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Minimal relaxation law for compaction of tapped granular matter
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Granular systems can compact under the influence of sufficiently strong, successive tapping. Recent experi-
mental investigations show that the packing fraction obeys a very slow relaxation to a final, dense packing
fraction that is basically proportional to the inverse of the logarithm of the tap number or time. We provide a
simple macromechanical argument that explains this inverse logarithmic relaxation in time in all functional
details. By considering the asymptotic limits of the resulting relaxation law, we show that the relaxational
dynamics of the compaction process can be interpreted as a combination of a biased void diffusion for short
times and a collective reorganization for large tim{&x1063-651X99)02611-2

PACS numbd(s): 81.05.Rm, 45.05t%, 83.20.Bg

[. INTRODUCTION numerical studie§7,8], in particular the algebraic relaxation
of the packing fraction with time suggested by Hoeigal.

It is a part of our childhood experience that dry sand in a8].
pail can be densified by tapping the pail on the ground if the In the wake of this study, several apparently rather dis-
tapping strength is great enough. This property, the densifitinct theoretical explanations based on microscdgid 0],
cation of granular matter by reducing the void volume be-mesoscopid11-13, or macroscopi¢14,15,17 ideas have
tween the grains, is commonly called compaction. Granulabeen developed to understand the origin of the compaction
matter such as sand and powder consists of large collectioriermula, Eq.(1). Although Eq.(1) is clearly the result of a
of dry massive macroscopically extended particles that interhighly complicated micromechanical reorganization of the
act only via repulsive forces. It is the absence of attractivecollective of grains, is there a simple macromechanical
forces between the grains that allows for loosening and reormechanism that explains the functional details of EQ?
ganization of the grains under the influence of external forceghe answer to this question seems still to be unresolved and
such as tapping or shaking. This feature shows very eviis the main topic of this paper.
dently the distinction of granular matter from ordinary solids  The purpose of our paper is fourfold. First, we show that
and Newtonian fluids. the functional form of the fit formula, Eq1), can be derived

Despite its obvious technological and practical impor-from one simple mean-field argument about the dynamical
tance, detailed quantitative experimental studies on the conthanges of the void volume under tapping. Second, by con-
paction behavior of granular matter have begun only recentlgidering the asymptotic limits of the resulting relaxation law,
(for an overview, cf. Refs[1-3]). In a series of seminal we interpret our mean-field argument as a smooth interpola-
works, the group of Jaeger and Nagdl6] have investi- tion between two known mechanisms, namely the biased
gated the ensemble-averaged settling of monodisperse gramesid diffusion [8] and collective reorganizatiofil4,15.
lar particles in a long vertical tube into more compactedThird, we show that a previously suggested stroboscopic
states by applying periodic vertical tapping with a constantmodel[17] is also consistent with the proposed dynamical
tapping intensityl". Since the tapping intensitly is defined mechanism. Fourth, we propose a simple picture of the solid-
by the ratio of the peak intensity of the tap and the gravitacompactible phase transition that is based on our mean-field
tional acceleration, one expects that only for-1 do the argument.
grains experience enough upward acceleration to loosen and

to reorganize. Il. MACROSCOPIC PICTURE

In their experiments performed for tapping intensitles
. . . OF THE COMPACTION PROCESS
>1.4, Knight et al. [4] were able to fit their data for the
increase of the packing fractignwith time or tap numbet On a purely macroscopic level, the total voluigof a

to a surprisingly simple functional form, given explicitly by granular system consisting of a fixed, large number of par-
ticles is made up of two component$) the grain spac#/
representing the part of the total volurie that is occupied
(1) by the grains, andii) the void space/, characterizing the
empty intergranular part of the total volum¥g. The void
spaceV,, again, can be divided into two componens.
Here, B and 7 are coefficients that strongly depend on theThe removablevoid spaceV,. This part characterizes the
tapping intensityl’, but not on the timd. po=p(t=0) de-  contribution to the void volume that can be effectively ex-
notes the initial packing fraction of a loosely packed statetracted from the granular system by tappirig) The irre-
andp..= p(t==) denotes the final packing fraction that also movablevoid spaceV; . This part consists of the contribution
depends od’. This comparatively slow relaxation to the fi- to the void volume that survives the compaction process and
nal packing fraction did not seem to corroborate previougesults from the fact that a compacted granular system cannot

