermodynamic properties of the system. When an ion moves away from SCL, it leaves behind its
They are determined by the short-range order, which, in th@egatively charged correlation hole. Uf(x) is the correla-
range 5<I'<15, should not be significantly different from tion energy of attraction to the hole, the condition of equi-
that of the WC[4,5,7,8. This statement is confirmed by librium between SCL ak=0 and the gaslike phase at a
numerical calculationg19—21] of thermodynamic properties distancex can be written as
of the two-dimensional SCL of Coulomb particles on the
neutralizing background or so-called one-component plasma. u(n)+Zey(0)=w(N)+Zey(x)+U(X). (11
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Here u(n) is given by EQ.(8), Zey(x) is the counterion range of distances<x<R, the correlation hole is approxi-

energy in the self-consistent potential, mately a disk of the surface charge with radiRs(the
Wigner-Seitz ce)l and the ion is attracted to the surface by
m(N)=—kgTIn Ny, /N+ uy (120 jts uniform electric fieldE=2ma/D. Therefore, ifx were

larger thanw, one would getN(x)=(n/\)exp(—x/\) at x
<R. In the cases of our interest<w and atx<<w one can
defineN=n/w, while atw<x<R

is the chemical potential of the bulk gas-like phasg,is the
bulk concentration of water, and, is the bulk hydration
free energy 23], which does not depend dw According to
the terminology of Ref[23], Eqg. (11) means that the elec- n
trochemical potential of counterions is constant. N(X)= —exp( —X/\). (15)

It will be shown below thatJ(x) becomes less thakT w
at x>1/4. On the other hand, in many important cases the
surface is screened so strongly that the self-consistent potefit X>R, the correlation hole radius grows and becomes of
tial Changes b)kBT On|y at exponentia”y |arge |engtm, the order ofx. Indeed, SCL on the uniform baCkgrOUnd can
which is defined below. Therefore, the condition of equilib-be considered as a good conductor in the plane)( It is

rium between SCL and the layb<x<A is known that a charge at a distanog,from a metallic plane
attracts an opposite charge into a disk with the radiuxsor,
m(n)=u(N). (13 in other words, creates its pointlike image on the other side

] ) of the plane at the distancex2Zrom the original charge. The
Using Eq.(8) and Eq.(12) and solving Eq.(13) for N(X),  same thing happens to SCL. The removed counterion still
one obtains that d4<x<A concentratiorN(x) does not repels other ions of SCL and creates a correlation hole in the

depend orx and equals form of a negative disk with the chargeZe and the radius
T X [24]. It is interesting to note that the correlation hole at-
_n — M tracts the counterion and decreases its potential energy by the
N(0)= —ex , (14
w kgT Coulomb term

wherew=(n,,/N,)exd (u,— u/ksT)]. Below it is assumed U(x) = — Z2e?/4Dx. (16)
for simplicity that w,= us, i. €., surface and bulk hydration

free energies are equal. In this casas the Ien_gth of the This effect provides the correction to the activation energy of
order of size of the water molecul&or estimates,w .
. N(X) :

=0.3 nm is used below

The notationN(0) reflects the fact that this value plays n
the role of a new boundary condition @< A for important N(X)= —eXF< —
solutions of PBE which have large characteristic length w
>1/4. In such a class of solutions(0) provides a universal N ; ) )
description of the role of SCL. This paper deals only with The similar “image” correction to the work function of a

the universal boundary conditigi4) and start directly from ~ correction decreases withand aix=1/4 it becomes equal to
Eq. (11) will be studied in the next paper. kgT, so thatN(x) saturates at the valué(0). Thedramatic

