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Aspects of the dynamics of colloidal suspensions:
Further results of the mode-coupling theory of structural relaxation

M. Fuchs and M. R. Mayr
Physik-Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 17 May 1999!

Results of the idealized mode-coupling theory for the structural relaxation in suspensions of hard-sphere
colloidal particles are presented and discussed with regard to recent light scattering experiments. The structural
relaxation becomes nondiffusive for long times, contrary to the expectation based on the de Gennes narrowing
concept. A semiquantitative connection of the wave vector dependences of the relaxation times and amplitudes
of the finala relaxation explains the approximate scaling observed by Segre` and Pusey@Phys. Rev. Lett.77,
771 ~1996!#. Asymptotic expansions lead to a qualitative understanding of density dependences in generalized
Stokes-Einstein relations. This relation is also generalized to nonzero frequencies thereby yielding support for
a reasoning by Mason and Weitz@Phys. Rev. Lett.74, 1250~1995!#. The dynamics transient to the structural
relaxation is discussed with models incorporating short-time diffusion and hydrodynamic interactions for short
times.@S1063-651X~99!05311-8#

PACS number~s!: 82.70.Dd, 64.70.Pf, 61.20.Lc
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I. INTRODUCTION

The dynamics of suspensions of colloidal particles h
been the topic of active research for many years@1,2#.
Whereas the motion of isolated Brownian particles has b
well understood for long, less is known about the dynam
of concentrated suspensions. Direct particle interactions
solvent mediated hydrodynamic interactions~HI! are impor-
tant if the colloidal volume packing fraction increases abo
a few percent@1#. Experimental studies mainly employin
dynamic light scattering~DLS! have provided a wealth o
information on dense systems and are also the stimulus
the theoretical work presented in this contribution.

The pioneering study by van Megen and coworkers of
liquid to glass transition in hard-sphere-like colloidal disp
sions has provided detailed data on the density fluctuation
this dynamic, ergodic-to-nonergodic transition@3–10#. Be-
sides their intrinsic interest, these experiments also m
possible quantitative tests@3–11# of predictions from the ide-
alized mode-coupling theory~MCT! @12,13#. Agreement of
experiment and theory within errorbars of around 15%
been reported. This comparison, which up to now has te
leading order asymptotic predictions and has thus restri
the validity of the theoretical results to small separatio
from the critical density, provides support for the glass tra
sition scenario as described by MCT, which has also b
studied for colloidal micronetwork spheres@14,15#, charged
colloidal systems@16#, and colloidal emulsions@17#. Recent
DLS experiments by Segre`, Pusey, and coworkers stud
hard-sphere-like systems at lower colloidal densities and
port unexpected and seemingly unrelated scaling prope
of the dynamic scattering functions@18–20#. Thus the ques-
tion arises for which density range below the glass transi
the MCT describes the dominant physical mechanism
served in the dynamics of concentrated colloidal fluids a
whether the reported scalings can be explained by M
Studies of a generalized Stokes-Einstein relation@19,21# and
optical measurements by Mason and Weitz@22# further raise
PRE 601063-651X/99/60~5!/5742~11!/$15.00
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the question about the connection of the viscoelastic mo
@23# to the collective and self-particle motion at rather hi
densities which can also be considered using MCT@24#.

The MCT was developed starting from theories of t
dynamics of simple liquids upon the realization that in th
subsystem of the equations of motion which aimed at
scribing the structural relaxation there exists a bifurcat
separating ergodic from nonergodic motion@25,26#. The
physical mechanisms held responsible have been ca
‘‘cage effect’’ and ‘‘back flow’’ phenomenon@13,27#. This
transition was suggested as origin of the slowing down a
of the anomalies of the dynamics at the glass transition.
idealized MCT studies the structural relaxation neglecting
other, possibly present, long-time dynamical effe
@12,28,29#. The extended MCT discusses long-time ergod
ity restoring corrections@27,30–32#. The bifurcation at criti-
cal values of the thermodynamic parameters such as the
loidal packing fraction,f, introduces a small~separation!
parameter, «5(f2fc)/fc , and the possibility of
asymptotic expansions in«; see Refs.@12,33,34# for refer-
ences and detailed results.

Two asymptotic scaling law regions can be shown. In
first, for intermediate times, the feedback mechanism of c
ing of particles, causes an ergodic-to-nonergodic bifurcat
which is characterized by universal power law decays. D
ing the second, for longer times, the collective rearran
ments of the cages requires cooperative dynamics, suc
the build up of back flow patterns first discussed for liqu
helium @35–37#. The strongly correlated dynamics manifes
itself in a coupling of the time scales for this final process
the structural relaxation. As it describes, in the liquid, t
decay of the incipient frozen glassy structure, it is not s
prising, that its MCT description requires detailed inform
tion about the equilibrium structure.

As the leading-in-« asymptotic results exhibit numerou
nontrivial universal features, experimental tests of MC
mainly address these and thus a number of corrections n
5742 © 1999 The American Physical Society
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to be considered:~i! The structural relaxation itself leads t
corrections of higher order in« which limit the range of
validity of the leading asymptotics.~ii ! The short-time or
microscopic dynamics affects the transient to the struct
dynamics and needs to be considered if no clear separatio
time scales is possible.~iii ! Long-time relaxational mecha
nisms may be present, which bypass the structural relaxa
and lead to faster decay. The third correction appears to
absent in colloidal suspensions at the densities of interes
the present study and thus shall be neglected in the follow
@9,10#. It is interesting to mention, though, that in colloid
emulsions droplet shape fluctuations cause long-time re
ation and can be explained within the extended MCT@17#.
Theoretical understanding of the first correction effect
lowest relevant order in« has been achieved recently@33,34#
and is the basis of the present considerations. Lackin
deeper understanding of the microscopic transport effect
colloidal suspensions@point ~ii ! above# a qualitative study
shall be undertaken incorporating short-time effects with
most simple approximations compatible with the MCT d
scription of the structural relaxation. Thus the limit of th
predominance of the structural relaxation is estimated fr
numerical solutions of the MCT equations using simp
models for the microscopic transient dynamics of colloid
suspensions. Brownian short-time diffusion with and witho
hydrodynamic interactions is considered@1#.

