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Dynamic entropy as a measure of caging and persistent particle motion in supercooled liquids
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The length-scale dependence of the dynamic entropy is studied in a molecular dynamics simulation of a
binary Lennard-Jones liquid above the mode-coupling critical temper@turd number of methods exist for
estimating the entropy of dynamical systems, and we utilize an approximation based on calculating the mean
first-passage timéFPT) for particle displacement because of its tractability and its accessibility in real and
simulation measurements. The MFPT dynamic entr8(s) is defined as equal to the inverse of the average
first-passage time for a particle to exit a sphere of radidsis measure of the degree of chaotic motion allows
us to identify characteristic time and space scales and to quantify the increasingly correlated particle motion
and intermittency occurring in supercooled liquids. In particular, we identify a “cage” size defining the scale
at which the particles are transiently localized, and we observe persistent particle motion at intermediate length
scales beyond the scale where caging occurs. Furthermore, we find that the dynamic entropy at the scale of one
interparticle spacing extrapolates to zero as the mode-coupling tempeFatisr@pproached.
[S1063-651%99)00711-4

PACS numbgs): 61.20.Lc, 02.70.Ns, 05.60k, 05.45.Gg

I. INTRODUCTION dynamical measure of order that quantifies both the “close-
ness” of the transitiof11] and the degree of correlated mo-

It has been suggested that the glass transition in cooletion in an equilibrium glass-forming liquid. Ergodic theory
liquids is a dynamic transition from an ergodic to a non-provides us with a natural measure in the form of the “dy-
ergodic state. For example, the ideal mode-coupling theoryiamic entropy”’[12—-17.
predicts that the molecules of simple liquids become increas- The concept of dynamic entropy was introduced by Shan-
ingly “caged” by surrounding molecules, resulting in an non in his theory describing the capacity of ideal communi-
ergodic to nonergodic transition at a critical temperatlige  cation devices to transmit informatidrii8]. This idea was
at which the fluid molecules become permanently localizedater developed by Kolmogorov and othé¢fs3] into a gen-
(i.e., the self-diffusion coefficient vanished]. Although a  eral measure of the “degree of randomness” or “degree of
tendency toward particle localization for increasingly longchaos” of dynamical systems. According to Pessin’s theo-
times has been observed in simulations and experiments gam[19], the Kolmogorov-Sinai dynamic entropys for a
supercooled liquids, particle localization and structural arresHamiltonian dynamical system equals the sum of the posi-
does not actually occur at the extrapolated temperéafyre tive Lyapunov exponentsl9,20. These exponents are mea-
because the particles are eventually able to “escape” theisures of the “instability” of the system evolutiofl2,16.
cages. Recent simulations have also shown the tendency f@lynamic entropy extends the equilibrium definition of en-
particle motion to occur in an increasingly correlated way intropy from statistical mechanics to thiene domain The dy-
supercooled liquidf2—8], a feature emphasized by the older, namical entropy provides an estimate of the rate of growth of
phenomenological Adam-Gibbs model of glass formation“information” (per unit timé required to describe the evo-
[9]. The observed greater particle mobility n€gy is pre-  lution of a dynamical systerfil4,15,2], and is also a mea-
sumably a consequence of the increased collective motion &fure of the “complexity” of a dynamical systef22]. The
cooled liquids(“hopping” in the extended version of the dynamic entropy characteristically decreases as a system or-
mode-coupling theory1]) which restores the ergodicity of ders and its exploration of its phase space becomes more
the liquid for some temperature range beldw. This ther-  restricted[23,24]. Thus, the dynamic entropy decreases as a
mally activated collective motion apparently postpones thdluid crystallizes or a magnet ordera4—27.
ergodic to nonergodic transition to a lower temperature. In  The Kolmogorov-Sinai dynamic entropy has some short-
the Adam-Gibbs mode[9], this lower temperature corre- comings in the description of complex configurational
sponds to the conjectured “ideal” glass transition tempera-changes that occur in supercooled liquids. In particltigg,
ture Ty, where the equilibrium configurational entropy ex- diverges for the ideal process of Brownian moti@ue to
trapolates to zerpl0]. the nondifferentiability of the trajectorig$14,28,29. Con-

If glass formation indeed represents an ergodic to nonersequently, we must anticipate difficulties in applying dy-
godic dynamic transition, then it is important to define anamic entropy to quantify particle motions at large length

and time scales in the case of supercooled liquids. Recently,
there has been an important generalization of the dynamic
*Authors to whom correspondence should be addressecentropy concept that provides a “bridge” between micro-
Electronic addresses: sharon.glotzer@nist.gov and jack.dougl&copic dynamical system descriptions and macroscopic sto-
@nist.gov chastic descriptions of liquid dynamics. This generalization
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recognizes that the amount of information required to de-
scribe the paths of a stochastic process depends strongly on
the length scale of observatian The e-dependent dynamic
entropy h(e) of Gaspard and Wang and othdrs4] (also
called “e entropy”) reduces to thég entropy in the limit

of small ¢,

lim h(e)ths, (11)

e—0

and is well defined for idealized stochastic processes at a
fixed, nonvanishings. The dynamic entropy of a Brownian
particle hg(€) obeys the scaling relation,

