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Dynamic entropy as a measure of caging and persistent particle motion in supercooled liquids

Paolo Allegrini, Jack F. Douglas,* and Sharon C. Glotzer*
Polymers Division and Center for Theoretical and Computational Materials Science, National Institute of Standards and Techn

Gaithersburg, Maryland, 20899
~Received 18 December 1998!

The length-scale dependence of the dynamic entropy is studied in a molecular dynamics simulation of a
binary Lennard-Jones liquid above the mode-coupling critical temperatureTc . A number of methods exist for
estimating the entropy of dynamical systems, and we utilize an approximation based on calculating the mean
first-passage time~MFPT! for particle displacement because of its tractability and its accessibility in real and
simulation measurements. The MFPT dynamic entropyS(e) is defined as equal to the inverse of the average
first-passage time for a particle to exit a sphere of radiuse. This measure of the degree of chaotic motion allows
us to identify characteristic time and space scales and to quantify the increasingly correlated particle motion
and intermittency occurring in supercooled liquids. In particular, we identify a ‘‘cage’’ size defining the scale
at which the particles are transiently localized, and we observe persistent particle motion at intermediate length
scales beyond the scale where caging occurs. Furthermore, we find that the dynamic entropy at the scale of one
interparticle spacing extrapolates to zero as the mode-coupling temperatureTc is approached.
@S1063-651X~99!00711-4#
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I. INTRODUCTION

It has been suggested that the glass transition in co
liquids is a dynamic transition from an ergodic to a no
ergodic state. For example, the ideal mode-coupling the
predicts that the molecules of simple liquids become incre
ingly ‘‘caged’’ by surrounding molecules, resulting in a
ergodic to nonergodic transition at a critical temperatureTc
at which the fluid molecules become permanently localiz
~i.e., the self-diffusion coefficient vanishes! @1#. Although a
tendency toward particle localization for increasingly lo
times has been observed in simulations and experiment
supercooled liquids, particle localization and structural arr
does not actually occur at the extrapolated temperatureTc
because the particles are eventually able to ‘‘escape’’ t
cages. Recent simulations have also shown the tendenc
particle motion to occur in an increasingly correlated way
supercooled liquids@2–8#, a feature emphasized by the olde
phenomenological Adam-Gibbs model of glass format
@9#. The observed greater particle mobility nearTc is pre-
sumably a consequence of the increased collective motio
cooled liquids~‘‘hopping’’ in the extended version of the
mode-coupling theory@1#! which restores the ergodicity o
the liquid for some temperature range belowTc . This ther-
mally activated collective motion apparently postpones
ergodic to nonergodic transition to a lower temperature.
the Adam-Gibbs model@9#, this lower temperature corre
sponds to the conjectured ‘‘ideal’’ glass transition tempe
ture T0 , where the equilibrium configurational entropy e
trapolates to zero@10#.

If glass formation indeed represents an ergodic to non
godic dynamic transition, then it is important to define
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dynamical measure of order that quantifies both the ‘‘clo
ness’’ of the transition@11# and the degree of correlated mo
tion in an equilibrium glass-forming liquid. Ergodic theor
provides us with a natural measure in the form of the ‘‘d
namic entropy’’@12–17#.

The concept of dynamic entropy was introduced by Sh
non in his theory describing the capacity of ideal commu
cation devices to transmit information@18#. This idea was
later developed by Kolmogorov and others@13# into a gen-
eral measure of the ‘‘degree of randomness’’ or ‘‘degree
chaos’’ of dynamical systems. According to Pessin’s the
rem @19#, the Kolmogorov-Sinai dynamic entropyhKS for a
Hamiltonian dynamical system equals the sum of the po
tive Lyapunov exponents@19,20#. These exponents are me
sures of the ‘‘instability’’ of the system evolution@12,16#.
Dynamic entropy extends the equilibrium definition of e
tropy from statistical mechanics to thetime domain. The dy-
namical entropy provides an estimate of the rate of growth
‘‘information’’ ~per unit time! required to describe the evo
lution of a dynamical system@14,15,21#, and is also a mea
sure of the ‘‘complexity’’ of a dynamical system@22#. The
dynamic entropy characteristically decreases as a system
ders and its exploration of its phase space becomes m
restricted@23,24#. Thus, the dynamic entropy decreases a
fluid crystallizes or a magnet orders@24–27#.

The Kolmogorov-Sinai dynamic entropy has some sho
comings in the description of complex configuration
changes that occur in supercooled liquids. In particular,hKS
diverges for the ideal process of Brownian motion~due to
the nondifferentiability of the trajectories! @14,28,29#. Con-
sequently, we must anticipate difficulties in applying d
namic entropy to quantify particle motions at large leng
and time scales in the case of supercooled liquids. Rece
there has been an important generalization of the dyna
entropy concept that provides a ‘‘bridge’’ between micr
scopic dynamical system descriptions and macroscopic
chastic descriptions of liquid dynamics. This generalizat
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recognizes that the amount of information required to
scribe the paths of a stochastic process depends strong
the length scale of observatione. The e-dependent dynamic
entropy h(e) of Gaspard and Wang and others@14# ~also
called ‘‘e entropy’’! reduces to thehKS entropy in the limit
of small e,

lim
e→0

h~e!5hKS, ~1.1!