P=—Po

PO=P= T B+t
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be totally space filling. The grain spavg and the irremov- 1 -
able void spac#/; do not depend on the time or tap number X(t)=1+ E'”[“‘ mymye” "2t]. ®

during the compaction process, whereas the removable void
spaceV,(t) diminishes under tapping from initial removable ysing the fact that the inverse void raiqt) and the pack-
void volumeV, (0) to the minimal removable void volume in jng fraction p(t) are related bycf. the Appendix

the long time limit,V,()=0. Therefore, the time depen-
dence of the total volum¥, during the compaction process
is determined by

p(t)=pot(po—p) X (1) 9

and identifying the constants entering in Efj) and Eq.(8),
2

with V,(t) being the only time-dependent contribution. The

packing fraction is defined by the ratio of the grain space an@ne immediately recovers the functional form of E#).
the total volume, As a consequence, tlrainimal relaxation lawfor com-

paction driven by periodic tapping expressed in terms of the
€] coefficientsB and 7 introduced by Knightet al. [4] reads
explicitly
whereas the effective reduced void volume is determined by
the ratio of the removable void volume and the total volume,

x(D)=V()/V(1). 4)

Obviously,p(t) andx(t) are related by, (t) p(t) =Vgx(t).
For the following, it is convenient to introduce theverse
(effective) void ratiagiven by

X(1)=x(0)/x(1), ©)

where X(t) can vary between its initial valug(0)=1 and
the final valueX(w) =00,

Vi(t)=Vy+V, (1) =Vy+V;+ V(1)

1B=m, and lh=mymye M2, (10

p(1)=Vg/Vi(1),

™X=Bexd (1—X)/B] (12)
and is one of the central results of this paper. The limits
—o or B—0 of Eq.(11) represent in a natural way the solid
matter limit where no compaction can take place at all,
X(t)=X(0) for all t.

Next, it is important to note that the coefficieBsand 7
are not independent as far as their functional dependence on
the tapping intensity is concerned. Based on the experimental
results[4], it has been suggested in REL7] that the coef-
ficientsB and = obey the relatiorB= « 7, with x being inde-
pendent of the tapping intensity and given byx~1/18 for
the experimental setup in Rd#]. Therefore, we can recast
Eqg. (12) in the form

Here, we want to show that the inverse logarithmic relax-
ation of the packing fraction, Eql), found by Knightet al.

[4] can be derived from onsingle mean-field argument
about the dynamics of thénverse void ratio with time or, ~Where the characteristic decay timés now the only coef-
respectively, tapping. Using the aforementioned macroscopiticient that depends on the tapping intendity Typically, 7
picture, our main statement about the time evolution of thevaries from values of the order 1dor tapping intensities
compaction process driven by periodic tapping can be forl.4<I'<2 to values of about 2 foF'>3 [4].

mulated as follows:

If the time rate of change of the inverse void ratio/dX
slows down exponentially with increasing inverse void ratio
X, the packing fraction obeys the functional form of Eq. (1

To verify this statement, we write the basic assumptio
explicitly in the form

Ill. MINIMAL RELAXATIONAL LAW

X=rkexg (1-X)/ k7], (12

IV. CONNECTION WITH ALTERNATIVE MODELS

To relate Eq.(6) to previously suggested mesoscopic ar-
uments[8,14,19 for relaxational compaction, it is conve-
nient to introduce theeduced packing fraction

A(t):p(t)—px

X(t)=my exp —myX(t)] —
0 Pow

(6)
with m; and m, being positive constants with respect to )
time. In general, however, they will depend on the tapping! NS quantity can vary betweeh(0)=1 andA(«)=0 dur-
intensityT" and the micromechanical properties of the granu-ng the compaction process. Noting tligtthe reduced pack-
lar system. A straightforward integration of E@) yields ing fractionA(t) is related to the inverse reduced _v0|d ratio
X(t) by A(t)=X"1(t) (cf. the Appendix and (i) A(t)=
f ‘die —X2(t)X(t)=—A%(t)X(t) holds, the minimal relaxation
0

(13

1 [Xm
EL dXexp(m,X) law, Eq.(12), expressed in terms @(t) reads

. ni (1—exp—my[1-X(D]}). A=—kA2exd — (1—A)/k7A]. (14)
11112

(7
Using Eq.(9), one directly infers that Eq14) possesses the

where the initial conditiorX(0)=1 has been inserted. Solv-
ing the resulting implicit equation foX(t), one immediately
infers that the inverse void ratio evolves according to

solution A(t)=1[1+ «k7In(1+t/7)]. Next we discuss the
asymptotic limits of Eq(14) for small and large times or tap
numbers.
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Since the compaction process starts Witf0)=1, the these effects happens whereaches the size of Due to the
short time asymptoticef Eq. (14) can be obtained by ex- aforementioned strong dependence of the relaxation time
panding the exponential term in E(L4) aboutA=1. This  on the tapping amplitud€ [4], the range of dominant void

yields diffusion can vary over several decades. In particular, the
biased void diffusion seems to be an essential ingredient for
A=—kA[1—(1—-A)/ kTA+ higher-order termps the understanding of compaction for comparatively low tap-

(15 ping amplitudes, ¥I'<2.

