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Aspects of the dynamics of colloidal suspensions:
Further results of the mode-coupling theory of structural relaxation
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Results of the idealized mode-coupling theory for the structural relaxation in suspensions of hard-sphere
colloidal particles are presented and discussed with regard to recent light scattering experiments. The structural
relaxation becomes nondiffusive for long times, contrary to the expectation based on the de Gennes narrowing
concept. A semiquantitative connection of the wave vector dependences of the relaxation times and amplitudes
of the final o relaxation explains the approximate scaling observed by SewtePuseyPhys. Rev. Lett77,
771(1996]. Asymptotic expansions lead to a qualitative understanding of density dependences in generalized
Stokes-Einstein relations. This relation is also generalized to nonzero frequencies thereby yielding support for
a reasoning by Mason and We[2hys. Rev. Lett74, 1250(1995]. The dynamics transient to the structural
relaxation is discussed with models incorporating short-time diffusion and hydrodynamic interactions for short
times.[S1063-651X99)05311-§

PACS numbd(s): 82.70.Dd, 64.70.Pf, 61.20.Lc

[. INTRODUCTION the question about the connection of the viscoelastic moduli
[23] to the collective and self-particle motion at rather high
The dynamics of suspensions of colloidal particles haslensities which can also be considered using MeA4].
been the topic of active research for many yeft]. The MCT was developed starting from theories of the
Whereas the motion of isolated Brownian particles has beetiynamics of simple liquids upon the realization that in that
well understood for Iong, less is known about the dynamiC%ubsystem of the equations of motion which aimed at de-
of concentrated suspensions. Direct particle interactions angribing the structural relaxation there exists a bifurcation
solvent mediated hydrodynamic interactiqil) are impor- separating ergodic from nonergodic moti¢5,26. The
tant if the colloidal volume packing fraction increases abovephysical mechanisms held responsible have been called
a few percenf1]. Experimental studies mainly employing «caqe effect” and “back flow” phenomenofil3,27. This
dynamic light scatterindDLS) have provided a wealth of . .qition was suggested as origin of the slowing down and

information on dense systems and are also the stimulus fCHf the anomalies of the dynamics at the glass transition. The

the theoreucal .work presented in this contribution. idealized MCT studies the structural relaxation neglecting all
The pioneering study by van Megen and coworkers of the

liquid to glass transition in hard-sphere-like colloidal disper-Other’ possibly  present, Iong-nme dynam!cal effegts
sions has provided detailed data on the density fluctuations 5}2,28,29. The extended MCT discusses long-time ergodic-
this dynamic, ergodic-to-nonergodic transitif®—10. Be- ity restoring correctlon§27,30—32. The bifurcation at criti-
sides their intrinsic interest, these experiments also madg?! values of the thermodynamic parameters such as the col-
possible quantitative tesi8—11] of predictions from the ide- 0idal packing fraction,¢, introduces a smallseparation
alized mode-coupling theorfMCT) [12,13. Agreement of Parameter, e=(¢— )/ ¢, and the possibility of
experiment and theory within errorbars of around 15% ha@symptotic expansions is; see Refs[12,33,34 for refer-
been reported. This comparison, which up to now has teste@nces and detailed results.

leading order asymptotic predictions and has thus restricted Two asymptotic scaling law regions can be shown. In the
the validity of the theoretical results to small separationdirst, for intermediate times, the feedback mechanism of cag-
from the critical density, provides support for the glass tranding of particles, causes an ergodic-to-nonergodic bifurcation,
sition scenario as described by MCT, which has also beewhich is characterized by universal power law decays. Dur-
studied for colloidal micronetwork sphergs4,15, charged ing the second, for longer times, the collective rearrange-
colloidal systemg16], and colloidal emulsiongl7]. Recent ments of the cages requires cooperative dynamics, such as
DLS experiments by SegrePusey, and coworkers study the build up of back flow patterns first discussed for liquid
hard-sphere-like systems at lower colloidal densities and reéhelium[35-37. The strongly correlated dynamics manifests
port unexpected and seemingly unrelated scaling propertigtself in a coupling of the time scales for this final process of
of the dynamic scattering functiof$8—20. Thus the ques- the structural relaxation. As it describes, in the liquid, the
tion arises for which density range below the glass transitiorlecay of the incipient frozen glassy structure, it is not sur-
the MCT describes the dominant physical mechanism obprising, that its MCT description requires detailed informa-
served in the dynamics of concentrated colloidal fluids andion about the equilibrium structure.