Due to the large value ofu(n,T)|, the concentration difference between the exponential decay of Hd$) and
N(0) can be very small. For example, at=1.0 e/nm 2  (17) and the I¥* law of Eq.(2) is obviously related to the
andZ=2, 3, and 4, at whicli' = 3.5, 6.4, and 9.9, according correlation effects neglected in PBE. Recall that it was as-
to Eq. (9) one gets u(n,T)|/kgT=4.5, 8.8, and 14.3, re- sumed in the beginning of this paper that the charge of the
spectively. This givedl(0)=30 mM, 0.3 mM, and 0.8xM surface is almost totally compensated by SCL. Exponential
for =2, 3, and 4 (1 M=6x10° m 3). It is clear now decay ofN(x) with x confirms this assumption and &t
that | ue(n,T)| plays a role similar to the work function for >1 makes this theory self-consistent.

thermal emission, to the free energy of chemosorption, or to Consider now what happens wit(x) at distancesx
the evaporation energy for the cases of equilibrium gas®!/4. At such distances, correlations of the removed ion

liquid or gas-solid interfaces. The concentratitif0) is with its correlation hole in SCL are not important and the
similar to the density of the saturated vapor. correlation between ions of the gas phase are even weaker

Thus, correlation effects in SCL provide additional strongPecauséN(x) is exponentially small. Therefore, one can re-
binding of counterions to the macroion surface. We wouldtu to PBE. In the next section, solutions of PBE for the
like to stress that such binding does not happerZatl. planar geometry for a different concentration of salt are dis-
Indeed, ar=1.0 e/nm 2 one obtains from Eq5) and Eq.  cussed.

(9) that I'=1.2 and wu.(n,T)/kgT=1.3. Therefore, the

boundary condition Eq14) does not produce nontrivial ef- IV. PLANAR GEOMETRY
fects and standard solutions of PBE remain approximately

valid.

Below, | justify the role of the distancE4 and give an
idea howN(x) evolves fromn/\A at x~\ to N(0) at x
=|/4. Let us move one ion of SCL along thxeaxis. As is N(X) = i 1 (x>1/4) (18)
mentioned above, it leaves behind its correlation hole. In the 2l (A+x)? '

| ()| —Z%e2/4Dx
kgT

(x>R). (17

The solution of PBE with the boundary conditi¢i¥) and
N()=0 is similar to Eq.(2):
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where the new renormalized Gouy-Chapman length,is  whereN(0) is given by Eq.(14). Then the solution of PBE
exponentially large, for N_(x) atx<rg has a form similar to Eq(18),

/ «(n.T) 1
A=[27IN(0)] ?= zjrvm ex |M2(I<BT l). (19) N-00= o, (Ao %2 (29

where

For example, atr=1.0 e/nm 2, Eq. (19) gives A=1.8,

12.3, 166 nm aZ=2, 3, 4. These lengths should be com- A_=[2mlgN_(0)]"¥2 (26)

pared withl/4=0.7, 1.6, 2.8 nm, respectively. We see that

A>1/4 for Z=2. This justifies the use of Eq14) as the andlg=e?/(DkgT) is the Bjerrum length. To compensate

boundary condition for the large distance solution of PBE. for the bulk negative charge, the positive surface charge den-
Using Eq.(18), one finds that the total surface chargesity of SCL becomes larger tham, so that the net surface

density located at distances<|/4 is charge densityg™, becomes positive. Similarly to E¢O0),
it is
o*=—+yN(0)/(27wlg)=—0a(NA). (20
N_(0) e
—2 . * —2 0'* =e = . (27)
For o=1.0 e/nm™ 4, one obtains that* =7Xx10 ‘o atZ 2wl 2wlgA_

=2, 0*=7x10 3¢ atZ=3, ando* =4x10 %o atZ=4.

Corrections tou¢(n,T) andN(0) related to such smatr* This phenomenon is called charge inversion and is, of

can be, of course, neglected. course, impossible in the framework of the standard PBE.
One can compare these results with predictions of(®q. ~ Technically, charge inversion follows from the small value

Integrating Eq.(2) from 1/4 to «, one findse* =2Ze/«12,  0of N(0) in Eq.(14). Its physics is related to the strong bind-
ie., o*=5x102 e/nm?2 at Z=3 and o*=2 ing of counterions at the charged surface due to the forma-

X 1072 e/nm72 at Z=4. These values obr* are much tion of SCL. Remarkably, wheh> 1, this phenomenon hap-
larger than Eq(20). Thus, binding to the surface is strongly Pens under the influence of a very small concentration of
enhanced by correlation effects. salt.