and is well defined for idealized stochastic processes
fixed, nonvanishinge. The dynamic entropy of a Brownia
particlehB(e) obeys the scaling relation,

hB~e!}e22, e.0, ~1.2!

where the proportionality constant is fixed by the parti
diffusion coefficient@14#. As mentioned above,h(e) for sto-
chastic particle motion diverges ase→0, and the exponen
reflects the fractal dimension of the particle trajector
@14,30#. Specifically, the exponent 2 in Eq.~1.2! is the Haus-
dorff dimension of a Brownian path in three dimensio
@31#, and in the limit of perfectly coherent~ballistic! particle
motion this exponent is 1. In idealized stochastic proces
~e.g., fractional Brownian motion, Le´vy flights, etc.! the ex-
ponent in Eq.~1.2! can be identified with the path Hausdor
dimension@13,14,30,32#, and can take values intermedia
between 1 and 2. This exponent reflects the ‘‘degree of p
sistence’’ in the particle displacement relative to Browni
motion.

The scale dependent dynamic entropyh(e) for complex
dynamical systems such as liquids depends strongly on
observational scalee. At very smalle the microscopic cha-
otic motion of the molecules is observed, so thath(e) varies
slowly with e. The decorrelation of particle velocities in
liquid occurs at a time and space scale corresponding to
average interparticle ‘‘collision time,’’ andh(e) starts vary-
ing with e as this decorrelation occurs. This helps us to id
tify a characteristic space and time scale over which the b
microscopic dynamics can be coarse grained by a stoch
description. Correlations associated with particle displa
ment arise at longer times in cooled liquids, andh(e) also
helps us in determining the spatial and time scales o
which these correlations occur.h(e) thus provides a measur
of the degree of chaotic motion appropriate to the descrip
of real systems at arbitrary observational scales, and is
attractive tool for quantifying the increasingly correlated m
tion in cooled liquids. It is notable that its definition is n
restricted to circumstances where statistical mechanical e
librium exists, so that this measure of the degree of ch
extends to nonequilibrium situations such as the glass s
and turbulent fluids@14#.

The calculation ofh(e) @14# ~or hKS! is generally difficult,
especially in cases wherehKS is small and long computa
tional times are required for its accurate determinat
@14,25#. In the present paper, we utilize a simple approxim
tion for h(e) that has the advantage of being accessible
experiments on real materials and computer simulati
@14,33#. Provided that the spatial scalee is not too small
@14#, h(e) can be approximated by enclosing the parti
position at timet50 by a sphere of radiuse centered on the
particle, and then determining the timet at which the trajec-
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tory first arrives at the threshold distancee ~see Fig. 1!. We
average this ‘‘first-passage time’’ over all particles in t
liquid to obtain the mean first-passage time~MFPT! t(e),
and we define the ‘‘MFPT dynamic entropy’’S(e) as

S~e![1/t~e!, ~1.3!

where

t~e![E
0

`

dt Pe~ t ! t. ~1.4!

Pe(t)dt is the probability that the particle reaches the d
tancee betweent and t1dt. The dynamic entropyS(e) is
thus one measure of the average ‘‘escape rate’’ of a par
from its local environment@34#. We note that although the
definition ofS(e) is motivated by dynamical systems theo
concepts, this property defines an independently interes
measure of correlated motion in liquids that does not rely
the approximation relatingS(e) to h(e).

In this paper we utilizeS(e) to identify characteristic
space and time scales in the particle dynamics, and to q
tify the increasingly correlated motion observed in previo
analyses of the same simulations considered in the pre
paper. These studies indicated the development of large s
dynamical heterogeneity and the nature of this dynam
heterogeneity has been examined in a series of recent pa
that are complementary to the present work@2–7#. There it
was established that transient clusters of highly ‘‘mobil
particles form in the cooled liquid, and that the average s
of these clusters grows rapidly asTc is approached@3#. A
pair distribution function for particle displacements was d
fined, and this quantity exhibits a growing length scale up
cooling that reflects the clustering of mobile particles@5–7#.
The growing length scale is time dependent, and attain
peak value at a time in thea-relaxation regime@6,7#.

It has also been shown in the present liquid that the p
ticles within the mobile particle clusters move in coope
tively rearranging ‘‘strings’’@2,35#. Notably, the stringlike
collective motion also begins well aboveTc , but the strings
themselves exhibit no tendency to grow rapidly nearTc .
Instead, the length distribution of the strings is found to
nearly exponential, and a similarity of this distribution to th

FIG. 1. Schematic of a particle trajectory in a cooled liquid. T
gray region represents thee sphere.t(e) is the first-passage time
for the particle to reach the boundary of thee sphere. The filled
circle denotes the initial particle position, and the open circle
notes the particle at the first-passage time.
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commonly observed in equilibrium polymerization has be
noted@2#. Donatiet al. @2# suggested that the growing barri
height to particle motion is proportional to the average str
length, which would imply that these stringlike motions ha
a basic significance for understanding transport in coo
liquids. Thus stringlike correlated particle motion appears
be an important mode of motion in our cooled liquid@2# and
part of the motivation of the present work is to better ch
acterize the development of this type of collective motio
We are also interested in the extent to which particle d
placement becomes intermittent in time in cooled liqui
since a growing intermittency in particle motion has be
suggested to underlie the glass transition@36,37#.