whether the reported scalings can be explained by MCT. As the leading-ine asymptotic results exhibit numerous
Studies of a generalized Stokes-Einstein relafith21] and  nontrivial universal features, experimental tests of MCT
optical measurements by Mason and Wg&2] further raise  mainly address these and thus a number of corrections need
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to be considered(i) The structural relaxation itself leads to where the coupling constants or verticés are uniquely
corrections of higher order i which limit the range of specified by the static structure fac®y; see Refs[26,39
validity of the leading asymptoticgii) The short-time or for explicit formulas. Equatioii2) approximates the autocor-
microscopic dynamics affects the transient to the structuralelation function of the fluctuating forces by considering a
dynamics and needs to be considered if no clear separation &frce to arise between two density fluctuations interacting
time scales is possibliii) Long-time relaxational mecha- Via an effective potential. Then the correlation function of
nisms may be present, which bypass the structural relaxatioi)e four density fluctuations is approximated by the squared
and lead to faster decay. The third correction appears to b@ensity correlators and the effective potential enters the ver-
absent in colloidal suspensions at the densities of interest fdiCes.
the present study and thus shall be neglected in the following In Egs. (1), (2) the structural dynamics results from the
[9,10]. It is interesting to mention, though, that in colloidal e€quilibrium state of the fluid as captured $ which is the
emulsions droplet shape fluctuations cause long-time relaxenly input. Thus the long-time structural relaxation of a
ation and can be explained within the extended MQT]. dense suspension of interacting Brownian particles is pre-
Theoretical understanding of the first correction effect indicted to be identical to the one of an atomic system if the
lowest relevant order in has been achieved recentB83,34 interaction potentials of both systems coincide. Here we will
and is the basis of the present considerations. Lacking gonsider hard sphere potentials only. By ansatz, MCT ne-
deeper understanding of the microscopic transport effects dflects the possibility of an ordered, crystalline state and thus
colloidal suspensionfpoint (ii) abovd a qualitative study In experimental comparisons crystallization has to be pre-
shall be undertaken incorporating short-time effects with thevented. Then the structure fact&; of a liquid of hard
most simple approximations compatible with the MCT de-spheres is known to be a regular function smoothly varying
scription of the structural relaxation. Thus the limit of the with packing fraction[38] and consequently the vertices in
predominance of the structural relaxation is estimated fronfd. (2) are regular functions of the singléor a liquid of
numerical solutions of the MCT equations using simplehard spheresthermodynamic state parameigr
models for the microscopic transient dynamics of colloidal Brownian particles diffuse otappropriately chosershort
suspensions. Brownian short-time diffusion with and withoutdistances and thus for short timgg. Incorporating this into
hydrodynamic interactions is considerid. MCT leads to the following simple model of colloidal sus-
The paper is arranged as follows. Section Il summarizegensions close to the glass transit[@3,40:
the equations of motion of the idealized MCT. Section Il d
resents and discusses our results, focusing first on the as _ e / ) N a4
gects purely structural-relaxational and therﬁJ on the micro- Do) =mg(H)+ dtfodt Mg(t= 1) Pg(t) = qZDaq)q(t)'
scopic transient effects. The mentioned experimental find- ®)
ings are addressed in Sec. Ill C. Short conclusions end the ) ) )
paper. This equation replaces E¢l) and exFends it to short times
where the initial condition runsbq(t)zl—quZt.
Il. EQUATIONS OF MOTION Two approximations for the short-time diffusion coeffi-
) ) o - cient D, are widely used in theoretical work on colloidal
The idealized MCT of the liquid to glass transition leads gispersions and differ in the treatment of the solvent effects.
to a closed set of nonlinear equations of motion for the den, the most simple model of Brownian diffusion the interac-
sity fluctuations[12,25,26. Other dynamical variables are ion of the solvent with the colloidal particles is modeled
connected to them via thg Zwanzig-Mori for.mallsm andyith a single friction coefficient, [1]. This leads thZ(B)
mo_de_-couplmg approximations. _The th_eory aims at a de— Do/S;, where D, is given by Einstein's law D,
scription of the structural relaxation as it emerges from the_, 1 and the denominator arises from particle interac-
(mlc_roscop!() short-tl_me dynamu;s and S.IOW.S down owing 10 iy g 5" was first argued by de Gennes in a related context
the increasing density and thus increasing importance of pa[M]. This approximation is not satisfactory except for very

ticle interactions. The central quantity, tl(leor*mahzed N-" Jow packing fractions, because the solvent also leads to long-
termediate scattering functior,(t) =(1/N)(€q()€4(0))/  ranged and quasi-instantaneous interactions of the colloidal
Sy, measures the time and wave vector dependence of theyticles, called hydrodynamic interactiol). Whereas
collective density fluctuationg(t), around the average ho- the Hi do not affect the equilibrium statistics and thysof
mogeneous density which for hard-sphere particles of diamge colloidal system, their effects on short time scales cannot
eterd is converted to the volume packing fraction. The nor-pg neglected in general and are captured in a wave vector
maIizat;on is provided by the static structure fact8y dependent amplitude , [1]; Da(HI):DOHq/Sq_ Progress on
:<|9q| )N [3_8]- _ ) _ a detailed theory foH has proven very difficult but has
The equations of motion of the idealized MCT from ¢ minated in accurate results for it up to intermediate pack-
wh|ch. asymptotic analysis extracts_the physically relevan§ng fractions[42,43. At the considered high packing frac-
long-time dynamics can be summarized[ 28] tions however,Da(H') can only be estimated from experi-
d rt ments or simulations at presefi8,44. Note, that our
D o(t) —mg(t) + af dt'mg(t—t")dy(t")=0, (1) approach to incorporate Hl into the MCT equation§ of mo-
0 tion only via D, differs from the one developed by tele
and otherd45], which aims at describing the dynamics at
mq(t):k;p: q V(q;k,p) (DD (1), 2) iﬁ\;\;?r packing fractions, and which would affect the struc-
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FIG. 1. Inverse short-time diffusion coefficients without hydro-
dynamic interactiongHl), D5® (left scalg, and with HI, D5
(dot-dashed curve, right scaleversus rescaled wave vector. With- o ( t)
out HI, the density variation is determined by the structure factor *4
Do/Di®=S,, and is recorded forg=¢po(1—10 %) with n
=1,2,3 (thin dotted, short and long dashed linand ¢,
=0.516-- [33]; for n=6, theS; (almos} collapse onto the bold
solid line. Due to the rough modeling, the shapellaf,;': is not
varied with density. The inset shows the density dependence of the
peak positiong, for the considered densities correspondingnto
= 1,2,3,6,9,12.
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long-time dynamics. Our approach also differs from the , N
work of Cohenet al. who incorporate aspects of the cage 10 10° 10
effect into an effective short-timeg [46,47. The role of the  (b) tDy160/d?
HI here also differs from a recent theory of Tokuyagtaal. S ) _ )
[48—50 who consider the HI in nonequilibrated colloidal ~ FIG. 2. Normalized intermediate scattering functidng(t) ver-
suspensions. sus time for five wave vecto_rs |nd|cated_by symbols in the inset of
Equationg2) and(3) have been solved repeatedly without P2t (0)- In (@) and(b), the height of the circles equaly/2 and the
HI and with different approximations for the structure factor N€ight of the diamonds give; . In (a) the packing fraction isp
of the hard-sphere fluif33,34,40,6T. for the details of the ~ 0-29%.. N=9, and $=0.9¢;, n=3, in (b). Dashed lines
numerical calculations see the quoted references. Various marked with C|_rcles_ result from calculatlons_ without HI_ and solid
pects of the known solutions will be connected to recer?{lsnes marked with diamonds from the ones with HI. The inset shows