Until now, this paper has addressed the case of extremely According to Eqs(27) and(24), the net densityr* con-
dilute solution, wheN(=)=0. Consider the case of a finite tinues to grow witiN(=) atN(«)>N(0). It isinteresting to
concentrationN(), of aZ:1 salt in the bulk of solution, or, Study how far it can grow and how strong the charge inver-
in other words, of a concentratidxi() of Z-valent counte- ~ Sion can be.

rions and concentratioN_ () = ZN(e) of neutralizing ions The use of PBE with the boundary conditions E(fs4)
with the charge—e. This adds the Debye-ltkel screening and(24) is valid if A_>1/4. To estimate the maximum value
radius of o*, which can be reached within the range of validity of
this theory, one can substitute_=1/4 into Eq.(27). This
re=[4mIN()(1+1/2)] 72 (21  gives
to the problem. IN()<N(0), thescreening radiuss> A, o = 2e :UZ_RZ 29)
and the fact thal() is finite changes only the very tail of 7l gl zI12

Eq. (18), making the decay dfl(x) atx>r¢ exponential. At

X<rg, still N(x)>ZN_(x) and all previous results are valid. For example, aZ=3 ando=1.0 e/nm 2 one obtainss™*
However, when N(«) approachesN(0), the solution =0.15 ¢. To find o* as a function ofN(«) in the whole
changes dramatically ang* vanishes. Indeed, whex () range whereA _>1/4, one should solve Eq(27) self-
=N(0) concentration,N(x)=N(>)exp(—ZeylkgT) stays consistently substitutingh=(c+oc*)/Ze into Egs. (14),
constant and potential(x) =0 at x>1/4. This means that (24), and(26).

the surface is completely neutralized at distance&:1/4. One can show that &< A _</4, when our theory based
If N(2)>N(0), negative charges dominate>a&rs. In-  on the universal boundary condition Ed4) is not valid,c™*
deed, in the PBE approach, continues to grow. I\ _ becomes smaller than the radius of
a Wigner-Seitz celR, negative ions screen each counterion
N(X)=N()exp —ZeylkgT), (22 separately. The effective charge of counterions becomes
smaller thanZ. This weakens their lateral interactions and
N_(x)=N_(=)expey/kgT), (23) makesN(0) larger. Thereforeg™ starts to decrease. The

maximum value of the net surface charge density,,, is

and when concentratioN(x) decreases with decreasimg reached a\_=R and is close t@/(27lgR). ForZ=3 and

the electrostatic potentiaf(x), grows andN_(x) increases. o =1.0 e/nm™?, this giveso},,~0.24 o.

One can derive a boundary condition fidr_(x) at x=0 | will not try here to make the above estimatesdff,,,

from Egs.(22) and (23). For this purpose, one should first more accurate because of sensitivity of this estimate to the

expressy(0) throughN(0) with the help of Eq(22), and ion size for the following reason. It was assumed above that

then findN_(0) from Eq.(23). This gives whenop,.. is reached, all salt molecules are still fully disso-

ciated in water, so that the concentratidi{s), of ions with

N_(0)=ZN()[N()/N(0)]*, (24)  chargeZ is equal to the concentration of the sal,(). In
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reality, at very largeNg(e), the concentration of fully ion- should be changed due to SCL at the surface of a strongly

ized counterionsN(x), saturates at the level charged cylinder.
As in the preceding section, the boundary condition Eq.
Nia(©)~b 3 exp(—Ze?/bDkgT), (29 (14) is used below to allow for additional binding of coun-

terions by SCL. One can introduce a radiys, at which
where —Z€?/bD is the Coulomb interaction energy of the energy of interaction between a counterion and its correla-
positiveZ-valent ion with the negative monovalent one at thetion hole, U(r), becomes of the order dfzT, so that the
minimum distance between theim, In this case, the major- boundary conditiomN(r)=N(0) can be used. For a cylindri-
ity of counterions keep a negative ion. One can refer to suckal geometrys, strictly speaking, differs from its analog
a complex as aZ— 1) ion. The transition to such a regime for a planar problent/4. Indeed, ar>R, energyU(r) can
happens when the concentration of sal(<), reaches be calculated as the energy of attraction of the chargéo