The paper is arranged as follows. Section II summari
the equations of motion of the idealized MCT. Section
presents and discusses our results, focusing first on the
pects purely structural-relaxational and then on the mic
scopic transient effects. The mentioned experimental fi
ings are addressed in Sec. III C. Short conclusions end
paper.

II. EQUATIONS OF MOTION

The idealized MCT of the liquid to glass transition lea
to a closed set of nonlinear equations of motion for the d
sity fluctuations@12,25,26#. Other dynamical variables ar
connected to them via the Zwanzig-Mori formalism a
mode-coupling approximations. The theory aims at a
scription of the structural relaxation as it emerges from
~microscopic! short-time dynamics and slows down owing
the increasing density and thus increasing importance of
ticle interactions. The central quantity, the~normalized! in-
termediate scattering functionFq(t)5(1/N)^%q* (t)%q(0)&/
Sq , measures the time and wave vector dependence o
collective density fluctuations,%q(t), around the average ho
mogeneous density which for hard-sphere particles of di
eterd is converted to the volume packing fraction. The no
malization is provided by the static structure factorSq
5^u%qu2&/N @38#.

The equations of motion of the idealized MCT fro
which asymptotic analysis extracts the physically relev
long-time dynamics can be summarized as@13#

Fq~ t !2mq~ t !1
d

dtE0

t

dt8mq~ t2t8!Fq~ t8!50, ~1!

mq~ t !5 (
k1p5q

V~q;k,p!Fk~ t !Fp~ t !, ~2!
al
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where the coupling constants or verticesV, are uniquely
specified by the static structure factorSq ; see Refs.@26,39#
for explicit formulas. Equation~2! approximates the autocor
relation function of the fluctuating forces by considering
force to arise between two density fluctuations interact
via an effective potential. Then the correlation function
the four density fluctuations is approximated by the squa
density correlators and the effective potential enters the
tices.

In Eqs. ~1!, ~2! the structural dynamics results from th
equilibrium state of the fluid as captured inSq which is the
only input. Thus the long-time structural relaxation of
dense suspension of interacting Brownian particles is p
dicted to be identical to the one of an atomic system if
interaction potentials of both systems coincide. Here we w
consider hard sphere potentials only. By ansatz, MCT
glects the possibility of an ordered, crystalline state and t
in experimental comparisons crystallization has to be p
vented. Then the structure factorSq of a liquid of hard
spheres is known to be a regular function smoothly vary
with packing fraction@38# and consequently the vertices
Eq. ~2! are regular functions of the single~for a liquid of
hard spheres! thermodynamic state parameterf.

Brownian particles diffuse on~appropriately chosen! short
distances and thus for short times@1#. Incorporating this into
MCT leads to the following simple model of colloidal su
pensions close to the glass transition@33,40#:

Fq~ t !2mq~ t !1
d

dtE0

t

dt8mq~ t2t8!Fq~ t8!5
21

q2Dq
s
Ḟq~ t !.

~3!

This equation replaces Eq.~1! and extends it to short time
where the initial condition runsFq(t)5̇12q2Dq

st.
Two approximations for the short-time diffusion coeffi

cient Dq
s , are widely used in theoretical work on colloida

dispersions and differ in the treatment of the solvent effe
In the most simple model of Brownian diffusion the intera
tion of the solvent with the colloidal particles is modele
with a single friction coefficientz0 @1#. This leads toDq

s(B)

5D0 /Sq , where D0 is given by Einstein’s law D0
5kBT/z0, and the denominator arises from particle intera
tions as was first argued by de Gennes in a related con
@41#. This approximation is not satisfactory except for ve
low packing fractions, because the solvent also leads to lo
ranged and quasi-instantaneous interactions of the collo
particles, called hydrodynamic interactions~HI!. Whereas
the HI do not affect the equilibrium statistics and thusSq of
the colloidal system, their effects on short time scales can
be neglected in general and are captured in a wave ve
dependent amplitudeHq @1#: Dq

s(HI)5D0Hq /Sq . Progress on
a detailed theory forHq has proven very difficult but has
culminated in accurate results for it up to intermediate pa
ing fractions@42,43#. At the considered high packing frac
tions however,Dq

s(HI) can only be estimated from exper
ments or simulations at present@18,44#. Note, that our
approach to incorporate HI into the MCT equations of m
tion only via Dq

s differs from the one developed by Na¨gele
and others@45#, which aims at describing the dynamics
lower packing fractions, and which would affect the stru
tural
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5744 PRE 60M. FUCHS AND M. R. MAYR
long-time dynamics. Our approach also differs from t
work of Cohenet al. who incorporate aspects of the ca
effect into an effective short-timeDq

s @46,47#. The role of the
HI here also differs from a recent theory of Tokuyamaet al.
@48–50# who consider the HI in nonequilibrated colloid
suspensions.

Equations~2! and~3! have been solved repeatedly witho
HI and with different approximations for the structure fact
of the hard-sphere fluid@33,34,40,67#; for the details of the
numerical calculations see the quoted references. Variou
pects of the known solutions will be connected to rec
experimental observations in this contribution and new so
tions taking HI into account viaDq

s(HI) will be presented,
which are an extension of the calculations in Refs.@33,34#.