. . - . N he amplitudef{ of the final a-relaxation process. The circles (i
experimental observations in this contribution and new solu- P d * b @

i . : O o(HI) and (b) indicate the relaxation times estimated frob,(t=7,)
ions taking HI into account vid ™" will be presented, _1¢c
which are an extension of the calculations in Rg&3,34]. 2
Figure 1 shows the short-time diffusion coefficients enter- ) )
ing the numerical calculations discussed in the following.0f the short-time dynamics for wave vectogsaround the

The short time diffusion coefficient without HDS®, fol- principal peak ag=q, results. _
lows immediately from the hard sphere structure factor Some representative numerical results for the collective

where the Percus-Yevick approximation is u§g8l. Thes, density correlat_orsqu(t), _obtained as specified in Refs.
shown also enter the vertices in H®). The short-time dif- [33,34} are exhibited in Fig. 2, where also the shown wave

fusivity with HI, D;(HI), is chosen as shown in Fig. 1. It is vectors are indicated. The correlators of Figa)Zorrespond

aimed at a discussion of the dynamics with HI transient td© @ density rather close to the critical liquid-to-glass bifur-
the structural relaxation, and thus, for the high densities con(-;at'o? pcjnt,¢_c=0./516_, Sfltg',sn,gmd?[lﬁ Th_egredt:}ced d|sta_nce
sidered, a rough approximation modeled from the experi-equ""s‘g_(‘ZS be)l b= , WIth n=3, where, as in

; ; ; ; the following, in order to simplify comparison with Refs.
ments in Refs[18,44] is used. Outside the window 0.77 . ; : .
<qlq,=<2.4, DZ(HI) is assumed constant for simplicity. The [33,34], the packing fractions will be reported by stating the

| osH ¢ 0 a= A oc diusted t numbern. Decreasing the packing fraction o= —0.1 cor-
\éa;les?z_lg for ?(._> ’tr?_Qp, an ?j—’ t;sze4a Jl\JAS/_;]_ 0 responding ton=3, results in the intermediate scattering

4: L. (410 Mimicking the measure ratjds, 4].' Ithin functions of Fig. Zb). Results with and without HI as shown
the mentioned wave vector window, the experimental dat

% Fig. 2 for various packing fractions will be discussed in
0/yS(HI) _ _ 2 ; :
are modeled byp®/D™" = —x(a/dy)*/Infyq , wherefgis e following. Only the dynamics in the colloidal liquid

the MCT critical nonergodicity parameter, are0.29 leads  phase is shown, where the correlators decay to zero during
to a continous matching. “De Gennes narrowing” is presentthe final relaxation process, because the mentioned experi-
in Dé in both approximations, as its inverse varies in phasenental studies focus on this final decay; for MCT results on

with the structure factoB, and an appreciable slowing down hard sphere glasses at higher packing fractions see Refs.

4 3
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[33,34,4Q. It is also interesting to note that short range at- _(f)
tractions can increase the critical packing fraction apprecia-T‘—’

bly [51,57. 003 1

Ill. RESULTS AND DISCUSSION
A. Leading asymptotic scaling laws 0.02 |

In lowest order in the separation parameterthe MCT
predicts the existence of two divergent time scales with two \
different scaling laws describing the dynamics in expanding 00! T
windows in time or frequency; see the Rdfs2,28,29,33,58
for detailed derivations and reviews of these results.

In the first orB-scaling law window, a factorization prop-
erty allows to separate the sensitive and rather universal de
pendences of the dynamics on the separation parameter and
on time from the system specific dependences such as spatial FIG. 3. Dimensionless time scale§ (full circles and left axis

variation: resulting fromfg , see Eq(6), versus wave vector and compared to
. . the rescaledy-relaxation times(open circles and right axig56].
Dy (1)=fg+heG(t,e) for |y(t)—fgl<1. (4)  The lines through the points indicate the corresponding results for

the Verlet-Weis S, from [67]. The short dashed curve shows
The B correlator is given by a homogeneous functiGn  S,/(qd)? appropriately shifted to match af, .
«\[e]gh (t/t,), specified by one system specific parameter _ o
X, which can be calculated for simple liquids frofg and ~ SCenario of the idealized MCT has been fully worked out for

determines all exponents of MC[R9]. The first divergent SOme simple liquids; see Ref26,54,67 for calculations of
scaling timet, =to|| “®, lies in the center of the window the exponents and master functions of the two scaling re-
of validity of Eq. (4) and, below the critical density, can be 9ions for a hard sphere liquid. _