As a consequence, E(l4) reduces toA= — kA2 if 1+ k7 V. DERIVATION OF THE RELAXATIONAL LAW
>1/A or, equivalentlyt<27. This directly leads to an alge- FROM THE STROBOSCOPIC MODEL
braic decayA(t)=1/(1+ «t) and, therefore, to a relaxation
of the packing fractionp(t)=1/ for short times,t<2r.
Based on the idea of biased void diffusion as a result o
tapping granular matter of heigt#(t) in a vertical tube,
Hong et al. [8] found an algebraic relaxation a@ft) to a
finite heightz,=z(e0) being proportional to the time or tap

Here, we show that the minimal relaxation law for com-
paction, Eqg.(11), can also be interpreted as the coarse-
grained time-continuous limit of the stroboscopic model for
compaction proposed previously in REL7]. This model is
also supported by the cluster dynamical approach of
numbert and saturating after a finite timig. Since the mass Gavrilov [12]. Based on a comparatively crude dynamical

! ' ._modeling of the response of the granular system to a single
of thg g.ranular system is conserved and, tlhereforel, the he|gﬁ;t‘p it hgs been suggeste din RE?fY] that th)é relaxational 9
2(t) is mvgrsely proportional to _the packlng fractir{t), compaction process is governed by a stroboscopic nonlinear
Hong it al’s result[8] agrees with our findings for short map or difference equation for twmpaction ratioi.e., the
enough timeg<<27. . . ; o
To understand the long time asymptotics of Et), it is appropriately rescaled packing fraction after each tap

convenient to recast Eq14) in the form =123...,
. Pn~ P
A=—kexpl/kr)exd — (Uxk7A)(1—«72AINA)]. ap=—"—.
(16) PO~ P

The difference equation governing the stroboscopic dynam-
ics of the compaction process is given [dy/]

(17

The reduced packing fractiok(t) becomes very small in the
long time limit. This implies thati) Aln A approaches zero
ast—oo and (ii) Eqg. (14) is asymptotically equivalent té
=—xkexd —(1—A)/k7A] for long times or tap numbers. ap="f(ap-1,n)=
(This argument can be generalized. Any relaxational dynam-

ics of the formA=Qu(A), with Qu(A)=—f;ANexd —(1  whereh, denotes a memory term that depends on the tap
—A)/f,A] with f; andf, being positive coefficients anld  numbern via

being an integer and positive, can be rewritten in the form

A=Qu(A) = — f, exp(1f,)exd — (1/f,A)(1—f,NAINA)]. h,=C/(1+n/v) (19
Since the ternA In A approaches zero #sapproaches zero, )

Qu(A) approaches asymptotical@,(A) in the limit A—0. and labels how far the compaction process has progressed

Therefore, any relaxational dynamics of the ford already. In Eq(19), C andv are positive coefficients that are

—Qu(A) will eventually show a relaxation proportional to ?ndependent of time, but dependent on the tap intensity. Us-

1/Int.) The latter relaxation law, however, is exactly the '”98 thedinitsi)al congitionaozl,dthe exact S?lgﬁon of EES'
functional form that results from the collective reorganiza-(1 ) and (19) can be expressed in terms of digamma func-

tion argument put forward by Ben Naiet al. [14] on the ':ior'lshand Cﬁn ?e co?siclizere(i as the iterated equivEl@hof
basis of the one-dimensional parking lot mofed] and by ~ <night et al’s formula, Eq.(1).

Boutreux and de Genng¢&5] on the basis of a free volume Atllme-c%ntlggous coars_e-grame;j Lelaxatlonal _Iaw ”“.“ in-
argument. It is based on the idg3{ that an increase of the terpolates the discrete variations of the compaction ratio re-

density of an already packed system requires a collectivéUIting from Eq.(18) can be achieved by substituting
reorganization of a large part of the system and is exponen-

An—1

1+ hnan_l’ (18)

tially costly for particles that can move independently and an-1-A(L), (20
randomly. _

To summarize, our macromechanical argumésit or, an—ap-1-A(1), (21)
equivalently, the relaxation law for the reduced packing frac-
tion, Eq. (14), unifies in a natural waytwo mesoscopic hpe=h(t)=C/(1+t/v), (22

mechanisms for granular compaction that are dominant on
different time scales of the compaction process ancbate ~ whereA(t) is merely but the reduced packing fraction intro-
needed to explain the experimental result, Bg. For short ~ duced in Eq(13). The resulting time-continuous relaxational
timest< 7, biased void diffusioff8] with an algebraic relax- €quation reads

ation p(t)—p()x1l/t dominates granular compaction,
whereas the collective reorganization with a relaxajidt)