Figure 1 shows the short-time diffusion coefficients ent
ing the numerical calculations discussed in the followin
The short time diffusion coefficient without HI,Dq

s(B) , fol-
lows immediately from the hard sphere structure fact
where the Percus-Yevick approximation is used@38#. TheSq
shown also enter the vertices in Eq.~2!. The short-time dif-
fusivity with HI, Dq

s(HI) , is chosen as shown in Fig. 1. It i
aimed at a discussion of the dynamics with HI transient
the structural relaxation, and thus, for the high densities c
sidered, a rough approximation modeled from the exp
ments in Refs.@18,44# is used. Outside the window 0.7
<q/qp<2.4, Dq

s(HI) is assumed constant for simplicity. Th
values ofDq

s(HI) for q→0, q5qp , andq→` are adjusted to
0.2:1.74:1.0 mimicking the measured ratios@18,44#. Within
the mentioned wave vector window, the experimental d
are modeled byD0/Dq

s(HI)52x(q/qp)2/lnfq/qp

c , where f q
c is

the MCT critical nonergodicity parameter, andx50.29 leads
to a continous matching. ‘‘De Gennes narrowing’’ is prese
in Dq

s in both approximations, as its inverse varies in pha
with the structure factorSq and an appreciable slowing dow

FIG. 1. Inverse short-time diffusion coefficients without hydr
dynamic interactions~HI!, Dq

s(B) ~left scale!, and with HI, Dq
s(HI)

~dot-dashed curve, right scale!, versus rescaled wave vector. With
out HI, the density variation is determined by the structure fac
D0 /Dq

s(B)5Sq , and is recorded forf5fc(12102n/3) with n
51,2,3 ~thin dotted, short and long dashed line! and fc

50.516¯ @33#; for n>6, theSq ~almost! collapse onto the bold
solid line. Due to the rough modeling, the shape ofDq/qp

s(HI) is not
varied with density. The inset shows the density dependence o
peak positionqp for the considered densities corresponding ton
5 1,2,3,6,9,12.
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of the short-time dynamics for wave vectorsq around the
principal peak atq5qp results.

Some representative numerical results for the collec
density correlatorsFq(t), obtained as specified in Refs
@33,34#, are exhibited in Fig. 2, where also the shown wa
vectors are indicated. The correlators of Fig. 2~a! correspond
to a density rather close to the critical liquid-to-glass bifu
cation point,fc50.516, of this model. The reduced distan
equals«5(f2fc)/fc52102n/3, with n59, where, as in
the following, in order to simplify comparison with Refs
@33,34#, the packing fractions will be reported by stating th
numbern. Decreasing the packing fraction to«520.1 cor-
responding ton53, results in the intermediate scatterin
functions of Fig. 2~b!. Results with and without HI as show
in Fig. 2 for various packing fractions will be discussed
the following. Only the dynamics in the colloidal liquid
phase is shown, where the correlators decay to zero du
the final relaxation process, because the mentioned exp
mental studies focus on this final decay; for MCT results
hard sphere glasses at higher packing fractions see R

r

he

FIG. 2. Normalized intermediate scattering functionsFq(t) ver-
sus time for five wave vectors indicated by symbols in the inse
part ~b!. In ~a! and~b!, the height of the circles equalsf q

c/2 and the
height of the diamonds givesf q

c . In ~a! the packing fraction isf
50.999fc , n59, and f50.9fc , n53, in ~b!. Dashed lines
marked with circles result from calculations without HI and so
lines marked with diamonds from the ones with HI. The inset sho
the amplitudef q

c of the finala-relaxation process. The circles in~a!
and ~b! indicate the relaxation times estimated fromFq(t5tq)
5

1
2 f q

c .
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@33,34,40#. It is also interesting to note that short range
tractions can increase the critical packing fraction appre
bly @51,52#.

III. RESULTS AND DISCUSSION

A. Leading asymptotic scaling laws

In lowest order in the separation parameter«, the MCT
predicts the existence of two divergent time scales with t
different scaling laws describing the dynamics in expand
windows in time or frequency; see the Refs.@12,28,29,33,53#
for detailed derivations and reviews of these results.

In the first orb-scaling law window, a factorization prop
erty allows to separate the sensitive and rather universa
pendences of the dynamics on the separation paramete
on time from the system specific dependences such as sp
variation:

Fq~ t !5 f q
c1hqG~ t,«! for uFq~ t !2 f q

cu!1. ~4!

The b correlator is given by a homogeneous functionG
}Au«ug6

l (t/t«), specified by one system specific parame
l, which can be calculated for simple liquids fromSq and
determines all exponents of MCT@29#. The first divergent
scaling timet«5t0u«u2(1/2a), lies in the center of the window
of validity of Eq. ~4! and, below the critical density, can b
taken from the root ofG:Fq(t5t«)5 f q

c . The one paramete
t0, the crossover or matching time, remains as only remn
of the short-time or transient motion and can only be o
tained from matching the asymptotic results to the full d
namics including some short-time model. In Fig. 2~a! one
notices thatt0 differs by a factor 1.2 for the two models o
the transient. A shift of the curves with HI relative to th
ones without HI collapses both sets of curves for timet
*0.1d2/D0. The great simplification of the dynamics pro
vided by the factorization in Eq.~4! may be interpreted a
resulting from a localization transition close to which dens
fluctuations relax via local rearrangements and not via m
transport over larger distances. If the spatial variation off q

c

and hq is studied in detail@54#, the localization may be
traced back to the ‘‘cage effect’’ that particles are s
rounded by next-neighbor shells whose ability to cage
central particles depends on the fluctuations of the lo
structure and thus, in a cooperative manner, on the dyna
of the caged particles themselves.