N mad(®)- an infinite metallic wire with the radiua:
SubstitutingN () into Eg. (25) and then Eq(25) into
Eq. (27), one finds that aZ=3, c=1.0 e/nm 2, and b U(r)=—Z%?*4D(r—a) (R<r-a<a),

=0.4 nm, this limitation of dissociation is not important.

For smallerb, charge densityg*, saturates at the value

Nmax(®®), Which is smaller than Eq29), and stays at this

level until the concentration of4— 1) ions becomes so large

that they replace fully ionized ions at the surface. This leads rr=a+l/4 (I/4<a),

to the drop ofc™.

Note once more that dramatic changes of the screening T

atmosphere described above do not happed=ail when "= 2 in(/4a) (I/14>a). (32)

I'~1 and|uc(n,T)|/kgT~1. The standard Gouy-Chapman

solution of the PBE, Eq(2), remains valid in this case. At distances 1<r<r, the electrostatic potential of the lin-
ear charge density* is not screened and the boundary con-

V. SCREENING OF UNIFORMLY CHARGED CYLINDER dition of Eq. (14) can be used to write

Consider screening of an infinite rigid cylinder with a Ze (r)—i(ry)]
radiusa, a negative surface charge densityr, or, in other N(r):N(O)exp( - KeT )
words, with a negative linear charge densitypy=—2wao.

Assume thato is large enough so that the surface of the 27
cylinder is covered by a two-dimensional SCL wifR ZN(O)GXF< 7
<2ma and withI'>1. Such a cylinder can be a first-order
approximation for the double-helix DNA, wherea At r=r concentrationN(r;)=N(). The solution of this
=1 nm,»p=5.9 e/nm,c=0.94 e/nn?, and for Z=3 the equation fory* is

radius of the Wigner-Seitz ceR=1 nm andl=6.3 nm.

A screening atmosphere of a cylinder is described by the . IN[N(0)/N()]
concentratioN(r), wherer is the distance from the cylinder e n(r o Jre)2
axis. The solution of PBE is knowfl5,1] to confirm the
main features of the famous Onsager-Mannifig] picture  According to Eq.(31), at a not very largé/4a one can use
of the counterion condensation. This solution depends on thie estimate +~1/4. Substituting Eq(21) into Eqg.(33), one
relation betweeny and n.=Zell =kgT/eZD. For a weakly arrives at
charged cylinder withy<< 7., the screening is linear and can
be described by the Debye Ekel approximation. Fory . IN[N(O)/N()]
> 5., screening becomes nonlinear and most of the screen- B ”Cm'
ing chargen— 7., is located at the cylinder surface, while at
N()=0 the rest of the screening chargg,, is spread in |t is clear from Eq.(34) that if two logarithms are close to
the bulk of the solution. This means that at large distancessach other, i.e., if
the net charge density of the cylindey;, equals— 7. and
does not depend om. Note that this is different from the N(0)%3
planar geometry where all the charge is bound to the surface, In N() >1,
so that far enough from the surface, the net surface density
vanishes(the finite o* was defined ak</4). At a finite  the Onsager-Manning theory is approximately correct and
N(«), the charge densityy* is screened only at linear #z* approaches-#.. If '~1 andu.(n,T)~kgT, concen-
screening radiuss. tration N(0)~n/w is large and inequality35) is fulfilled at