The paper is outlined as follows. In Sec. II we revie
some details of the molecular dynamics simulation data
lized in this work. Section III examinesS(e) over a broad
range of scales, and dynamical regimes are defined wher
motion is ballistic, transiently localized, persistent, and d
fusive. These regimes are examined in separate subsec
We summarize our findings in Sec. IV.

II. SIMULATION DETAILS

The system studied is a three-dimensional binary mixt
of 8000 Lennard-Jones~LJ! particles in which the sizes o
the particles and the interaction parameters are chose
prevent crystallization and demixing@38#. The size of theA
particles is about 10% larger than that of theB particles
~while the mass is the same!, and the particles have a relativ
concentration 80:20 ofA particles toB particles. We report
our results in dimensionless LJ units@38#. The system was
equilibrated at different temperaturesT in the range 0.451–
0.550. The densityr varied from 1.09 particles per unit vol
ume at the highest temperature to 1.19 at the lowestT simu-
lated. For reference, the mode-coupling temperatureTc for
this system isTc50.435 atr.1.20@2,7,39#, so all the simu-
lation data analyzed here are well above the glass transi
Configurational histories for up to 43106 molecular dynam-
ics time-steps following equilibration were stored for ea
run. Following equilibration in theNPTandNVTensembles,
the trajectories were calculated in anNVE ensemble, and
snapshots containing the particle coordinates and veloc
were taken at logarithmic time intervals during the run. He
N, P, V, T, andE denote constant particle number, pressu
volume, temperature, and energy, respectively. In this st
the equations of motion were integrated using the velo
Verlet algorithm with a step size of 0.0015 at the high
temperature, and 0.003 at all other temperatures. Adop
argon values for the LJ parameters of the large particles
plies an observation time of'26 ns for the coldestT. All
data presented here are calculated for the majority (A) par-
ticles only, except where otherwise noted@40#. Further de-
tails of the simulation can be found in Ref.@3#.

Over the temperature-density regime studied, the sys
exhibits the usual features of a fragile@41#, glass-forming
liquid. For example, the mean square displacement^r 2(t)&
[^(1/NA) ( i 51

NA ur i(t)2r i(0)u2& for the A particles is shown
in Fig. 2 for differentT. Herer i(t) is the position of particle
i at timet, NA is the number ofA particles~6400!, and^¯&
denotes an ensemble average. For each state point, a
teau’’ exists in both the mean square displacement and
n
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self-part of the intermediate scattering functionFs(q,t) as a
function of t. The plateau in Fig. 2 separates an early tim
‘‘ballistic’’ regime from a late time diffusive regime. The
plateau is interpreted as implying ‘‘caging’’ of the particle
and this phenomenon is typical for liquids at low temperat
or high density. Over the range ofT studied, thea-relaxation
time ta , describing the decay ofFs(q,t) ~at the value ofq
corresponding to the first peak in the static structure fact!,
increases by 2.4 orders of magnitude, and follows a po
law ta;(T2Tc)

2g, with Tc.0.435 andg.2.8. The simu-
lated liquid states analyzed here therefore exhibit relaxa
behavior characteristic of a supercooled liquid. No lo
range structural correlations due to density or composit
fluctuations are apparent in the simulation data@3#.

III. CHARACTERISTIC DECORRELATION TIME
AND SPACE SCALES

In Fig. 3 we show the MFPTt(e) versuse for six differ-

FIG. 2. Mean square displacement of the majority species~A
particles! vs time for differentT.

FIG. 3. Mean first-passage timet of the majority species~A
particles! vs e, for different T. Inset: Mean first-passage time dy
namic entropyS(e). Compare theS(e) variation observed here fo
a cooled liquid with the dynamic entropyh(e) calculated for a
one-dimensional model map exhibiting diffusion at long tim
@compare the present figure with Fig. 25~b! of Gaspard and Wang
@8##.
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ent runs corresponding to varying the temperature of the
tem from T50.550 to 0.451. In the inset we show the d
namic entropyS(e)[1/t(e). Note that the variation oft(e)
with e exhibits similar qualitative trends to the variation oft
with ^r 2(t)& shown in Fig. 2.

For smalle, corresponding to the inertial regime,S(e) is
insensitive to temperature. At intermediatee values we see a
decrease ofS(e) with decreasingT and an increase in th
magnitude of the slope in the log-log plot. A strong tempe
ture dependence ofS(e) is apparent at a scale on the order
one interparticle distance (e51). On these larger scales, w
show in a later subsection thatS(e) exhibits a power-law
scaling withe and reduced temperature.

It is apparent from Fig. 2 that the particle displacemen
this cooled liquid is not Brownian over most of the simul
tion time scales, and it is conventional to quantify this dev
tion by a ‘‘non-Gaussian parameter’’a(t) involving the mo-
ments^r 2(t)& and ^r 4(t)& of the self-part of the van Hove
correlation function Gs(r ,t)[^(1/NA) ( i 51

NA d@r2„r i(t)
2r i(0)…#&. The parametera(t) is defined as

a~ t ![
3^r 4~ t !&
5^r 2~ t !&2 21, ~3.1!

and vanishes for Brownian motion.a(t) is shown in Fig. 4
together witht(e) for the coldest run (T50.451); note that
for a(t), time t is plotted on the ordinate axis. This compa
son allows us to identify four regimes: an inertial regim
~regime I! where the non-Gaussian parameter is small; a ‘
calization’’ regime characterized by a large value for t
slope in thet(e) log-log plot and by a growinga(t) ~regime
II !; a regime of particle motion that is persistent relative
Brownian motion, and wherea(t) decreases~regime III!;
and a fourth regime where the non-Gaussian parameter
decayed back to very small values so that the particle mo
is nearly Brownian~regime IV!. The four regimes are exam
nated in detail in the following subsections.