In the second scaling law region, another set of diverg
time scales, calleda-relaxation timestq , appears and
a-master curves describe the final relaxation of the den
correlators fromf q

c to zero during that time window@53#

Fq~ t !→F̃q~ t/t«8! for «→02, t/t«85fixed. ~5!

This superposition principle states that the final relaxat
processes~asymptotically! depend on the distance to th
critical point only via the relaxation timestq , which more-
over are coupled,tq5 t̃qt«8 , and diverge upon approachin
fc :t«85t0u«u2g with g.(1/2a). The equations, which the

F̃q( t̃ ) obey, are obtained in a special limit from Eqs.~1!, ~2!
and are consequently independent of the microscopic sh
time dynamics@12,55#. The resulting two-step relaxatio
-
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scenario of the idealized MCT has been fully worked out
some simple liquids; see Refs.@26,54,67# for calculations of
the exponents and master functions of the two scaling
gions for a hard sphere liquid.

The quantities of most immediate interest to experimen
observations of the final ora-relaxation process are the re
laxation times @56#. Figure 3 presents results for th
asymptotictq from the model specified above and compa
them to previous calculations using a different approxim
tion ~Verlet-Weis form! for the static structure factors of
hard sphere liquid@67#. Very small differences in thetq
result from the two approximations toSq . A discussion of
short-time sum rules for colloidal suspensions as done in
spirit of de Gennes@41# leads to the prediction of~short-
time! relaxation times obeyingtq

s.5(1/q2Dq
s.). Such a behav-

ior for the Brownian model, scaled to matchtq for q5qp , is
also indicated in Fig. 3. The MCTa-relaxation times ob-
tained from Eqs.~1!, ~2!, where the transient does not ente
and the results from the short-time sum rules qualitativ
are similar for not-too-small wave vectors because both v
in phase with the structure factor. Their different physic
origins, however, clearly show up for small wave vecto
where the short-time relaxation timestq

s , become diffusive,
whereas the MCTa-relaxation timestq become wave vecto
independent as first anticipated in Mountain’s description
Brillouin scattering in supercooled atomic liquids@57#. Al-
though the collective density fluctuations of the colloid
Brownian particles are diffusive on short time scales due
random collisions with solvent molecules, during the stru
tural relaxation only stress fields arising from colloid-collo
particle interactions survive out to long times. Thus lar
distance density fluctuations decay by local particle re
rangements. The strong slowing down ofF̃q( t̃ ) on length
scales of the order of the average next-neighbor distance
dicates local and cooperative particle rearrangements an
reminiscent of the back flow phenomenon familiar fro
simple liquids@35–37#.

The coupling of the wave vector modes in Eqs.~1!, ~2!
explains the qualitative trend that the correlators with lar

FIG. 3. Dimensionless time scalestq
(f) ~full circles and left axis!

resulting fromf q
c , see Eq.~6!, versus wave vector and compared

the rescaleda-relaxation times~open circles and right axis! @56#.
The lines through the points indicate the corresponding results
the Verlet-Weis Sq from @67#. The short dashed curve show
Sq /(qd)2 appropriately shifted to match atqp .
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5746 PRE 60M. FUCHS AND M. R. MAYR
a-process amplitudesf q
c relax slower, i.e., have a largertq

@12,33,67#. Intriguingly, for a hard sphere liquid the wav
vector dependence of the dimensionless time scaletq

(f)

52r s
2/(d2lnfq

c), is rather close to the one of the actuala
time tq , at least for intermediate wave vectors. Note that
comparison shown in Fig. 3 must be taken with a grain
salt, as the definition oftq is not unique because of th
stretching, i.e., nonexponentiality, of thea process in MCT.
Nevertheless, this semiquantitative connection of
a-process amplitude to its time scale, suggests a poss
~partial! collapse of theFq(t) for different q at the same
packing fraction onto a common curve given by

Fq~ t !5expH 2
Dr 2~ t !

6d2tq
(f)J , where tq

(f)5
2r s

2

d2lnf q
c

. ~6!

Conceptually,Dr 2(t) should be connected to the mea
squared displacement of a colloid particle, to be denoted
dr 2(t). From the definition oftq

(f) , Eq. ~6!, and the factor-
ization property, Eq.~4!, immediately follows that very close
to the critical packing fractions all rescaled curves inters
at theb-scaling timet« . The connection off q

c via tq
(f) to the

a-relaxation time, see Fig. 3, then shepherds the correla
to stay close during the final relaxation step, too. Figur
shows representative scaled correlators for two packing f
tions, where the used wave vectors are marked in the in
The correlators are drawn forFq(t)>0.05 in order to pre-
vent overcrowding the figure. Theq-dependent stretching o
the correlators causes a noticeable spreading of the res
correlators for long times. Considering Fig. 3, one also d
not expect a data collapse for wave vectors outside
shownq range. Moreover, this scaling explicitly violates th
short time behavior of the intermediate scattering functio
which, e.g., become diffusive for small wave vectors inva
dating Eq.~6!. This explains the spread of the curves in F
4 at short times. In Fig. 4 also the mean-squared displa
ment from Ref.@34# shifted as suggested by Eq.~6! is shown
and lies within the clatter of the curves.

This ansatz, together with the known Gaussian appro
mation to the self intermediate scattering function@1,34,38#,
gives a most simplistic description of the coherent and in
herent density correlators of the MCT. Nevertheless, the o
point where Eq.~6! asymptotically rigorously collapses a
correlators is atFq(t«)5 f q

c because of the factorizatio
property, Eq.~4!. Already in a vicinity of this point a spread
of the curves exists because ofhqÞhMSDf q

c/(6d2tq
( f )), which

would follow from Eq. ~6! and the knownb expansion,
dr 2(t)5̇r sc

2 2hMSDG(t) @12,34#.