taken from the root 06: d(t=t,)= f°. The one parameter The quantities of most immediate interest to experimental
to, the crossover or matching time, remains as only remnarftPservations of the final as-relaxation process are the re-
of the short-time or transient motion and can only be ob @xation times [56]. Figure 3 presents results for the
tained from matching the asymptotic results to the full dy-aSymptoticzq from the model specified above and compares
namics including some short-time model. In Figa2one them to previous calculations using a different approxima-
notices that, differs by a factor 1.2 for the two models of tion (Verlet-Weis form for the static structure factors of a
the transient. A shift of the curves with HI relative to the hard sphere liquid67]. Very small differences in ther
ones without HI collapses both sets of curves for tires esult from the two approximations ;. A discussion of
=0.1d0%/D,. The great simplification of the dynamics pro- sh_o_rt—tlme sum rules for colloidal suspensions as done in the
vided by the factorization in Eq4) may be interpreted as SPirit of de Genneg4l] Iee.ldss.to thezprsgdlctlon ofshort-
resulting from a localization transition close to which densitytime) relaxation times obeyingy=(1/9°D,). Such a behav-
fluctuations relax via local rearrangements and not via masi9" for the Brownian model, scaled to matehfor =g, is
transport over larger distances. If the spatial variatiorf{of also indicated in Fig. 3. The MC-relaxation times ob-
and h, is studied in detail[54], the localization may be tained from Eqgs(1), (2), where the transient does not enter,
tracedq back to the “cage effect” that particles are sur-and the results from the short-time sum rules qualitatively

rounded by next-neighbor shells whose ability to cage thé'® similar f.or not-too-small wave vectors bgcause both vary
central particles depends on the fluctuations of the locall? Phase with the structure factor. Their different physical

structure and thus, in a cooperative manner, on the dynami@9ins., however, clearly show up for small wave vectors
of the caged particles themselves. where the short-time relaxation time§, become diffusive,

In the second scaling law region, another set of divergenyvhereas the MC-relaxation timesr, become wave vector
time scales, calleda-relaxation timesr,, appears and independent as first anticipated in Mountain’s description of
a-master curves describe the final relaxation of the densitfrillouin scattering in supercooled atomic liqui¢S7]. Al-

correlators fromf® to zero during that time windo53] though the collective density fluctuations of the colloidal
q Brownian particles are diffusive on short time scales due to

random collisions with solvent molecules, during the struc-

tural relaxation only stress fields arising from colloid-colloid
article interactions survive out to long times. Thus large
istance density fluctuations decay by local particle rear-

rangements. The strong slowing down CBE(T) on length

~ ., . . scales of the order of the average next-neighbor distance in-
over are coupledr,=7qt, , and diverge upon approaching gicares |ocal and cooperative particle rearrangements and is
be :is:t0|"3| 7 with y>(1/2a). The equations, which the remjniscent of the back flow phenomenon familiar from
®,(t) obey, are obtained in a special limit from E@$), (2)  simple liquids[35—37.
and are consequently independent of the microscopic short- The coupling of the wave vector modes in E@¥), (2)
time dynamics[12,55. The resulting two-step relaxation explains the qualitative trend that the correlators with larger

Py(t)—Dy(t/t)) for e—0—, t/t.=fixed.  (5)

This superposition principle states that the final relaxatio
processegasymptotically depend on the distance to the
critical point only via the relaxation times,, which more-
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a-process amplitudefsg relax slower, i.e., have a largery,
[12,33,67. Intriguingly, for a hard sphere liquid the wave

vector dependence of the dimensionless time soéfl)e %
= —r§/(d2Infg), is rather close to the one of the actual o
time 74, at least for intermediate wave vectors. Note that the g

comparison shown in Fig. 3 must be taken with a grain of —
salt, as the definition ofr, is not unique because of the
stretching, i.e., nonexponentiality, of theprocess in MCT.
Nevertheless, this semiquantitative connection of the
a-process amplitude to its time scale, suggests a possible
(partia) collapse of thed(t) for different g at the same
packing fraction onto a common curve given by

d>q(t)=exp{ -

Conceptually,Ar?(t) should be connected to the mean- . —
squared displacement of a colloid particle, to be denoted by =
8r2(t). From the definition ofr{’, Eq. (6), and the factor- &
ization property, Eq(4), immediately follows that very close =
to the critical packing fractions all rescaled curves intersect_—_
at theg-scaling timet, . The connection of¢ via 7 to the S
S . =
a-relaxation time, see Fig. 3, then shepherds the correlators <
to stay close during the final relaxation step, too. Figure 4 ,“_.3
shows representative scaled correlators for two packing frac-
tions, where the used wave vectors are marked in the inset
The correlators are drawn fab,(t)=0.05 in order to pre- o
vent overcrowding the figure. Thepdependent stretching of 10°
the correlators causes a noticeable spreading of the rescale, tDy160 /d2
correlators for long times. Considering Fig. 3, one also does
not expect a data collapse for wave vectors outside the FIG. 4. Intermediate scattering functions versus time replotted
showng range. Moreover, this scaling explicitly violates the as suggested by E@6) with rg) taken from Fig. 3; an arbitrarily
short time behavior of the intermediate scattering functionshosen factor enlarges the vertical scale, and thedg(t) >0.05
which, e.g., become diffusive for small wave vectors invali- lies in the window for all but one correlatd@) presents results for
dating Eq.(6). This explains the spread of the curves in Fig.a density close tap., ¢=0.999. (n=9), whereas(b) corre-
4 at short times. In Fig. 4 also the mean-squared displacesponds tog=0.9¢. (n=3). The full solid lines correspond to the

v@
=
o
Ne}
i

Ar?(t)
627

(a)

(6)

, where TEP= >
d?Infg

5 10 g¢d

L
7

10
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ment from Ref[34] shifted as suggested by E®) is shown
and lies within the clatter of the curves.

mean-squared displacemeft?(t) from Ref.[34] scaled accord-
ingly. The wave vectors of the exhibitabl,(t) are marked in the

This ansatz, together with the known Gaussian approxiinset of part(b). It showsz{)/ Tg,)) (symbols and solid lineand the

mation to the self intermediate scattering functjdr34,3§,

a-relaxation timeSTq/qu (dashed lingfrom Fig. 3.

gives a most simplistic description of the coherent and inco- . .
herent density correlators of the MCT. Nevertheless, the only The corrections to thg-scaling law, Eq(4), for the dy-

point where Eq.(6) asymptotically rigorously collapses all
correlators is at®q(t£)=fg because of the factorization
property, Eq(4). Already in a vicinity of this point a spread
of the curves exists becausetgf# hMSfo]/(6d27g)), which
would follow from Eg. (6) and the knowng expansion,

8r2(t) =rZ:—hyspG(t) [12,34.