We emphasize that while some parallelism exists betw
the mean square displacement and the first-passage time

FIG. 4. Classification of dynamic regimes. MFPTt(e) ~solid
curve! plotted vse, and the non-Gaussian parametera(t) ~dashed
curve! plotted vs t, forT50.451. Inset: Comparison betweent(e)
~solid curve! and ^r 2(t)& ~dot-dashed curve! on a linear scale.
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inset of Fig. 4 comparing these quantities shows that they
not equivalent. However, if the distribution of particle di
placmentsGs(r ,t) were always exactly Gaussian@i.e., a(t)
50 for every t#, then a simple inverse function relatio
should hold between these quantities.Gs(r ,t) obeys a ‘‘scal-
ing relation’’ if we can rescaleGs(r ,t) as

Gs~r ,t !5
1

tn f S r

tnD , ~3.2!

wheref is some function. Simple dimensional analysis bas
on Eq.~3.2! implies,

^r 2~ t !&}t2n, ~3.3!

and the scaling of the first-passage time withe,

t~e!}e1/n. ~3.4!

In practice, these idealized scaling relations are restric
to certain time and space scales. Scaling withn51 is ob-
served in the short time inertial regime. This result can
inferred from the general relation between the second m
ment ofGs(r ,t) and the particle velocity,

^ ṙ ~0!• ṙ ~ t !&5
1

2

d2^r 2~ t !&
dt2

, ~3.5!

and the constancy of the velocity autocorrelation function
short times@42,43#,

^ ṙ ~0!• ṙ ~ t !&→^ ṙ ~0!• ṙ ~0!&[v0
2, t→0, ~3.6!

where v0 is the average particle velocity. Integrating E
~3.5! over a short time interval obviously gives^r 2(t)&;t2

or ‘‘ballisticlike’’ motion. Actually, this scaling is just a con-
sequence of the existence of equilibrium, and should no
construed as necessarily implying the absence of interpar
interactions at short time scales@43#. A Gaussian form for
the van Hove correlation function in this short time regime
ensured by the Maxwell-Boltzmann distribution for the pa
ticle velocities. In the opposite extreme of very long time
the central limit theorem governing the sum of independ
particle displacements implies that the particle displacem
distribution is Gaussian, and thatn51/2. Transient scaling
regimes can be observed at intermediate time scales, h
ever. We refer to particle displacements as ‘‘persistent’’ re
tive to Brownian motion ifn.1/2, or ‘‘localized’’ relative to
Brownian motion ifn,1/2.

A. Inertial regime

In the limit of very smalle we probe the fast microscopi
dynamics associated with the decorrelation of the part
momenta. It is difficult to probe this decorrelation direct
using the first-passage time approximation to the dyna
entropy. Figure 3 indicates that our approximation for t
dynamic entropy appears to diverge fore→0, so our ap-
proximation must break down in this limit. Gaspard a
Wang have pointed out that the first-passage time appr
mation to the dynamic entropy breaks down in this lim
@14#, so this shortcoming is to be expected. An estimate
the expected plateau inS(e) corresponding to the
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Kolmogorov-Sinai entropy can be obtained by determinin
cutoff time of the first-passage time distributions in the f
dynamics regime.

The dynamics in this regime is examined by setting
magnitude of the first-passage sphere~e sphere! about the
center of each particle to be small enough that a collis
does not usually occur before the particle leaves thee sphere
~see Fig. 1!. By focusing on the particle first-passage time
this regime we identify a time and space scale over wh
particle velocities begin decorrelating. The first-passage t
in this regime is insensitive to the type~A or B! of particle,
since they have the same mass. This is apparent in Fig
where the first-passage time distributions for both theA and
B particles are shown for the coldest run ande50.1.

The idealization of ballistic particle motion implies th
time t(e) it takes for the particle to exit the sphere of radi
e equalse/v0 . Figure 6 shows an expanded plot oft versus
e in the smalle regime where this linear dependence oft on

FIG. 5. Probability of first-passage timePe(t) for the A andB
particles atT50.451 ande50.1. Inset: Same data represented in
semilog scale.

FIG. 6. t vs e in the smalle regime, 0.001,e,0.15, for T
50.468. Inset: log-log plot of the same data. Note that
asymptotic linear scaling oft(e)51.14e ~solid lines! breaks down
around a valueev'0.05, corresponding totv'0.6. ev andtv are
approximately independent of temperature~see also Fig. 3!. For the
T range considered in the simulation.
a
t

e

n

h
e

5,

e is apparent. A nonlinear dependence oft on e develops as
the particle velocities decorrelate at a ‘‘velocity decorrelati
scale’’ ev'0.05. This distance corresponds to the timetv
'0.6 ~on the order of 10213s in argon units!. We find thatev
andtv are approximately independent of temperature in
present simulation~see also Fig. 3!.