B. Corrections

The discussion up to now has used the asymptotic for
las to lowest orders in the separation parameter and
might restrict the discussed phenomena to close neigh
hoods of the critical packing fractionfc . The leading cor-
rections in« to the asymptotic scaling laws of Sec. III A
have recently been discussed in detail for the present m
@33,34#, and in some cases allow us to extend the range
validity of the asymptotic expansions appreciably.
e
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The corrections to theb-scaling law, Eq.~4!, for the dy-
namics close tof q

c are of the form

Fq~ t !5 f q
c1hq@G~ t !1H~ t !1KqG2~ t !1«K̃q#, ~7!

where theKq and K̃q are wave vector dependent constan
which follow from asymptotic solutions to Eqs.~1!, ~2!. See
Refs.@33,34# for the definitions and for the correction func
tion H(t), which is of orderO(«). The range of validity of
the b-scaling law, Eq.~4!, is thus found to be of orderA«,
and to differ for different wave vectors or observables. T
b-region description of Eq.~7! extends the range of usefu
ness of the MCT asymptotic expansion around the criti
nonergodicity plateau appreciably as can be seen in R
@33,34#, and provides detailed few parameter formulas
the density correlators which have already found use in
data analysis of computer simulation studies@58–61#. For
the curves without HI of Fig. 2, Eq.~7! describes the corr-

FIG. 4. Intermediate scattering functions versus time replot
as suggested by Eq.~6! with tq

(f) taken from Fig. 3; an arbitrarily
chosen factor enlarges the vertical scale, and the partFq(t).0.05
lies in the window for all but one correlator.~a! presents results for
a density close tofc , f50.999fc (n59), whereas~b! corre-
sponds tof50.9fc (n53). The full solid lines correspond to th
mean-squared displacementdr 2(t) from Ref. @34# scaled accord-
ingly. The wave vectors of the exhibitedFq(t) are marked in the
inset of part~b!. It showstq

(f) /tqp

(f) ~symbols and solid line! and the
a-relaxation timestq /tqp

~dashed line! from Fig. 3.
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elators in theb window on a 10% error level starting from
the time scalet*0.1d2/D0 which was estimated in Sec. III A
to be the range of domination of the structural relaxati
Thus Eq.~7! extends the asymptotic expansions of the str
tural relaxation almost to the microscopic dynamics in t
model.

Thea process has been the focus of the recent DLS s
tering studies@18# and, for wave vectors around the pea
describes the main portion of the decay ofFq(t). The range
of validity of the a-process-superposition principle, Eq.~5!,
is appreciably larger than the one of theb-scaling law:

Fq~ t !→F̃q~ t/t«8!1«C̃q~ t/t«8! for «→02. ~8!

The corrections in Eq.~8! are only of linear order in«.
Although the complete form ofC̃q( t̃ ) is not known yet, its
variation for short rescaled times can be deduced and ca
argued to give the dominant correction to Eq.~5! for not too
large«: C̃q( t̃→0)52hqB̃1 t̃ 2b, where the coefficientB̃1 is
of order unity. As this term can grow without bounds, t
dominant aspect of the leading corrections is to cause
correlatorsFq(t) to rise above thea-master curves for times
shorter than thea-relaxation time. In this time window, the
a-master curves follow von Schweidler’s lawF̃q( t̃ )2 f q

c

52hqB̃t̃ b @again with B̃5O(1)# @28,29#. As theq depen-
dence of the time scales of thea correlatorsF̃q( t̃ ) can be
estimated from F̃q( t̃ )5̇ f q

c@12(t/tq
(vS))b#, with tq

(vS)

5(B̃f q
c/hq)1/bt«8 @12#, the short time corrections can be r

written in the time windowt«!t!t«8 :

Fq~ t !5̇ f q
cF12~ t/tq

(vS)!b2«S t«8

tq
(vS)D 2b

~ t/tq
(vS)!2bG . ~9!

Thus it is apparent that deviations from the asympto
a-process scaling law, Eq.~5!, are stronger for correlator
with a shortera-relaxation time or smallera-process ampli-
tude; the second connection arising because of the rela
betweentq and f q

c , see Fig. 3.
If at larger separations from the critical density t

a-relaxation times are determined from the correlat
Fq(t), then the corrections to thea-scaling law, Eq.~8!,
may differently affecttq(f). This is caused by the inheren
stretching in thea-master curves@67# and by the time varia-
tion of the correctionsC̃q( t̃ ). The dominant short time
variation of C̃q( t̃ ) leading to Eq.~9! will affect tq(f) if a
definition of the relaxation times is used, which stresses
initial decay during thea process. A possible definition o
tq(f) exhibiting this effect is given byFq(t5tq)5 1

2 f q
c .

Some results are indicated in Fig. 2, where also
a-process amplitudesf q

c are shown in the inset. As Fig.
shows, this definition oftq asymptotically gives almost iden
tical q dependences as obtained from theF̃q( t̃ ) @67#.

Because of the rather large range of validity of t
a-scaling law, Eq.~5!, for the intermediate scattering func
tions as explained by Eq.~8!, only very small deviations of
tq(f) from the asymptotic wave vector dependence are s
in tq(2«)g for n.3. As expected from Eq.~9!, for n53,
which lies close to the limit of applicability ofa scaling, the
.
-

s

t-
,

be

e

c

on

s

e

e

en

relaxation times are relatively longer and the largest~rela-

tive! deviations appear for correlators with smallf q
c or t̃q .