B. Corrections

namics close tdg are of the form

Dy(1) =S+ G +H(D) +K GV +eKyl, (D)

where theK, and Rq are wave vector dependent constants
which follow from asymptotic solutions to Eqg€l), (2). See
Refs.[33,34 for the definitions and for the correction func-
tion H(t), which is of orderO(e). The range of validity of
the B-scaling law, Eq(4), is thus found to be of ordeys,

The discussion up to now has used the asymptotic formuand to differ for different wave vectors or observables. The
las to lowest orders in the separation parameter and thug-region description of Eq(7) extends the range of useful-
might restrict the discussed phenomena to close neighboness of the MCT asymptotic expansion around the critical

hoods of the critical packing fractioth.. The leading cor-
rections ine to the asymptotic scaling laws of Sec. Il A

nonergodicity plateau appreciably as can be seen in Refs.
[33,34], and provides detailed few parameter formulas for

have recently been discussed in detail for the present modéhe density correlators which have already found use in the
[33,34], and in some cases allow us to extend the range oflata analysis of computer simulation studj@8—61]. For

validity of the asymptotic expansions appreciably.

the curves without HI of Fig. 2, E(7) describes the corr-
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elators in theB window on a 10% error level starting from
the time scalé=0.1d%/D, which was estimated in Sec. Ill A | 103
to be the range of domination of the structural reIaxation.T(B)I'gl7 ’
Thus Eq.(7) extends the asymptotic expansions of the struc- * 020 {HD ||
tural relaxation almost to the microscopic dynamics in this
model. 015 102
The a process has been the focus of the recent DLS scat
tering studieq 18] and, for wave vectors around the peak, o1
describes the main portion of the decaydaf(t). The range " {101
of validity of the a-process-superposition principle, E&), 005 |
is appreciably larger than the one of tBescaling law:
Dy (1) —Dy(t/t) +eTy(t/t]) for e—0—. (8
The corrections in Eq(8) are only of linear order ire. FIG. 5. Reducedr-relaxation times in units of%/16D, for

Although the complete form Oi’q(T) is not known yet, its various packipg fractions_ and defined _kiyq(t:rq):fglz._ The
variation for short rescaled times can be deduced and can (§47ves are shifted according to thescaling law, Eq.(S) with y
argued to give the dominant correction to E). for not too =2.46[33], and plotted versus wave vector. The thin overlapping

= ~~_p o~ lines are for both models at=6, 9, and 12. The small circles
largee: Wq(t—0)=—hqB.t"", where the coefficierB, is  epeat the rescaled Verlet-Weis result from Fig. 3. The bold dashed

of order unity. As this term can grow without bounds, the ine results for the model without HI at=3 (left scalg, and the
dominant aspect of the leading corrections is to cause thgod solid line for the one with Hiright scale atn=3. The inset
correlatorsD (t) to rise above the--master curves for imes  repeats the data far=3 shifted to unity atg, and also includes
shorter than thex-relaxation time. In this time window, the curves forn=1 and 2(thin); line styles as in the main part.

a-master curves follow von Schweidler's law o(t) —f§
= —h,Bt® [again withB=0(1)] [28,29. As theq depen- relaxation times are relatively longer and the largesta-

dence of the time scales of the correlators®(t) can be tive) deviations appear for correlators with smél or 7.

estimated from ®q(t)=f[1—(t/7{)P], with 7™ At this separation from the critical density=0.9¢, al-

:(Igfg/hq)llbt"E [12], the short time corrections can be re- ready some differences for the two models of the short time

written in the time windowt. <t<t' - diffusion, with and without HI, are noticeable in Fig. 5. As

° ° shown in the inset, the differences can almost completely be
incorporated into a packing fraction dependent shift of the

. (9 matching timet,. If the time scales are normalized to unity
for g=qp,, then collapse can be achieved of theat n=3

o . _ except for the smallest wave vectors. Note that some finer
Thus it is apparent that deviations from the asymptotic

ina | Ed5 ¢ ¢ lat aspects of the figure depend on the special choice how to
a-process scaiing faw, c(. ), are stronger for correlators measurer,. For example, the correlators without HI at
with a shortera-relaxation time or smallett-process ampli- N - : .
; . . . =3 and forq=q, and q=0.94y,, (just below i) actually
tude; the second connection arising because of the relat|or] ; e
c ; almost overlap and the apparent differences;iarise solely
betweenr, andf;, see Fig. 3. ¢ the £¢ val tering th d definiti
If at larger separations from the critical density the rom thetq values entering the used dennition. .
a-relaxation times are determined from the correlators FOf €ven larger separations from the critical density,
®(t), then the corrections to the-scaling law, Eq.(8), =2 andn=1 in F_|g. 5, clear differences of the_z long-time
may differently affectry( ). This is caused by the inherent scales with and without HI appear and can obviously not be

stretching in thex-master curvef67] and by the time varia- €Xplained by structural relaxation, Edd), (2), alone. The
. £ th tions¥ (1). The dominant short fi diffusive particle motion on short time scales causes the cor-
tion of the corrections¥ (t). e dominant short time