We obtain further insight into the decorrelation of partic
velocities in the inertial regime by examining the distributio
of first-passage times,Pe(t), as a function ofe. Figure 7
showsPe(t) for e50.1 and 0.03 forT50.468. We obtain a
good approximation toPe(t) in the inertial regime through a
Gaussian approximation forGs(r ,t) @44# in conjunction with
the first-passage distribution for Brownian paths@45#. The
first-passage time distributionPe(t) scales as

Pe~ t !;expS 2e2

2^r 2& D ~3.7!

at short times, and decays exponentially at long tim
Pe(t);exp@2t/t(e)# @45#. We then introduce the approxima
tion:

Pe.
A

t2 expF2
1

2 S e

v0t D
2

2
t

t~e!G , ~3.8!

whereA is a normalization constant.^r 2&1/2 in Eq. ~3.7! has
been replaced byv0t based on the assumption that the p
ticle displacements are nearly ‘‘ballistic’’ in the inertial re
gime. Note that the limiting expression forPe(t) given by
Eq. ~3.7! can also be deduced by assuming a Maxwell vel
ity distribution ~one dimensional due to the near rectiline
motion! with the velocity replaced bye/t. Figure 7 shows
that Eq.~3.7! ~solid line! does not provide an accurate fit t
the data usingv051/1.14 from the linear slope in Fig. 6
while the approximate expression Eq.~3.8! fits well for e less

FIG. 7. First-passage time distributionsPe(t) in the inertial re-
gime. The main figure contains six different temperatures ae
50.1 plotted on a log-log scale. The solid line indicates Eq.~3.7!,
where the constant of proportionality has been adjusted to bes
the data. The long-dashed line indicates the cutoff distribution fu
tion @Eq. ~3.8!# with no free parameters. Inset:Pe(t) at T50.468
for e50.03. This value ofe is less than the velocity decorrelatio
scale ev indicated in Fig. 6. Equations~3.7! and ~3.8! are also
shown in comparison with the simulation data. Note the absenc
the long tail in the inset distribution.

e
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than the ‘‘velocity decorrelation scale’’ev'0.05. For
e.ev , Pe(t) shows evidence of developing a power-la
‘‘tail’’ at long times, as seen in the main part of Fig. 7. Th
tendency becomes more developed at largere, as discussed
in Sec. III B. The inset of Fig. 7 shows first-passage tim
data fore,ev , where the tail is nearly absent and the cut
is evident. At this point, we note that in liquidshKS charac-
teristically scales as the inverse of the average interpar
collision time and thus has the interpretation of a mic
scopic ‘‘collision rate’’ @12,14#. The timetv can be consid-
ered as an average particle collision time, so that an inv
relation betweenhKS andtv is expected. We do not conside
the relation betweentv and hKS, since simulations over a
broader temperature range and the direct calculation of
Kolmogorov-Sinai entropy through Lyapunov expone
spectra@46,47# are required for such an investigation.

B. Particle localization regime

The tendency of particle motion to become increasin
localized, as emphasized by the mode-coupling theory,
conspicuous feature of experimental and simulation data
supercooled liquids. The ‘‘plateau’’ in the mean square d
placement log-log plots~see Fig. 2! indicates transient par
ticle localization or ‘‘caging,’’ and the persistence of th
plateau increases with decreasingT @48#. Next we utilize the
dynamic entropy concept to quantify this localization.

An increase in the slope of lnt(e) versus lne in Fig. 3
provides evidence for localization. A numerical differenti
tion of the data in Fig. 3 is shown in Fig. 8~a!, whereD(e)
denotes the logarithmic derivativeD(e)[d ln t/d ln e. The

FIG. 8. ~a! D(e)[d ln t(e)/d ln(e) for ~from top to bottom! T
50.451, 0.457, 0.468, 0.480, 0.505, and 0.550. Inset: ‘‘cage’’ s
ec vs T. ~b! L[maxD(e) plotted vsT. The dashed line is a power
law fit to the data, as indicated in the text.
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scaling behavior in Eq.~3.4! implies thatD(e) corresponds
to the fractal dimension 1/n of the particle trajectories. Fig
ure 8~a! shows that for allT, D(e)→1 for smalle, andD~e!
seems to approach a constant value 1/n for largee. At inter-
mediate values ofe, we observe thatD(e) develops a maxi-
mum atec , corresponding to the inflection point in Fig. 3
This length scale defines a distance that is difficult for
particle to exceed, and thus we defineec as the ‘‘cage’’ size.
The inset in Fig. 8~a! shows thatec decreases with tempera
ture, so that increased particle confinement occurs with c
ing. Independent evidence indicating the significance of t
characteristic scale is discussed later in this subsection.

We denote the value ofD(e) at ec by the ‘‘localization
parameter’’L(T)[maxD(e)5D(ec), and itsT dependence
is shown in Fig 8~b!. The value ofL(T) increases with
cooling, consistent with increasing particle localization~n
,1/2!. The relatively noisy data in Fig. 8~b! can be fitted by
a power law,L(T)5210.15(T2Tc)

21.03, with Tc50.435.
Our identification of the cage sizeec from the maximum

value ofD(e) is further supported by the examination of th
first-passage time distributionPe(t) for e nearec . We find
that Pe(t) develops a long time power-law tail in this inte
mediate regime which is symptomatic of the developmen
intermittency in particle motion and particle localizatio
@36#. In Fig. 9 we show, forT50.451, Pe(t) at several
values ofe nearec50.2160.02. The apparent power law fo
thePe(t) tail varies withe and has a value near 2 fore'ec .