FIG. 1. Schematic of a particle trajectory in a cooled liquid. The
hB(e)ocE—z, e>0, (1.2 gray region represents thesphere.r(e) is the first-passage time
for the particle to reach the boundary of tkesphere. The filled
where the proportionality constant is fixed by the particlecircle denotes the initial particle position, and the open circle de-
diffusion coefficien{14]. As mentioned abovéy(€) for sto-  notes the particle at the first-passage time.
chastic particle motion diverges &s-0, and the exponent
reflects the fractal dimension of the particle trajectoriestory first arrives at the threshold distane¢see Fig. 1L We
[14,30. Specifically, the exponent 2 in E(L.2) is the Haus- average this “first-passage time” over all particles in the
dorff dimension of a Brownian path in three dimensionsliquid to obtain the mean first-passage tifMFPT) 7(€),
[31], and in the limit of perfectly cohereifballistic) particle  and we define the “MFPT dynamic entropyS(e) as
motion this exponent is 1. In idealized stochastic processes
(e.g., fractional Brownian motion, vy flights, etc) the ex- S(e)=1/7(e), (1.3
ponent in Eq(1.2) can be identified with the path Hausdorff
dimension[13,14,30,32 and can take values intermediate Where
between 1 and 2. This exponent reflects the “degree of per-
sistgnce” in the particle displacement relative to Brownian T(G)ijdt P.() t. (1.4
motion. 0
The scale dependent dynamic entrdple) for complex
dynamical systems such as liquids depends strongly on the_(t)dt is the probability that the particle reaches the dis-
observational scale. At very small e the microscopic cha- tancee betweent andt+dt. The dynamic entropy(e) is
otic motion of the molecules is observed, so thé¢) varies  thus one measure of the average “escape rate” of a particle
slowly with e. The decorrelation of particle velocities in a from its local environmenf34]. We note that although the
liquid occurs at a time and space scale corresponding to thgefinition of S(€) is motivated by dynamical systems theory
average interparticle “collision time,” anti(e) starts vary-  concepts, this property defines an independently interesting
ing with € as this decorrelation occurs. This helps us to idenmeasure of correlated motion in liquids that does not rely on
tify a characteristic space and time scale over which the barghe approximation relatinG(e) to h(e).
microscopic dynamics can be coarse grained by a stochastic In this paper we utilizeS(e) to identify characteristic
description. Correlations associated with particle displacespace and time scales in the particle dynamics, and to quan-
ment arise at longer times in cooled liquids, &m) also tify the increasingly correlated motion observed in previous
helps us in determining the spatial and time scales oveanalyses of the same simulations considered in the present
which these correlations occur(e) thus provides a measure paper. These studies indicated the development of large scale
of the degree of chaotic motion appropriate to the descriptionlynamical heterogeneity and the nature of this dynamical
of real systems at arbitrary observational scales, and is ameterogeneity has been examined in a series of recent papers
attractive tool for quantifying the increasingly correlated mo-that are complementary to the present wizk-7]. There it
tion in cooled liquids. It is notable that its definition is not was established that transient clusters of highly “mobile”
restricted to circumstances where statistical mechanical equparticles form in the cooled liquid, and that the average size
librium exists, so that this measure of the degree of chaosf these clusters grows rapidly ds is approached3]. A
extends to nonequilibrium situations such as the glass stajgair distribution function for particle displacements was de-
and turbulent fluid$14]. fined, and this quantity exhibits a growing length scale upon
The calculation oh(e) [14] (or his) is generally difficult,  cooling that reflects the clustering of mobile partidés-7].
especially in cases wheffgs is small and long computa- The growing length scale is time dependent, and attains a
tional times are required for its accurate determinatiorpeak value at a time in the-relaxation regime6,7].
[14,25. In the present paper, we utilize a simple approxima- It has also been shown in the present liquid that the par-
tion for h(e) that has the advantage of being accessible inicles within the mobile particle clusters move in coopera-
experiments on real materials and computer simulationsively rearranging “strings”[2,35]. Notably, the stringlike
[14,33. Provided that the spatial scakeis not too small collective motion also begins well above, but the strings
[14], h(e) can be approximated by enclosing the particlethemselves exhibit no tendency to grow rapidly n@ar
position at timet=0 by a sphere of radiuscentered on the Instead, the length distribution of the strings is found to be
particle, and then determining the timet which the trajec- nearly exponential, and a similarity of this distribution to that
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commonly observed in equilibrium polymerization has been 10" :
noted[2]. Donatiet al.[2] suggested that the growing barrier C
height to particle motion is proportional to the average string 0 '
length, which would imply that these stringlike motions have 10
a basic significance for understanding transport in cooled
liquids. Thus stringlike correlated particle motion appears to 107
be an important mode of motion in our cooled liqyi] and é
part of the motivation of the present work is to better char- %
acterize the development of this type of collective motion. 10 T
We are also interested in the extent to which particle dis- - T-o0.4685
placement becomes intermittent in time in cooled liquids, 107 —_Egjgzg
since a growing intermittency in particle motion has been '
suggested to underlie the glass transitidf,37).