At this separation from the critical density,f50.9fc , al-
ready some differences for the two models of the short ti
diffusion, with and without HI, are noticeable in Fig. 5. A
shown in the inset, the differences can almost completely
incorporated into a packing fraction dependent shift of
matching timet0. If the time scales are normalized to uni
for q5qp , then collapse can be achieved of thetq at n53
except for the smallest wave vectors. Note that some fi
aspects of the figure depend on the special choice how
measuretq . For example, the correlators without HI atn
53 and for q5qp and q50.94qp ~just below it! actually
almost overlap and the apparent differences intq arise solely
from the f q

c values entering the used definition.
For even larger separations from the critical densityn

52 andn51 in Fig. 5, clear differences of the long-tim
scales with and without HI appear and can obviously not
explained by structural relaxation, Eqs.~1!, ~2!, alone. The
diffusive particle motion on short time scales causes the c
relators for small wave vectors to decay slower relative to
nondiffusivea process.

Often a diffusive behavior is assumed also for the str
tural relaxation and the relaxation times are converted to
fusion coefficients via 1/Dq5q2tq . Figure 6 shows so cal
culatedDq normalized atq5qp in order to eliminate the
drift of qp with packing fraction; see Fig. 1. Almost no de
viations from the asymptotic variation as follows from th
a-scaling law, Eq.~5!, can be be seen forn.3. Note that
the nondiffusive character of the structural relaxation is h
den in this representation. For larger separations and
smaller packing fractions, a trend of the long-time diffusi
coefficients with hydrodynamic interactions~HI! to approach
the shape of the short time onesDq

s(HI) can be recognized.
Considering Figs. 5 and 6, one needs to keep in mi

FIG. 5. Reduceda-relaxation times in units ofd2/160D0 for
various packing fractions and defined byFq(t5tq)5 f q

c/2. The
curves are shifted according to thea-scaling law, Eq.~5! with g
52.46 @33#, and plotted versus wave vector. The thin overlapp
lines are for both models atn56, 9, and 12. The small circles
repeat the rescaled Verlet-Weis result from Fig. 3. The bold das
line results for the model without HI atn53 ~left scale!, and the
bold solid line for the one with HI~ right scale! at n53. The inset
repeats the data forn53 shifted to unity atqp and also includes
curves forn51 and 2~thin!; line styles as in the main part.
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however, that differing methods to determine the final rel
ation times or the long-time diffusion coefficients would le
to somewhat differentq dependences because they wou
weigh the stretching of thea processF̃q( t̃ ) and the leading
correctionsC̃q( t̃ ) differently. The definitions chosen her
allow us to explain the wave vector and packing fracti
dependences intq andDq from known aspects, Eqs.~8!, ~9!,
of the asymptotic expansions.

C. Viscoelastic properties

The time or frequency dependent shear modulusGh , of
colloidal suspensions can be defined as an autocorrela
function of elements of the stress tensor and splits into th
contributions@62,63#. Whereas the first arises from the dire
potential interactions of the particles and is familiar fro
simple atomic liquids, the latter two contain effects of the
and are peculiar for colloidal particles immersed in a solve
Only for the first potential part there exist MCT expressio
which are applicable close to the glass transition atfc
@12,26,67#; however, see Ref.@63# for lower densities. Simi-
larly as formq(t) from Eq.~2!, Gh(t) is given by a quadratic
mode-coupling functional in theFq(t). Consistent with the
neglect of the HI contributions toGh(t), solutions for the
Fq(t) are used which are calculated without HI, i.e., with t
short-time diffusion coefficientsDq

s(B) . Figure 7 shows the
frequency dependent storage and loss shear moduli f
number of densities@64#. As we consider the part ofGh
arising from potential colloidal interactions only, and th
cannot address the importance of HI at higher frequenc
only results in the frequency window of structural relaxati
are shown. For low frequencies, the viscosityh can be ob-
tained viaGh9 (v→0)→v(h2h`), whereh` is the high-
frequency shear viscosity which is caused by instantane
solvent interactions@43,44,65#. We use the approximation
h`5kBT/(3pdD0). A plateau region inGh8 (v) corresponds
to the b-scaling window, Eq.~4!, and indicates elastic be

FIG. 6. Long-time diffusion coefficients calculated from th
times in Fig. 5 and normalized to unity atqp plotted versus rescale
wave vector. Forn>6 the thin solid lines overlap and indicate th
asymptotic result. Results without HI~bold long-dashed line! and
with HI ~bold solid line! at n51 are shown and compared to th
rescaled short-time diffusion coefficients atn51, Ds(B) ~thin short
dashes! andDs(HI) ~thin dot-dashed line!.
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havior of the colloidal suspension on intermediate tim
scales. In the nonergodic states abovefc , the colloidal sys-
tem would be characterized by a finite elastic shear modu
Gh>Gh

c , where the value at the glass transition follow
from the f q

c . The appropriate Fourier transforms of theb
correlator describe the dynamics around this elastic plat
in Gh8 , and in the minimum region ofGh9 (v) between the
transient high frequency dynamics and thea-relaxation
peak, which sensitively shifts with separation from the cr
cal density.

For a single colloidal particle in a continuum fluid th
Stokes-Einstein relation connects the particle diffusion co
ficient and the solvent viscosity,hDself5kBT/3pd. The self-
diffusion coefficient and the mean-squared displacemen
finite colloid densities can, within MCT, be obtained fro
the autocorrelation function of the fluctuating forces whi
the single particle experiences from the colloidal liquid@34#:

dr 2~ t !1Ds selfE
0

t

dt8mself~ t2t8!dr 2~ t8!56Ds selft,

~10!

where Ds self is the short-time diffusion coefficient of th
single particle which, neglecting HI, is given byDs self

5D0 @1#. The long-time self-diffusion coefficientDself, fol-
lows from Eq.~10! in the Markovian limit,Ds self/Dself51
1Ds self*0