Here | deal with a strongly charged cylinder, for which any reasonabl®&l(«). Thus, for a typical charge density
7> 7.. It is easy to check that this inequality follows from and Z=1 the Onsager-Manning result is rederived. How-
our assumptions th&®<2za andI'>1. It is also fulfiled ever, for screening by multivalent ionE>1, |uc(n,T)]
for the case of DNA, for whichy/ ,=4Z. The goal in this >kgT, and concentrationN(0) is exponentially small.
case is to verify whether in the case of multivalent counteri-Therefore, values dfi(e) at which »* is close to— 7, are
ons elegant statements of the Onsager-Manning thidgtly — extremely small. For example, to gef* =—0.755. one

U(r)=—mZ%e?/4Dr In(r/a) (r>a). (30

One can find'1 from the equationU(r1)|=kgT:

*

In(r/rT)). (32

c

(33

(39

(39
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needsN (%) =Ny 7s=0.0N(0)?1%. At 0=1.0 e/nm 2 and Equation(38) shows how at a giveN(>=)<N(0), theabso-
Z=3, it is shown above thatN(0)=1.7x1?® m~3 lute value of the net negative charge density increases with
=0.3 mM and, thereforeNy,s=2x102° m~3=0.3 xM.  Ni. At large enoughN,, monovalent counterions replace
Switching to Z=4, one has N(0)=5x10?%° m~3  counterions with charg&e at the surface of the macroion.
=0.8 uM, which results in an unrealistically smal 75 This replacemer_lt happ_ens when the corresponding change of
—25x 10 m™3. free energy vanishes, i.e., at
On the other hand, in disagreement with the Onsager-
Manning theory, one obtains from E¢34) that | »* |< 7, #e(n,T) —kgT In(ny, /) = Zke TIN(Ny /Ny)
when a concentratioh(«) of the salt is still exponentially =Zu1—ZkgTIn(n,/ZNn) —kgT IN(N,,/N()).
small, namelyN(0)?13<N(=)<N(0). Moreover, according
to Eq.(34), »* vanishes alN(«)=N(0). This result is easy (39
to understand without calculations. Indeed, in this casgre the left side is the free energy oZavalent counterion
N(r)=N(=)exp —Ze)(r)/ksTI=N(0) stays constant and gt the surface and monovalent ones in the bulk, while the
%(r)=0 at allr>1/4, so that all of the charge of the poly- right side is the free energy & monovalent ions at the
electrolyte is compensated inside cylinder with |/4. surface and &-valent ion in the bulkyu; is the correlation
The difference from the Onsager-Manning theory be-part of the chemical potential of a monovalent ion. At
comes even more apparent\t=)>N(0) when the density 5.1 one can neglecu, in comparison withu.(n,T) be-
n* becomes positive. Note that this charge inversion takeéause, as was mentioned abog,is numerically small and

place still at exponentially smali(=). A positive 7* con-  the |atter quantity is proportional @*2. Solving Eq.(39) for
tinues to grow withN(e) until it reaches critical density N,, one finds
=€l (36) n [ N(x»)\¥%
= N (40)
and the standard Onsager-Manning condensation of monova-

lent negative ions starts. According to Eg4) this happens  sypstituting thisN; into Eq. (38), one sees that at the mo-

at N(0) =Ngq, Where ment of replacementy* =— 7.Z=—kgT/e, providing a
3 a1 1(Z+1) natural crossover to the case of screening by exclusively
Nsar~ ! “IN(0)I7] - (37 monovalent counterions.