«1/Int dominates for long timegs>r. The crossover of A=

m—l)A(t). (23
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Since the coefficiert is typically of the order 10?[17] and

A(t)=<1 for the whole compaction process, one infers that

the producth(t)A(t) in the denominator of Eq23) is small
and even diminishes as time or compaction proceeds. Ther
fore, we can expand the denominator in E2@) in powers

of h(t)A(t) and obtain in the leading-order approximation

A(t)=—h(t)A%(t). (24)

Solving Eq.(24) with h(t) given by Eq.(22) and the initial
condition A(0)=1 vyields A(t)=1[1+CvIn(1+t/v)].
Therefore, it leads again directly to Knigkt al.’s fit for-
mula, Eq.(1). To relate the memory terin(t) that depends
so far on the tap number to the dynamics of the compactio
process, i.e., to exprebgt) as a function ofA, one can take
advantage of the relatid@v In(1+t/v)=1/A(t) — 1 that fol-
lows from a combination of the aforementioned solution
A(t) and Eq.(22). This implies that Eq(24) can also be
written in the equivalent form

A=—h(A)A? (25)
h(A)=Cexd —(1—A)/CvA]. (26)

With the trivial renamingC= x andv= 7, Eq. (25) in com-
bination with Eq.(26) is obviously equivalent to Eq.14)

VII. CONCLUSION

Despite the fact that compaction of granular matter driven
g_y periodic tapping is micromechanically highly complex,
We have reported a rather simple macromechanical mecha-
nism for the inverse effective void ratio that correctly repro-
duces the experimental findings of Knigttal.[4], Eq. (1).

By considering the asymptotic limits of our mean-field
model, we were able to identify E¢l4) as a smooth inter-
polation of biased void diffusiof8] and collective reorgani-
zation [14,15. Both macroscopic mechanisms for the dy-
namics of the packing fraction are rather robust in the sense
that the micromechanical details of the granular material
(e.g., the shape of the particlere of minor relevance. This
might be the underlying reason why recent numerical simu-

fhtions of Tetris-like models with a variety of different par-

ticle shape$16] (e.g., ball-shaped, T-shaped, L-shapaldo
reproduce the experimental resyly.

As far as generalizations of our mean-field model are con-
cerned, the application of previously successful ideas about
the extension of mean-field models to Langevin-type equa-
tions in the context of avalanches in granular systéh&
seems to be promising for the understanding of the spectral
behavior of compaction procesges. On the other hand, it
remains an open question for future research whether the
dynamical systems approach being used in this study can
also be extended to understand the annealing behavior of the
packing fraction under dynamical increase and decrease of
the tap intensity6].

and, therefore, also equivalent to the basic relaxation law,

Eq. (7). Moreover, one infers that the exponential factor in
Eq. (26) directly results from the memory terhy, or h(t) in

the stroboscopic or time-continuous description, respec-

tively.

VI. SOLID-COMPACTIBLE PHASE TRANSITION

As pointed out above, a granular system behaves like
solid for tapping intensitieF <1 since in that case the grains
cannot lift off or decompact and subsequently recompact as
response to a tap. Fbr>1, the granular system is compact-
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APPENDIX
a

Here, we give the details leading to the relati®. Ac-
@ording to Eq.(3), the packing fraction is given by

ible due to tapping and its relaxational compaction dynamics

is governed by Eq(12) with only one coefficient that de-
pends on the tap intensity, namely the relaxation time
Introducing® (t) = pg— p(t) as an appropriate order param-
eter,@(t) is zero forI'<1 (the solid phaseand relaxes to
the nonzero positive valyg, — p(e°) (being dependent o)

in the long time limit if '>1 (compactible phaseThe re-
laxational dynamics is governed by the relaxation time

which functionally depends on the distance from the phase

transition pointl’=1, i.e., 7=7(I'—1). The functional de-
pendence of- onI'—1 should slow down in a critical way,
7(I'=1—0)—x, and decay rapidly fof" larger than unity
since a reorganization of the grains is easier if the loosenin

p(t) = poe=—
of the granular system as an initial response to a tap is stron- [Vg+Vi+Vi(D][Vg+Vi]

ger. Although the general feature of a relaxation timthat
strongly increases when approachifig-1 is supported by
the experiments of Knightt al. [4], the existing data do not
corroborate a divergent behavior ofasI” approaches unity.
This is an interesting open problem for further experimenta
investigations.

_ Vg _ Vg
VAT VAR VR VAT

(A1)

which possesses the saturation limit

_ 9

From this, we obtain by straightforward algebra

g VgVi(t)

(A3)

and finally arrive at

P =p. V(D[Vg+Vi+V,(0)] x(t) 1

l Po~ P= _[Vg+vi+vr(t)]vr(0) _X(O) CX(t)”
(A4)
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