This power-law tail behavior inPec
(t) is shared by the

four coldest temperatures, as shown in Fig. 10, where
asymptotic behavior of the distributions is seen to be num
cally very similar. The difference in their first moments@i.e.,
t(ec) in Fig. 3# reflects both the differences between t
distributions in Fig. 10 at short times, and the asympto
cutoff in the distributions that is difficult to resolve numer
cally.

Odagaki@36# suggested that the second and first mome
of the first-passage time distribution at the scale of one
terparticle distance diverge atTc and at the glass transitio
temperatureTg , respectively, and a recent paper by Hiwat
and Muranaka@49# supported this glass transition scenar

e

FIG. 9. First-passage time distributionsPe(t) for T50.451, at
different values ofe nearec50.2160.02. The dashed line indicate
an inverse power lawt22 for comparison.
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A transition to intermittent particle motion at the glass tra
sition was also suggested by Douglas and Hubbard@37#. Our
observations are consistent with the growth of intermitten
of particle motion asTc is approached, but we cannot co
firm theoretical predictions of a dynamical transition in t
degree of intermittancy until lower temperatures are exa
ined. An accurate test of these predictions will require ca
fully equilibrated data belowTc , beyond the temperatur
range of the simulations analyzed here. We point out tha
the present system, the scale at which this intermittency
curs is substantiallysmaller than one interparticle spacing
and instead pertains to motion at the scale of the cage
ec .

C. Regime of persistent particle motion

Previous work has shown that particle motion becom
increasingly collective in this supercooled liquid, and that
important mode of motion at the scale of the interparti
distance involves the stringlike collective motion of pa
ticles. A visualization of this process@50# suggested to us
that this process becomes increasingly ‘‘coherent’’ or ‘‘jum
plike’’ at lower temperatures, and this tendency toward ‘‘c
herent jumping’’ has been noticed in a number of oth
physical systems~melting of hard disks@51#, hexatic liquids
@52# and ordering plasmas@53#!. In this subsection we utilize
S(e) to further quantify this effect.

Regimes I and II were defined by characteristic spa
scales at which changes occur in the first-passage time
tributions. However, the long run times of the simulatio
analyzed here necessitated the storing of configurations
logarithmic, rather than linear, time scale, for all but t
coldest simulation@3#. As a consequence, first-passage ti
distributions cannot be obtained over a continuous rangee
for large e. In the absence of complete information, w
roughly identify regime III by the tendency for the non
Gaussian parametera(t) to decrease~see Fig. 4!. In Fig. 11
we show the apparent fractal dimensionD(e) in regime III
for the highest and lowest temperatures.~The results for allT
are shown over an extended scale in Fig. 8!. Notice that
persistent particle motion@D(e),2# develops fore.0.6 in
Fig. 8 ~althoughD remains near 2 at the highest tempe
tures! and consequently we showD(e) for the range

FIG. 10. First-passage time distributionsPec
(t) at the cage

scale,e5ec , for four differentT.
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0.7,e,1.0 in Fig. 11. The value ofe at which D(e)52
provides a more precise estimate for the beginning of reg
III. Although the data are noisy, we find thatD(e)'2 for
high T within numerical error, and is nearly independent
e. Particle displacement at high temperature is then reas
ably approximated by Brownian motion on these spa
scales. However, a substantially smaller average value
D(e)'1.7 ~dashed line in Fig. 11! is found for the lowestT.
Thus, we find the particle motion becomes increasingly p
sistent on cooling.

Why is persistent motion not observed in the mean squ
displacement? The tendency for persistent particle motio
not apparent in̂r 2(t)& shown in Fig. 2 or in the inset of Fig
4 because, when averaging over the squared displacem
the contribution of the few particles that are at any giv
time moving persistently is ‘‘washed out.’’ However, the
particles give a large contribution to the mean first-pass
time, so that this quantity is therefore a more sensitive ind
tor of persistent particle motion.

We can obtain insight into the emergence of persist
particle motion in our cooled liquid from idealized models
Brownian motion subject to potential fluctuations. If the p
tential fluctuations are quenched, there is a tendency tow
particle localization@54#, but the occurrence of fluctuation
in the potential in both space and time can lead to persis
particle motion. In particular, if the fluctuations ared corre-
lated in both space and time, then the exponentD equals 3/2
@55#. The effects observed in Ref.@55# are qualitatively con-
sistent with our understanding of the origin of correlat
motion. At short times, the existence of relatively immob
particles leads to a randomly fluctuating field ‘‘felt’’ by thos
particles free to move at a given point in time. This spatia
fluctuating field is responsible for the particle caging or
calization on time scales short compared to the decorrela
time ta of the ‘‘structural fluctuations’’~associated with the
relatively immobile particles!. At longer times, the formerly
immobile particles become mobile and the potential fie
fluctuates in time, leading to an enhancement in the part
displacement. At still longer times, thermal fluctuations~and
associated additive noise! restore equilibrium and particle
displacement ultimately becomes diffusive.