o o~ ) ] ) relators for small wave vectors to decay slower relative to the
variation of W (t) Ieadmg to Eq.(Q) will affect_ q(#) ifa  nondiffusive a process.
definition of the relaxation times is used, which stresses the ofien a diffusive behavior is assumed also for the struc-
initial decay during thex process. A possible deﬁm}lon of tural relaxation and the relaxation times are converted to dif-
7q(¢) exhibiting this effect is given bybq(t=7)=3f5.  fusion coefficients via Dy=q?27,. Figure 6 shows so cal-
Some results are indicated in Fig. 2, where also thgylated D, normalized atg=q, in order to eliminate the
a-process amplitude$; are shown in the inset. As Fig. 5 grift of g, with packing fraction; see Fig. 1. Almost no de-
shows, this definition of, asymptotically gives almost iden- viations from the asymptotic variation as follows from the
tical g dependences as obtained from ﬁ:@(t) [67]. a-scaling law, Eq.(5), can be be seen far>3. Note that

Because of the rather large range of validity of thethe nondiffusive character of the structural relaxation is hid-
a-scaling law, Eq.(5), for the intermediate scattering func- den in this representation. For larger separations and thus
tions as explained by E@8), only very small deviations of smaller packing fractions, a trend of the long-time diffusion
74(¢) from the asymptotic wave vector dependence are seegoefficients with hydrodynamic interactiofisl) to approach
in 74(—&)” for n>3. As expected from Eq9), for n=3, the shape of the short time onBQ(H') can be recognized.
which lies close to the limit of applicability ok scaling, the Considering Figs. 5 and 6, one needs to keep in mind,

!

¢\

€ (vS)y—b
(vS)) ('[/7'q )

Tq

Do(t)=f5 1= (t/ 74P~
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FIG. 6. Long-time diffusion coefficients calculated from the  FIG. 7. Loss shear moduluéi’,’y(w), solid lines and left scale,
times in Fig. 5 and normalized to unity @ plotted versus rescaled compared to the self-particle memory function®®"” (») dashed
wave vector. Fon=6 the thin solid lines overlap and indicate the line and right scale, for the separations from the critical packing
asymptotic result. Results without Hbold long-dashed lineand  fraction corresponding tm=1,2,3,6, and 9 as labeled. The inset
with HI (bold solid ling atn=1 are shown and compared to the shows the storage shear modulus for the same packing fractions.
rescaled short-time diffusion coefficientsrat 1, DS®) (thin short ~ The dashed-dotted curves in both cases indicate the appropriate
dashesand DS (thin dot-dashed line Fourier transforms of th@ correlator from Eq(4).

however, that differing methods to determine the final relax-havior of the colloidal suspension on intermediate time
ation times or the long-time diffusion coefficients would lead scales. In the nonergodic states abgyg the colloidal sys-

to somewhat different] dependences because they wouldtem would be characterized by a finite elastic shear modulus
weigh the stretching of the process@qﬁ) and the leading GﬂzG;, where the value at the glass transition follows

-~ ¢ . .
corrections¥(t) differently. The definitions chosen here from the fo. The appropriate Fourier transforms of tjge
allow us to explain the wave vector and packing fractioncorrelator describe the dynamics around this elastic plateau

dependences in, andD,, from known aspects, Eq&), (9), N G, and in the minimum region o6’ (w) between the
of the asymptotic expansions. transient high frequency dynamics and therelaxation
peak, which sensitively shifts with separation from the criti-
. . . cal density.
C. Viscoelastic properties For a single colloidal particle in a continuum fluid the

The time or frequency dependent shear mod@ys of Stokes-Einstein relation connects the particle diffusion coef-
colloidal suspensions can be defined as an autocorrelatidifient and the solvent viscosity;D**'=kgT/3md. The self-
function of elements of the stress tensor and splits into thre@liffusion coefficient and the mean-squared displacement at
contributiong62,63. Whereas the first arises from the direct finite colloid densities can, within MCT, be obtained from
potential interactions of the particles and is familiar fromthe autocorrelation function of the fluctuating forces which
simple atomic liquids, the latter two contain effects of the HIthe single particle experiences from the colloidal ligLd]:
and are peculiar for colloidal particles immersed in a solvent. .

Only for the first potential part there exist MCT expressions  5r2(t)+ DS selff dt'mse(t—t") sr2(t')=6D" 'k,

which are applicable close to the glass transitiond¢at 0

[12,26,67; however, see Ref63] for lower densities. Simi- (10
larly as formy(t) from Eq.(2), G,(t) is given by a quadratic s self - _ o .
mode-coupling functional in thé,(t). Consistent with the WhereD® ™ is the short-time diffusion coefficient Soieltfhe
neglect of the HI contributions t&,(t), solutions for the single particle which, neglecting HI, is given Sg?

@ (t) are used which are calculated without HI, i.e., with the = Do [1]. The long-time self-d|ffu§|on.cqeffuszusag? Sé”f‘)"
short-time diffusion coefficient®3® . Figure 7 shows the IOWSS ';L?f”l Eq.(le(#) in the Markovian I|m.|t,Dse”. /D>'=1
frequency dependent storage and loss shear moduli for D° **odt m*(t). The memory functiom®>*"in MCT is
number of densitie§64]. As we consider the part of given by another mode-coupling functional. Thaspriori,
arising from potential colloidal interactions only, and thus"‘”st‘!}f'n MCT one would expect connections or similarities of
cannot address the importance of HI at higher frequencied? (@) andG,(w) only because of the scaling laws. In the
only results in the frequency window of structural relaxation8-scaling region, asymptotically both functions exhibit the

are shown. For low frequencies, the viscositycan be ob- same shapgl2], G’,’](w)/heﬂ—u(”(w) and m*®"” () /h,set