) o Concluding this section, | would like to note that quanti-
At N()>Nsq, charge densityy* remains fixed at the level tative use of Eq(9) obtained for a two-dimensional system
e/lg. Condensed negative ions eventually screen lateral inmay pe subjected to some limitations when considering a
teraction of counterions in SClu(n,T)| decreases, and cylinder with a small enough radius, such as, for example,
n* drops. Comparing Eq(37) with Eqg. (29) for the maxi-  pNA. Even if the circumference of the cylindern2 is
mum concentrationNma{>°), of fully dissociatedZ:1 salt,  muych larger than the radius of the Wigner-Seitz dRlither-
one sees that they are quite close, if ion dizés not too  ma fluctuations can play a larger role for a cylinder than for
small. For a very small distance of the closest apprdach the real two-dimensional system. This can happen because,
the growth of »* is limited earlier by the conditio™N(=)  strictly speaking, at large distances a cylinder is a one-
<Nma{*®)- dimensional system. However, the role of long-range fluc-
To summarize, the net chargg" as a function of salt  tyations in thermodynamic properties of this system is small
concentratiorN(=) is given by Eq.(34). It changes in the and these effects do not change my estimates beyond their
rangee/lg> n* > — 7. whenN(=) grows. Strictly speaking, uncertainty and, definitely, do not change my qualitative
to quantitatively describey as a function ofN(«), one  conclusions.
should wuse the self-consistent concentration=(»
+7*)/2ma, in Eq.(34) for N(0). _ VI. SCREENING OF A UNIFORMLY CHARGED SPHERE
Finally, it should be emphasized that this result does not
demonstrate the attractive universality of the Onsager- Consider application of this theory to a sphere with a
Manning theory. According to Eq34), »* depends orny ~ small radiusa=2—-5 nm and with a charge-Q screened
throughw(n) in Eq. (14). Thus, for the screening by multi- by Z:1 salt with concentratiomN() in the bulk. At large
valent ions al’>1, and at any reasonaliié(), the predic- enough surface charge density= —Zen,= — Q/4wa?, the
tions of Refs[14,15 are qualitatively incorrect. surface is covered by SCL @ valent counterions. The goal
Return now to the case of a small concentration @&  is to find a concentration of this SCL and the net charge of
salt,N(=)<N(0), andconsider what happens t* when a  the sphere,
1.1 salt with a larger concentratioN,;>N(«), is added to
the solution. This is a realistic experimental situation. Such a
problem can be solved with the help of E@®3), if one
substitutes ;= (87lgN;) “*? instead of Eq(21). The result
is

Q*=4ma’nZe-Q, (42)

as a function of, Q, Z, T, andN(<). In the case of a sphere,
the screening atmosphere is characterized by a concentration
of Z-valent ions,N(r), as a function of distancefrom the
IN[N(O)/N()] sphere center. _F_or simplici_ty, assume thatl/4 so that the
Pe———————. (38)  boundary condition Eq(14) is valid atr =a+1/4, where the
IN[2Z2/(7N413)] curvature of the sphere can be neglected. At distances from
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the surface —a<rg, one can neglect screening and find the

concentrationN(r), similarly to Eq.(32) as

) Ze[w<r>—¢<a+|/4>]>
ksT

N(r)=N(0)ex

Q*Ze(a -1 Y
:N(O)exy{ DkgT .

(42

At the distancer=a+r,, where the linear Debye-itkel
theory starts to work, one has

N(a+rg)=N(x). (43
Solving this equation in the casg>a, one obtains
ae N(0) a n'w  |ue(n,T)
Q*=——=In—=——]In
(44)

This equation is similar to Eq34). It is to be solved foQ*,
n, and|u.(n,T)| together with Eq(41) and Eq.(9) [or its
low-temperature version E410)].

In the case of monovalent counterions, whén-1,
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At N()>N(0), the netcharge,Q*, becomes positive
and continues to grow. As in other geometries, this charge
inversion happens because of strong binding of counterions
by SCL. At large enoughN(«), one can neglect the first
term in parentheses of Eq@44). Then using a low-
temperature expression H40) for u.(n), one finds tha@Q*
saturates at the positive value

Qha=BVQZe, (46)
whereB=3a/4\/w=0.84. For example, &=3 for a sphere
with bare charge—50e (Q=50e) one arrives at the net
chargeQp,,,=+10e. Equation(46) is remarkably simple and
universal:Qy,., does not depend on a sphere radius