`dt mself(t). The memory functionmself in MCT is
given by another mode-coupling functional. Thusa priori,
within MCT one would expect connections or similarities
mself(v) andGh(v) only because of the scaling laws. In th
b-scaling region, asymptotically both functions exhibit th
same shape@12#, Gh9 (v)/hGh

→x9(v) and mself 9 (v)/hmself

→x9(v), wherex9(v) follows from theb-correlatorG(t)
in Eq. ~4!. It is included in Fig. 7. Thea-superposition prin-
ciple, Eq.~5!, states that thea-relaxation peaks in both func
tions asymptotically approach a density independent sh
and shift in parallel upon varying«. This a-scale coupling

FIG. 7. Loss shear modulus,Gh9 (v), solid lines and left scale

compared to the self-particle memory function,mself 9 (v) dashed
line and right scale, for the separations from the critical pack
fraction corresponding ton51,2,3,6, and 9 as labeled. The ins
shows the storage shear modulus for the same packing fract
The dashed-dotted curves in both cases indicate the approp
Fourier transforms of theb correlator from Eq.~4!.
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also immediately predicts the productDselfh to approach a
constant asymptotically forf↗fc @12#. Nevertheless, as fo
example thea-peak positions need not coincide, the clo
agreement ofGh(t) andmself(t) in Fig. 7 over a wide win-
dow in time or frequency and covering a substantial variat
in packing fraction is somewhat surprising. Presumably
arises, because, during the cooperative structural mo
~cage effect!, the collective density correlators around t
peak inSq , i.e., on the length scale of the average parti
distance, dominate the dynamics of small-q MCT memory
functions.

D. Comparison with experiments

The results of the MCT calculations of the previous s
tions, which partially have been tested in DLS experime
aimed at the glass transition@3–10#, can also be used
to discuss the recent experiments@18–23# at somewhat
lower densities which were mentioned in the Introductio
Various other aspects of the results and their poss
experimental relevance have been presented in R
@12,26,33,34,40,54,67# and will not be repeated here.

As a first aspect, let us point out, that if the mean-squa
displacement can be measured and thus the conne
memory functionmself, then the numerical results show th
a close estimate of the potential part of the shear modulusGh
can be obtained. Even beyond the connections predicte
the two asymptotic scaling laws, Eqs.~4!, ~5!, the numerical
results exhibited in Fig. 7, show that both functions a
closely related, presumably because both arise from the
operative cage dynamics. This connection may be consid
as a frequency dependent generalization of the Sto
Einstein relation and was assumed and tested in the re
diffusive wave spectroscopy measurements of Mason
Weitz @22#. In another study of the same authors@23#, they
also observed that theb correlators from Eq.~4! provide a
description of the~directly measured! shear moduli spectra
in an intermediate frequency window consistent with t
MCT description of the potential part ofGh .

The a-scale coupling predicts that the various relaxat
times and transport coefficients of a colloidal suspens
close to the critical packing fractionfc shift in parallel. For
example, the prediction 2kBT/pdhDself5const for f↗fc
follows from Eq. ~5!. Quantitatively, the ratio approache
5.93 @67#, see Fig. 8, a value very close to the classi
Stokes-Einstein prediction. Note however, that the con
tions required for the classical Stokes-Einstein relation
hold, clearly are violated at packing fractions around
glass transition. A small but noticeable packing fraction d
pendence in 1/(Dselfh) arises because of trivial density pre
actors connecting the exhibited moduli of Fig. 7 with t
transport coefficients. Thea-process corrections Eq.~8! and
their discussion in Eq.~9! suggest that thea-scale coupling
should hold well fora-relaxation scales obtained at low fre
quencies. This is supported by the observation, that
Stokes-Einstein relation considered wi
limv→0fcGh9 (v)/(fv) replacingh, and mself 9 (v50) re-
placing 1/Dself, considerably reduces its density dependen
Upon decreasing the packing fraction tof50.9fc (n53),
where thea-scaling law loses validity, this ratio increases
20% relative to the asymptotic value, whereas the ac
n
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Stokes-Einstein ration increases by 29%. Even larger den
dependences can be expected if the long-time diffusion
efficients are obtained in time or frequency windows whe
the dominant corrections to thea process, see Eq.~9!, ap-
preciably increase the relaxation times of the correlators w
shorter asymptotica-relaxation times. This effect is appare
in Fig. 8, where the wave vectors away from the peak po
tion in Sq show an increase in the relaxation times relative
the asymptotica-scale prediction, which on the other han
holds rather well forq5qp . At q51.17qp where Sq(fc)
50.90 a 65% increase is seen atn53, whereas atq5qp the
Stokes-Einstein ratio changes only by 11%.

The results concerning the generalized Stokes-Einstein
lation, which are presented in Fig. 8, and their explanatio
using Eqs.~8!, ~9! rest on the simplifications caused by th
bifurcation singularity in the MCT equations and by the e
tailing asymptotic expansions. As discussed, the range
validity of thea-scale coupling does not appreciably exce
«'20.1 for the studied models of hard sphere like colloid
suspensions, and thus microscopic corrections to the M
description of the structural relaxation need to be incor
rated in principle beyond this distance tofc . Thus it is con-
sistent with MCT that for packing fractions well belowfc
the coupling of the time scales may continue in one sys
~hard spheres! but not in another one~charged spheres! @24#.
Also the estimate for the range of packing fractions wherea
scaling should hold can be expected to be model depend
as thea-master functions, Eq.~5!, and their corrections, Eq
~8!, depend on the fluid structure.