The paper is outlined as follows. In Sec. Il we review 102 107 100 100 107 1 1ot
some details of the molecular dynamics simulation data uti- t

lized in this work. Section Ill examineS(e) over a broad

range of scales, and dynamical regimes are defined where the FIG. 2. Mean square displacement of the majority spethes
motion is ballistic, transiently localized, persistent, and dif-Particles vs time for differentT.

fusive. These regimes are examined in separate subsections.

We summarize our findings in Sec. IV. self-part of the intermediate scattering functibg(q,t) as a

function oft. The plateau in Fig. 2 separates an early time
“ballistic” regime from a late time diffusive regime. The
plateau is interpreted as implying “caging” of the particles,
The system studied is a three-dimensional binary mixtureand this phenomenon is typical for liquids at low temperature
of 8000 Lennard-Joned.J) particles in which the sizes of or high density. Over the range ®ofstudied, thexr-relaxation
the particles and the interaction parameters are chosen tine 7,, describing the decay d¥s(q,t) (at the value ofg
prevent crystallization and demixif§8]. The size of theA  corresponding to the first peak in the static structure factor
particles is about 10% larger than that of tBeparticles increases by 2.4 orders of magnitude, and follows a power
(while the mass is the samend the particles have a relative law 7,~(T—T.) ™7, with T,=0.435 andy=2.8. The simu-
concentration 80:20 of particles toB particles. We report lated liquid states analyzed here therefore exhibit relaxation
our results in dimensionless LJ un(t38]. The system was behavior characteristic of a supercooled liquid. No long
equilibrated at different temperatur@sin the range 0.451— range structural correlations due to density or composition
0.550. The density varied from 1.09 particles per unit vol- fluctuations are apparent in the simulation da&h
ume at the highest temperature to 1.19 at the loWestnu-
lated. For reference, the mode-coupling temperaiyréor
this system isT;=0.435 atp=1.20[2,7,39, so all the simu-
lation data analyzed here are well above the glass transition.
Configurational histories for up t0>410° molecular dynam-
ics time-steps following equilibration were stored for each

Il. SIMULATION DETAILS

Ill. CHARACTERISTIC DECORRELATION TIME
AND SPACE SCALES

In Fig. 3 we show the MFPT(¢€) versuse for six differ-

run. Following equilibration in th&PTandNVT ensembles, 10
the trajectories were calculated in &VE ensemble, and .
shapshots containing the particle coordinates and velocities 10
were taken at logarithmic time intervals during the run. Here

N, P, V, T, andE denote constant particle number, pressure, 10
volume, temperature, and energy, respectively. In this stage,
the equations of motion were integrated using the velocity
Verlet algorithm with a step size of 0.0015 at the highest

1(€)

temperature, and 0.003 at all other temperatures. Adopting 10 2 T20.4510 1

argon values for the LJ parameters of the large particles im- » 0 T=0.4572

plies an observation time of26ns for the coldesT. Al 10 Ripgriel

data presented here are calculated for the majoAly dar- » 7 T=0.5052

ticles only, except where otherwise notetD]. Further de- 10° ¢ , + T=0.5495

tails of the simulation can be found in Ré¢8]. 107 10™ 10°
Over the temperature-density regime studied, the system €

exhibits the usual features of a fragilé1], glass-forming
liquid. For example, the mean square displacendef(t))
=((1/Np) E?‘j1|ri(t)—ri(0)|2> for the A particles is shown
in Fig. 2 for differentT. Herer;(t) is the position of particle a cooled liquid with the dynamic entroply(e) calculated for a

i at timet, N, is the number oA particles(6400, and(---)  one-dimensional model map exhibiting diffusion at long times
denotes an ensemble average. For each state point, a “plgeompare the present figure with Fig.(B5of Gaspard and Wang
teau” exists in both the mean square displacement and thi@]].