’

tained viaG’,,(w—>O)—>w(77— 7.), wWhere 7., is the high-  —y"(w), wherey”(w) follows from the 8-correlatorG(t)
frequency shear viscosity which is caused by instantaneouia Eg. (4). It is included in Fig. 7. They-superposition prin-
solvent interaction§43,44,63. We use the approximation ciple, Eq.(5), states that the-relaxation peaks in both func-
7.=kgT/(37mdDy). A plateau region irG;?(w) corresponds tions asymptotically approach a density independent shape
to the B-scaling window, Eq.(4), and indicates elastic be- and shift in parallel upon varying. This a-scale coupling
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also immediately predicts the produdf®’y to approach a
constant asymptotically fap ¢ [12]. Nevertheless, as for
example thea-peak positions need not coincide, the close %ﬁzg 8 t
agreement o5, (t) andm*®(t) in Fig. 7 over a wide win- ~ "%7%¢
dow in time or frequency and covering a substantial variation
in packing fraction is somewhat surprising. Presumably it 61
arises, because, during the cooperative structural motior
(cage effedt the collective density correlators around the
peak inS,, i.e., on the length scale of the average particle 4
distance, dominate the dynamics of sn@lMCT memory
functions.

‘ 5 10 qd
. . 0.3 0.4 0.5
The results of the MCT calculations of the previous sec- 1)
tions, which partially have been tested in DLS experiments
aimed at the glass transitiof8—10], can also be used FIG. 8. Packing fraction dependent generalized Stokes-Einstein
to discuss the recent experimenits8—23 at somewhat relations calculated from the viscosityand the long-time diffusion
lower densities which were mentioned in the Introduction.coefficients from Fig. 6 are shown for various wave vectors indi-
Various other aspects of the results and their possibl€ated in the inset, which shov&(¢.). Solid squares use the long-
experimental relevance have been presented in Ref§me self-diffusion coefficients. The open symbols show the corre-
[12,26,33,34,40,54,8&nd will not be repeated here. sponding ratio using lig.oncG;(w)/(nw) instead of 7, and
As a first aspect, let us point out, that if the mean-square@™" («=0) instead of 1"
displacement can be measured and thus the connected

memory functionm**', then the numerical results show that stokes-Einstein ration increases by 29%. Even larger density
a close estimate of the potential part of the shear modBljis = jependences can be expected if the long-time diffusion co-
can be obtained. Even beyond the connections predicted Ryficients are obtained in time or frequency windows where

the two asymptotic scaling laws, Edg), (5), the numerical o qominant corrections to the process, see Ed9), ap-

results exhibited in Fig. 7, show that bOth. functions are reciably increase the relaxation times of the correlators with
closely related, presumably because both arise from the cQ;

operative cage dynamics. This connection may be considereé1 orter asymptotie-relaxation times. This effect is apparent

as a frequency dependent generalization of the Stoke%l-1 Fig. 8, where the wave vectors away from the peak posi-

Einstein relation and was assumed and tested in the recefif" " Sq shoyv an increase _|n.the relgxat|on times relative to
diffusive wave spectroscopy measurements of Mason anfi'€ asymptoticx-scale prediction, which on the other hand
Weitz [22]. In another study of the same auth§2s], they ~ holds rather well forg=q,. At q=1.17q, where Sy(¢c)
also observed that thg correlators from Eq(4) provide a = 0-90 a 65% increase is seemat 3, whereas afj=q, the
description of the(directly measuredshear moduli spectra Stokes-Einstein ratio changes only by 11%.
in an intermediate frequency window consistent with the The results concerning the generalized Stokes-Einstein re-
MCT description of the potential part @&, . lation, which are presented in Fig. 8, and their explanations
The a-scale coupling predicts that the various relaxationusing Egs.(8), (9) rest on the simplifications caused by the
times and transport coefficients of a colloidal suspensioifurcation singularity in the MCT equations and by the en-
close to the critical packing fractio# shift in parallel. For tailing asymptotic expansions. As discussed, the range of
example, the predictionkT/7d7D%®=const for¢ "¢,  validity of the a-scale coupling does not appreciably exceed
follows from Eg. (5). Quantitatively, the ratio approaches e~ —0.1 for the studied models of hard sphere like colloidal
5.93 [67], see Fig. 8, a value very close to the classicalsuspensions, and thus microscopic corrections to the MCT
Stokes-Einstein prediction. Note however, that the condidescription of the structural relaxation need to be incorpo-
tions required for the classical Stokes-Einstein relation tqgted in principle beyond this distancedq. Thus it is con-
hold, clearly are violated at packing fractions around thesjstent with MCT that for packing fractions well belogy,
glass transition. A small but noticeable packing fraction detpe coupling of the time scales may continue in one system
pendence in 1)°) arises because of trivial density pref- (hard spheresbut not in another oné&charged spherg$24].
actors connecting the exhibited moduli of Fig. 7 with the a|so the estimate for the range of packing fractions where
transport coefficients. The-process corrections E() and  scaling should hold can be expected to be model dependent,
their discussion in Ec(9) suggest that the-scale coupling  as thea-master functions, Eq5), and their corrections, Eq.
should hold well fora-relaxation scales obtained at low fre- (g), depend on the fluid structure.
quencies. This is supported by the observation, that the Approximate expressions might be useful to describe the
Stokes-Einstein relation considered with qualitative trends in the intermediate scattering functions
Iima,_,ogbCG’,’](w)/(qbw) replacing », and mse'f"(w=0) re-  @y(t) in a wider context, in the same way as the Gaussian
placing 1D considerably reduces its density dependenceapproximatior{38] is useful for the self-intermediate scatter-
Upon decreasing the packing fraction ¢e=0.9¢. (n=3), ing functionstba(t). The Gaussian approximation was com-
where thex-scaling law loses validity, this ratio increases by pared to the MCT results in Reff34]. Recently Segrand
20% relative to the asymptotic value, whereas the actudPusey were lead by their DLS scattering data to propose such

D. Comparison with experiments




5750 M. FUCHS AND M. R. MAYR PRE 60

a formula[18] and they observed partial collapse of their
rescaled data.