FIG. 11. Apparent fractal dimensionD(e) of particle displace-
ments in regime III. From Fig. 8, the highest and lowest simulat
temperaturesT50.5510 and 0.4510 are shown for 0.7,e,1.0.
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Finally, we point out that particle motion can be persiste
even in the absence of a secondary~so-called ‘‘hopping’’!
peak inGs(r ,t). Instead, persistent particle motion contri
utes to a long tail inGs(r ,t) in the temperature range of th
present system@3,4#. This long tail develops into a seconda
peak at lowerT @56#, indicating the increased contribution o
collective particle motion to transport belowTc .

D. Large scale particle displacement

Particle displacement in a liquid at large scales is
scribed by Brownian motion so thatS(e) should scale as
ymptotically ase2 for largee, regardless of temperature. It
apparent in Fig. 2 that the data in the asymptotic diffus
regime are limited, especially at lower temperatures. Pr
ous work has shown that there is a tendency for ‘‘mobil
particles, which dominate transport in cooled liquids ne
Tc , to move an interparticle distance during the time
which they are mobile@2–5#. This happens because the pa
ticles tend to move between local minima in the poten
surface describing the interparticle interaction@56,57#. This
feature is especially apparent in the stringlike particle mot
noted before, where it has been observed that the str
‘‘disintegrate’’ once an interparticle displacement has be
achieved@2#. Thus one interparticle distance is taken to
the minimal scale of the large scale particle displacem
regime~regime IV!.

In the previous discussion, we have established thatS(e)
is insensitive to temperature for smalle over the temperature
range investigated. This insensitivity accords with the
pected variation of dynamic entropyhKS. At higher T we
expect the dynamic entropy to saturate, while a decre
should accompany the more restricted particle motion
lower T @25#. A variation similar to that shown in the inset o
Fig. 12 has been established for the ordering of theXY

FIG. 12. Dynamic entropyS(T,e) at the scale of one interpar
ticle separation,e51, vs T2Tc , with Tc50.435. Diamonds refer
to the simulation data forS(e51), and the dashed lines refer to th
power law, S(T);(T2Tc)

2.5. We also observe this scaling fo
S(e50.4) ~circles!. The inverse of the structural relaxation 1/ta

~triangles! follows a power law 1/ta;(T2Tc)
2.8. Inset: Schematic

indication of expected temperature variation of dynamic entro
hKS at small scales. Note that the extrapolated ergodic-nonerg
transition in thee→0 limit is indicated to occur at a temperatu
T0,Tc .
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model @24#. The investigation of the anticipated ergodi
nonergodic transition and its possible relation to a vanish
of hKS requires the calculation of the full Lyapunov spe
trum, which is currently prohibitive for a system of th
present size. However, we can investigateS(e) at a larger
scale on the order of an interparticle spacing. This should
interesting because of the strongT dependence inS(e) at
this length scale noted above~see Fig. 3!.

In Fig. 12 we examine theT dependence ofS(T;e) at the
scale of one interparticle separatione51. We observe that
S(T;e51) obeys a power law to a good approximation ov
the temperature range investigated, and thatS(T;e51)
seems to extrapolate to zero at the mode-coupling temp
ture Tc50.435. As shown in Fig. 12, a reasonable fit to t
data is obtained with the relation

S~e51!;~T2Tc!
2.5, Tc50.435. ~3.9!

The scaling ofS(t;e51) is compared in Fig. 12 to the struc
tural relaxation timeta describing the decay of the interme
diate scattering function. Although the scaling of the tw
quantities is qualitatively similar, the best fit exponent forta
has the somewhat larger value of22.8.

The power-law scaling ofS(e51) with temperature is
not obvious since if the particle displacement were exac
described by Brownian motion, thent(e) would scale in
inverse proportion to the diffusion coefficient. A determin
tion of the diffusion coefficient forA particles is obtained by
a simple least-squares fit~not shown! of the long time data to
the function^r 2(t)&5A16Dt. This fitting gives

D;~T2Tc!
2.1. ~3.10!

A more refined estimate by Kob and Anderson@39# on a
smaller~1000 particles! system gave an exponent 2.0 for th
A particles. The diffusion data thus scales with a fractio
power of the structural relaxation time,

D;ta
2(2.1/2.8).ta

20.75, ~3.11!

over the temperature range investigated. Since evidence
ports a common temperature scaling ofta and the fluid vis-
cosity h @58#, the observation implied by Eq.~3.11! is con-
sistent with the breakdown of the Stokes-Einstein relation
real and simulated supercooled liquids@59–61#. We there-
fore conclude thatS(e51) scales neither exactly like th
inverse structural relaxation time 1/ta nor like the diffusion
coefficientD. Other characteristic times exist for this liquid
It has recently been reported for the same simulations inv
tigated here that the time scale on which particle displa
ments are most correlated scales as a power law withT
20.435), with an exponentg52.360.2 @7#. This exponent
notably agrees within numerical error with the exponent
Eq. ~3.9!. We further note that the timet* at whicha(t) is a
maximum~see Fig. 4! appears to diverge asT→Tc with an
exponent 1.7@3#.