Equation(46) for Q.. is valid until one of the two fol-
lowing events happens. First, a concentratid(ee) can
reach maximum concentratidd,,,,(e) of fully dissociated
Z:1 salt[see Eq.37)]. Second, a condensation of monova-
lent negative ions on the positive sphere can start. Con-
densed counterions eventually screen the lateral interaction
of counterions in SCL and effectively change their charge
from Z to Z—1. As a result|u.(n,T)| decreases an®*
starts to drop. Similarly to Eq37), condensation starts at
N(oo)cexp(— ue/(Z+1)kgT). This concentrations is close

ue(n,T)/kgT~1, so that correlations do not play any role in t0 Nma() if ion size,b, is not too small. For a very smdil
Eq. (44) and the solution does not differ from the solution of condition, N(«) <Np,{>) is more restrictive. For a small

PBE. In this case, the concentratidf{0)=n/w~ngy/w is
much larger than any reasonabl&(») so that
IN(N(0)/N(0))>0 andQ* <0. Thus, Eq(44) describes the
partial compensation of chargeQ by positive chargeQ

sphere with radius=2—-5 nm, both restrictions start to
work while r g>a. Therefore, | do not consider here the case
rs<a. For larger spheres, can become smaller thamat
the point at which the above-mentioned other limitsNy{je)

+Q* =4ma’Zen of counterions condensed at the very sur-start to work. In this case, the sphere effectively works as a

face of the sphere. The rest of the screening chardgg? , is
situated at the distanag from the sphere in Debye-itkel

atmosphere. It is clear now that nonlinear screening of a

flat surface and one can use the results of Sec. IV.

VII. DISCUSSION OF APPROXIMATIONS

sphere is similar to Onsager-Manning condensation in the ) _ o o _
case of a cylindef16—18. In both cases there are two sepa- In this section, approximations used in this paper are dis-
rate groups of counterions: condensed and free. MoreovefUssed. First, it was assumed that charges at the surface of a
for a sphere there is a similar universality of the net chargdnacroion are fixed and cannot move. In the case of a solid or
Q*. Indeed, whem(=)<n,/w the dependence @* onQ glassy surface, for example colloidal particles and rigid poly-

is negligible.[One can evaluate this dependence substituting!ectrolytes, such as double-helix DNA, this approximation
no for nin Eq. (44).] The only qualitative difference between S€€mSs to work well. On the other hand, for charged lipid

the screening of a sphere and a cylinder is that at unrealistl'€mbranes it can be violated. If the surface charges are mo-
cally smallN(=)<N,, where bile, they can accumulate nezivalent counterions, forming

short dipoles directed perpendicular to the surface. These
dipoles interact weakly with each other so that the energy of
their lateral correlations is smaller than in SCL on the uni-
form background. On the other hand, such a concentration of
the surface charge under the counterion by itself creates an
the last counterion leaves the surfdd&] andQ* = — Q. additional binding of counterions to the surface. As a result,
On the other hand, in the case of screening by multivalenthe negative chemical potentiak(n,T), becomes larger in
ions, correlations significantly change the above-describethe absolute value and the boundary concentraXig®) be-
mean-field dependence @ onN(>). These changes start, comes smaller. The theory of this paper expresses everything
however, only atN(»)>N., because without condensed through N(0). Therefore, the unusual effects of complete
counterions correlations cannot play any role. R{) compensation of macroion charge and of the charge inver-
>N., whenn grows and becomes comparable wil§) one  sion become stronger.
obtains thatI'>1, wu.(n,T)>kgT, and, according to Eg. The second approximation made above is the assumption
(14), N(0) is exponentially small. Therefore, it follows from that fixed charge is uniformly distributed at the surface. Lo-
Eq. (44) that the negative net charg®;, grows(decreases calized charges are actually discrete. Therefore, it makes
in the absolute valyefaster than it does in the case of sense to discuss whethere charges, for example randomly
monovalent counterions. Eventuall*, vanishes at expo- distributed on the surface, work as a uniform background. In
nentially smallN(e)=N(0). the limit Z> 1, the repulsion betweefrvalent counterions is