In Eqg. (6) the possibility to collapse the intermediate scat- 5
tering functions onto a common curve is studied using the
dimensionless time scaléf). This is suggested by the find-
ing that thea-relaxation amplitudes and relaxation times as-
ymptotically are connected vig) ; see Fig. 3. The qualita-
tive connection was expectdd 2,67 but the quantitative
closeness surprises and may be peculiar to the hard sphel
system. Satisfactory data collapse using @®g.see Fig. 4, is
possible with deviations at long times because of the nonuni-
versality of thea process, and at short times, because(Ex.
violates the short-time diffusive motion of colloidal suspen-
sions. This reiterates that within MCT there is no connection ‘*
of the obtained long-time diffusion coefficients, which fol-
low from Eqgs.(1), (2), to the short-time ongb5]. The only
effect of the latter could be a shift in the time scgJewhich
matches the structural relaxation to the microscopic tran- =
sient.

Similar shapes, however, of the long- and the short-time
diffusion coefficients with HI were observed by Segned
Pusey in the recent DLS experiments on colloid fluids below
and close to the glass transitiph8,44]. This similarity of
the short- and long-time diffusion coefficients suggests that
we collapse the intermediate scattering functions with the
assumptiori 18]:

160D In &
(HI
422D} )

t)

160D In
d2q2 DZ'(HI)

2
4

10 0 o
D (1) =exp{— (q?/6)(D/D® M 5r2(1)}, (b) tDy160/d?

3

FIG. 9. Intermediate scattering functions with HI effects res-

which becomes exact for short times. In their experimentscaled using the short-time diffusion coefficiery"" from Fig. 1,
Segfeand Pusey observed data collapse for wave Vectorgccordlng to Ref[18]; a factor enlarges the vertical scale, and the
starting from somewhat belogy, to the position of the sec- part®(t)>0.05 lies in_the WindOW for all but three correlatofa)
ond maximum inS,. Figure 9 shows the solutions of the CO'TeSPONds to a packing fractiah=0.999; (n="9) close to the

. 2 s(H) . ) critical density, whereagh) corresponds to a larger separatiah,
MCT equations W'tth appropriately rescaled. Reason =0.9¢. (n=3). The thick solid lines give the mean-squared dis-

able collapse of the curves onto a Common one, which a_ISO Ig-l‘acement. The other curves belong to the wave vectors indicated in
well represented by the mean-squared displacement, iS Ofse inset. It shows the normalized times, the short-time ones,
served in a similar wave vector range as in the expenmentsrs(Hl):1/(q2Da(H|)) (symbols and solid lineand thea-relaxation

For short times all curves coincide rigorously. For smallti?neSTq/Tq (dashed lingfrom Fig. 3.
wave vectors the nondiffusive character of theprocess, .
however, leads to strong deviations for longer times. Thisi . L 0 S(HI)
trend also is present in the experimental data. The nondifful®nger time. But the close similarity of;’ and Dy ex-

sive structural relaxation disagrees with the assumed diffuPlains that collapse for short times and approximate collapse
sive scaling of the density correlators and thus cannot b&r longer times is achieved.

rationalized with considerations of the short-time expansions
following de Gennes. Unavoidable polydispersity effects in
the experimental data could lead to additional deviations
from the proposed scaling for smail but no qualitative In the idealized MCT, the long-time dynamics of colloidal
differences for samples of different polydispersities were rediquids is dominated by the structural relaxation. Asymptotic
ported in Refs[18,20. Polydispersity effects could be incor- expansions close to the critical packing fraction capture the
porated into the present MCT following the work for chargedqualitative aspects of the structural relaxation. In this contri-
colloids in Ref.[66]. The partial collapse of the data for bution it is shown that the theoretical results also rationalize
intermediate and long times results from the connections ofome recent experimental findings for larger separations
the a-process amplitudes to the time scales discussed in cofirom the critical density. Corrections to the coupling of the
text with the ansatz of Ed6). Note that this connection may «-relaxation times are wave vector dependent as seen in tests
not be quantitatively satisfied as well in other colloidal sys-of generalized Stokes-Einstein ratidxl]. The latter can be
tems, such as, e.g., charged colloidal parti¢lé. Thus the  generalized to finite frequencies as observed in light scatter-
approximate scaling may hold less well in other systemsing experiments[22], if the potential contribution to the
Differently from Eq.(6), the scaling with the short-time dif- shear modulus is considered. The tight coupling of the col-
fusion coefficients does not rigorously collapse the data at &ctive density fluctuations as captured in the scaling ob-

IV. CONCLUSIONS
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served by Segrand Pusey18] on the one hand supports the the structural relaxation is determined by the equilibrium
existence of anv-scaling law as predicted by MCT, and on structure factor only, hydrodynamic interactions affecting the
the other hand requires the quantitative connection of thshort-time and transient dynamics can be incorporated into
a-process amplitudes and relaxation times obtained here fadhe MCT without changing the long-time predictions.
hard-sphere-like colloidal particles. The failure of the scaling
for small wave vectors seen in the experiments is predicted
by MCT and highlights that the structural relaxation cannot
be understood from short-time expansions. Such an ap- Valuable discussions with Dr. A. Latz, Dr. P. N. Segre
proach, often referred to as “de Gennes narrowing” conceptand Professor W. Gpe are gratefully acknowledged. This
would suppose diffusive colloidal dynamics for small wavework was supported by the Deutsche Forschungsgemein-
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