Since the temperature dependence ofS(e) is largest in
Fig. 3 for e51 and very small fore→0, it is natural to
consider the temperature dependence ofS(e) for many fixed
e to determine how this crossover occurs. In Fig. 13 we
that the scalingS(T)}(T2Tc)

2.5 holds fore greater than the
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cage sizeec and sufficiently small reduced temperature. W
also find that for any temperature, the scaling fails fore,ec .
This provides another method for determining the cage s

IV. CONCLUSION

We have studied the length-scale and temperature de
dence of the dynamic entropyS(e) in a molecular dynamics
simulation of a model supercooled binary Lennard-Jones
uid. The simulations were performed above both the gl
transition temperature and the mode-coupling critical te
peratureTc and correspond to equilibrated liquid states@3#.

S(e) as estimated by the MFPT provides a tool for ide
tifying characteristic length and time scales of the dynam
of liquids and provides a means for quantifying the degree
correlated motion occurring in supercooled liquids. At ve
smalle we observe a decorrelation of particle velocity and
S(e) which is insensitive to temperature ande variation. A
decorrelation time associated with an average interpar
collision time is identified. At intermediate values ofe we
observe a sharp drop inS(e) with increasinge, indicating
that the path motion is more ‘‘stochastic’’ at these leng
scales.S(e) is found to have a strong temperature dep
dence as well in this regime. The logarithmic derivativeD
[d ln t/d ln e becomes a maximum at a characteristice value
that is identified with the particle ‘‘cage’’ sizeec , since par-
ticle localization is maximal at this point. The scaling
S(e) with temperature at fixede gives an independent con
firmation of our estimation ofec because it exhibits a quali
tatively different dependence on temperature fore.ec and
e,ec . The localization parameterL[D(ec) increases and
the cage sizeec decreases as the liquid is cooled. The dis
bution functions for the first-passage time at the scale of
cage size,Pec

(t), in the coldest runs exhibit a long powe
law tail, consistent with suggestions that there is grow
intermittency in the particle displacements in glass-form
liquids @36,37#. This feature requires further study in cool
liquids to check the predictions of these models. At s
larger scales~still less than one interparticle separation! we
observe persistent motion which follows the transient p
ticle ‘‘caging.’’ S(e) obeys a power lawS(e);e21/n for e in

FIG. 13. Dynamic entropyS(T,e) vs T2Tc , calculated at fixed
values ofe. Dotted lines denote the power law,S(T);(T2Tc)
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the range (0.7,1) where the apparent fractal dimension of
particle trajectoriesD(e)51/n ranges from'2 to '1.7 as
the temperature is lowered. Thus, we observe a tendency
the particle motion to acquire a persistent character rela
to Brownian motion as it is cooled. This is consistent w
the previous observation of correlated stringlike motion
this liquid @2# and gives a single particle displacement p
spective on this phenomenon.

General arguments suggest that the dynamic entrop
microscopic scales decreases at low temperatures, b
slower variation should be obtained at higher temperatu
as in the present molecular dynamics calculation~see Fig. 2!.
The situation is not so clear for the first-passage time
namic entropyS(e) at the scale of one interparticle separ
tion e51. In this caseS(e51) is inverse to the ‘‘average
interparticle exchange time@62#,’’ t(e51). We find that
S(e) vanishes as a power law,S(e51)}(T2Tc)

2.5, when
the mode-coupling temperatureTc is approached from
above. Thus, the cooled liquid has the appearance of
proaching an ergodic to nonergodic transition asT→Tc ,
when viewed at the scalee51. This is consistent with the
predictions of mode-coupling theory.

The first-passage time can also be utilized to obtain inf
mation about the spatial dependence of mobility fluctuatio
in cooled liquids. Perera and Harrowell@63#, for example,
examined the position dependence oft at the scale of one
interparticle spacing in a two-dimensional soft-sphere sup
cooled liquid, and found a tendency for particles of relative
high and low ‘‘mobility’’ ~i.e., small and larget, respec-
tively! to cluster asT is lowered. A detailed study of spatia
correlations of first-passage times in the present system
be presented elsewhere@64#.

Future work should examine our approximate express
for S(e) in the e→0 limit through independent calculatio
of the Kolmogorov-Sinai dynamic entropy,S(e→0)[hKS.
The temperature dependence ofhKS in cooler liquids (T
,Tc) should be examined to determine if there is a tende
for the ‘‘bare’’ dynamic entropy to vanish at a lower gla
transition temperature~see the inset of Fig. 12!. Recent work
has established a phenomenological relation between
namic entropyhKS and the equilibrium entropy in simula
tions of model liquids at relatively elevated temperatu
@46#. A decrease inhKS at lowerT should be accompanied b
the development of collective motion at short times. Su
motion was reported in Ref.@49#. We expect this change in
the short time dynamics to be relevant for interpreting
boson peak phenomenon in cooled liquids@65#. Simulations
have already shown that the fraction of unstable modesf u in
a cooled liquid decreases in parallel withhKS @25#, and the
vanishing of f u has been identified with the temperatu
where the diffusion coefficientD vanishes@66,67#.

Finally, we note that the calculation forS(e) can be ex-
tended to other dynamical variables associated with o
transport properties~viscosity, thermal conductivity, etc.!,
and these calculations should provide useful estimates
other characteristic space and time scale in cooled liqu
@68#. We emphasize that although the definition ofS(e) is
motivated by dynamical systems theory concepts, this qu
tity defines an independently interesting measure of co
lated motion in liquids that does not rely on the approxim
tion relatingS(e) to h(e).
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