1 QlgZ
ae

N =
¢ 4maw

: (49
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much stronger than their pinning by the surface charges, sadditional binding provided by SCL, the concentration of
that the concept of a uniform background works exactly. Atcounterions close to SCL is exponentially smigke Eq.
Z=3, the uniform background is still a good approximation (14)]. This concentration depends only @rand the surface
for realistic values of the radius of closest approdzh, of  charge density of the macroian and serves as a boundary
counterions and discrete surface negative charges. On tlwendition for the Poisson-Boltzmann equati®BE), which
other hand, this approximation fails &=1 because all is still valid far from the surface. PBE is solved with the
counterions and discrete negative surface charges have a tdsoundary condition(14) for all three standard geometries.
dency to form neutral Bjerrum pairs instead of SCLbif = For a charged cylinder, it is shown that in the presence of
<R. In this caseN(0) can be small even fat=1. When SCL the Onsager-Manning condensation is strongly modi-
negative charges are clustered, for example form compadied. The increasing bulk concentrationH#alent counteri-
triplets, even aZ=3 interaction with such a cluster can be ons, N(«), makes the net negative charge of the cylinder
as important as interaction with the neighboring counterionssmaller than in the Onsager-Manning theory, drives it
Each counterion tends to neutralize one cluster forming dhrough zero, and makes it positive. Similar changes are pre-
neutral dipole. Again, this leads to stronger binding to thedicted for a charged sphere with charge®. In this case,
surface and smallex(0). charge inversion can result in a positive net charge
This discussion naturally leads us to the third approxima9.84/QZe. All these phenomena happen while the concen-
tion used above in the calculation of the chemical potentiatration of Z:1 salt is still exponentially small. Technically
of SCL. Equation(9) was obtained for pointlike counterions. they follow from the boundary conditiofi4), which in turn
Actually, counterions have a finite size and one wonders hovis a result of a strong correlation of counterions of the sur-
this affects these results. Our results, of course, make senfsce layer.
only if the counterion radiub, is smaller than the radius of This theory can be applied to a variety of other problems.
a Wigner-Seitz cellR, so that counterions occupy a small First, one can study more complicated solutions where a sub-
fraction of the surface. In other words, the idea of SCL orstantial concentration of 1:1 salt is addedZdl salt. We
WC works only when objects of large charge density arranggave only one example of such a problem in the end of Sec.
themselves on a background with much smaller charge den/. Second, this theory should be extended to a finite concen-
sity. For trivalent ions on the surface with the charge densitytration of macroions. In this case, problems of a global in-
o=1.0 e/nm?, the radius of the Wigner-Seitz ceR  stability of such a solution should be addressed, too. Third,
=1 nm, so that for a counterion with,=0.5 nm this con- one can use a similar theory for counterions of a larger size
dition is easily satisfied. Positive corrections to the energyand nonspherical shapé], provided they have larger charge
per ion of WC are proportionalb/R)? and appear due to density than the macroion’s surface. For example, a posi-
the fact that the charge finite-size counterion cannot be situively charged rigid flat surface can be screened by a solution
ated exactly in the potential minimum created by its nearesof a rodlike polymer such as double-helix DN&5]. If pro-
neighbors. jected to the plane the negative surface density of DNA is
Finally, all estimates in this paper are based on the use darger by absolute value than the charge density of the plane,
dielectric constant of a watéd=80. For the lateral interac- then DNA rods form strongly correlated nematic liquid,
tions of counterions near the surface of an organic materiaivhich provides strong binding of DNA to the surface. A net
with a low dielectric constant, the effective dielectric con-charge density of the plane can experience correlation-
stantD can be substantially smallefin a macroscopic ap- induced charge inversion. These and other problems will be
proach it is close td/2.) As a result, absolute values of addressed in future publications.
|(n,T)| can grow significantly an8i(0) may become even
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