Approximate expressions might be useful to describe
qualitative trends in the intermediate scattering functio
Fq(t) in a wider context, in the same way as the Gauss
approximation@38# is useful for the self-intermediate scatte
ing functionsFq

s(t). The Gaussian approximation was com
pared to the MCT results in Ref.@34#. Recently Segre` and
Pusey were lead by their DLS scattering data to propose s

FIG. 8. Packing fraction dependent generalized Stokes-Eins
relations calculated from the viscosityh and the long-time diffusion
coefficients from Fig. 6 are shown for various wave vectors in
cated in the inset, which showsSq(fc). Solid squares use the long
time self-diffusion coefficients. The open symbols show the cor
sponding ratio using limv→0ncGh9 (v)/(nv) instead of h, and

mself 9 (v50) instead of 1/Dself.
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5750 PRE 60M. FUCHS AND M. R. MAYR
a formula @18# and they observed partial collapse of the
rescaled data.

In Eq. ~6! the possibility to collapse the intermediate sc
tering functions onto a common curve is studied using
dimensionless time scaletq

( f ) . This is suggested by the find
ing that thea-relaxation amplitudes and relaxation times a
ymptotically are connected viatq

( f ) ; see Fig. 3. The qualita
tive connection was expected@12,67# but the quantitative
closeness surprises and may be peculiar to the hard sp
system. Satisfactory data collapse using Eq.~6!, see Fig. 4, is
possible with deviations at long times because of the non
versality of thea process, and at short times, because Eq.~6!
violates the short-time diffusive motion of colloidal suspe
sions. This reiterates that within MCT there is no connect
of the obtained long-time diffusion coefficients, which fo
low from Eqs.~1!, ~2!, to the short-time ones@55#. The only
effect of the latter could be a shift in the time scalet0, which
matches the structural relaxation to the microscopic tr
sient.

Similar shapes, however, of the long- and the short-ti
diffusion coefficients with HI were observed by Segre` and
Pusey in the recent DLS experiments on colloid fluids bel
and close to the glass transition@18,44#. This similarity of
the short- and long-time diffusion coefficients suggests t
we collapse the intermediate scattering functions with
assumption@18#:

Fq~ t !5exp$2~q2/6!~Dq
s/Ds self!dr 2~ t !%,

which becomes exact for short times. In their experime
Segrèand Pusey observed data collapse for wave vec
starting from somewhat belowqp to the position of the sec
ond maximum inSq . Figure 9 shows the solutions of th
MCT equations withDq

s(HI) appropriately rescaled. Reaso
able collapse of the curves onto a common one, which als
well represented by the mean-squared displacement, is
served in a similar wave vector range as in the experime
For short times all curves coincide rigorously. For sm
wave vectors the nondiffusive character of thea process,
however, leads to strong deviations for longer times. T
trend also is present in the experimental data. The nond
sive structural relaxation disagrees with the assumed d
sive scaling of the density correlators and thus cannot
rationalized with considerations of the short-time expansi
following de Gennes. Unavoidable polydispersity effects
the experimental data could lead to additional deviatio
from the proposed scaling for smallq, but no qualitative
differences for samples of different polydispersities were
ported in Refs.@18,20#. Polydispersity effects could be inco
porated into the present MCT following the work for charg
colloids in Ref. @66#. The partial collapse of the data fo
intermediate and long times results from the connections
thea-process amplitudes to the time scales discussed in
text with the ansatz of Eq.~6!. Note that this connection ma
not be quantitatively satisfied as well in other colloidal sy
tems, such as, e.g., charged colloidal particles@16#. Thus the
approximate scaling may hold less well in other system
Differently from Eq.~6!, the scaling with the short-time dif
fusion coefficients does not rigorously collapse the data
-
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longer time. But the close similarity oftq
(f) and Dq

s(HI) ex-
plains that collapse for short times and approximate colla
for longer times is achieved.

IV. CONCLUSIONS

In the idealized MCT, the long-time dynamics of colloid
liquids is dominated by the structural relaxation. Asympto
expansions close to the critical packing fraction capture
qualitative aspects of the structural relaxation. In this con
bution it is shown that the theoretical results also rationa
some recent experimental findings for larger separati
from the critical density. Corrections to the coupling of th
a-relaxation times are wave vector dependent as seen in
of generalized Stokes-Einstein ratios@21#. The latter can be
generalized to finite frequencies as observed in light sca
ing experiments@22#, if the potential contribution to the
shear modulus is considered. The tight coupling of the c
lective density fluctuations as captured in the scaling

FIG. 9. Intermediate scattering functions with HI effects re
caled using the short-time diffusion coefficients,Dq

s(HI) from Fig. 1,
according to Ref.@18#; a factor enlarges the vertical scale, and t
partFq(t).0.05 lies in the window for all but three correlators.~a!
corresponds to a packing fractionf50.999fc (n59) close to the
critical density, whereas~b! corresponds to a larger separation,f
50.9fc (n53). The thick solid lines give the mean-squared d
placement. The other curves belong to the wave vectors indicate
the inset. It shows the normalized times, the short-time on
tq

s(HI)51/(q2Dq
s(HI) ) ~symbols and solid line! and thea-relaxation

timestq /tqp
~dashed line! from Fig. 3.
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served by Segre` and Pusey@18# on the one hand supports th
existence of ana-scaling law as predicted by MCT, and o
the other hand requires the quantitative connection of
a-process amplitudes and relaxation times obtained here
hard-sphere-like colloidal particles. The failure of the scal
for small wave vectors seen in the experiments is predic
by MCT and highlights that the structural relaxation cann
be understood from short-time expansions. Such an
proach, often referred to as ‘‘de Gennes narrowing’’ conce
would suppose diffusive colloidal dynamics for small wa
vectors in disagreement with MCT and experiment@18#. As
e

s

s.

d

ys

.

e
or
g
d
t
p-
t,

the structural relaxation is determined by the equilibriu
structure factor only, hydrodynamic interactions affecting t
short-time and transient dynamics can be incorporated
the MCT without changing the long-time predictions.
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