FIG. 3. Mean first-passage timeof the majority speciesA
particles vs ¢, for differentT. Inset: Mean first-passage time dy-
namic entropyS(e). Compare theS(e) variation observed here for



PRE 60 DYNAMIC ENTROPY AS A MEASURE OF CAGING AND. .. 5717

10 : inset of Fig. 4 comparing these quantities shows that they are
3 , not equivalent. However, if the distribution of particle dis-
x10 T-0.4510 /\.\ 4 placmentsG¢(r,t) were always exactly Gaussigie., a(t)
2] 7] ~~~_ REGIMEIV . . . .
s | G o =0 for everyt], then a simple inverse function relation
107 + = | / ] PN should hold between these quantiti€g(r,t) obeys a “scal-
pad - REGIME I ~ ing relation” if we can rescal&4(r,t) as
-— L i . / J/ 3
= %002 04 08 08 1.0 / T 1 [r
¥ 10 | g, <> J ] Gy(r,t)= t_”f(t_”) , (3.2
/-
— — REGIMED 1 wheref is some function. Simple dimensional analysis based
10" [---—- >—;f/ ] on Eq.(3.2) implies,
o ‘ REGIME | (r3(t))ect?, (3.3
107 10" 10° , , , ,
e, oft) and the scaling of the first-passage time with
v
FIG. 4. Classification of dynamic regimes. MFPTe) (solid T(e)xe. 3.4
curve plotted vse, and the non-Gaussian paramett) (dashed | . h idealized i lati icted
curve plotted vs t, forT=0.451. Inset: Comparison betweefe) n prgctlge, these idealized scaling re, atlon.s arg restricte
(solid curve and(r?(t)) (dot-dashed curyeon a linear scale. to certain time and space scales. Scaling withl is ob-

served in the short time inertial regime. This result can be

ent runs corresponding to varying the temperature of the syé'Dfe”eO]! from the ge?]eral fe.'?“on lbe.tween the second mo-
tem from T=0.550 to 0.451. In the inset we show the dy- MeNt ofGs(r,t) and the particle velocity,

namic entropyS(e)=1/7(€). Note that the variation of(e€) 1 d¥(r2(t))
with e exhibits similar qualitative trends to the variationtof (FH0)-F(t)y=5 —2—, (3.5
with (r2(t)) shown in Fig. 2. L

For smalle, corresponding to the inertial regim8(e) is
insensitive to temperature. At intermediatgalues we see a
decrease of5(e) with decreasingl’ and an increase in the
magnitude of the slope.m the log-log plot. A strong tempera- (F(0)-F(1))—(F(0)-F(0))=v3, t—0, (3.6
ture dependence & €) is apparent at a scale on the order of
one interparticle distances€1). On these larger scales, we where v, is the average particle velocity. Integrating Eq.
show in a later subsection th&(e) exhibits a power-law (3.5 over a short time interval obviously givés?(t))~t?
scaling withe and reduced temperature. or “ballisticlike” motion. Actually, this scaling is just a con-

It is apparent from Fig. 2 that the particle displacement insequence of the existence of equilibrium, and should not be
this cooled liquid is not Brownian over most of the simula- construed as necessarily implying the absence of interparticle
tion time scales, and it is conventional to quantify this devia-interactions at short time scal@43]. A Gaussian form for
tion by a “non-Gaussian parameter(t) involving the mo-  the van Hove correlation function in this short time regime is
ments(r2(t)) and(r#(t)) of the self-part of the van Hove ensured by the Maxwell-Boltzmann distribution for the par-
correlation  function Gg(r,t)=((1/N,) Eileﬁ[r—(ri(t) ticle velocities. In the opposite extreme of very long times,

and the constancy of the velocity autocorrelation function at
short timeg 42,43,

—1,(0))]). The parametex(t) is defined as the central limit theorem governing the sum of independent
particle displacements implies that the particle displacement
3(r(t)) distribution is Gaussian, and that=1/2. Transient scaling
a(t)= W—l, (3.1 regimes can be observed at intermediate time scales, how-

ever. We refer to particle displacements as “persistent” rela-
tive to Brownian motion ifv>1/2, or “localized” relative to

and vanishes for Brownian motiow.(t) is shown in Fig. 4 Brownian motion ify< 1/2.

together with7(€) for the coldest runT=0.451); note that
for a(t), timet is plotted on the ordinate axis. This compari-
son allows us to identify four regimes: an inertial regime
(regime ) where the non-Gaussian parameter is small; a “lo- In the limit of very smalle we probe the fast microscopic
calization” regime characterized by a large value for thedynamics associated with the decorrelation of the particle
slope in ther(€) log-log plot and by a growing(t) (regime  momenta. It is difficult to probe this decorrelation directly
II); a regime of particle motion that is persistent relative tousing the first-passage time approximation to the dynamic
Brownian motion, and wherex(t) decreasegregime Ill);  entropy. Figure 3 indicates that our approximation for the
and a fourth regime where the non-Gaussian parameter ha@ynamic entropy appears to diverge fer-0, so our ap-
decayed back to very small values so that the particle motioproximation must break down in this limit. Gaspard and
is nearly Browniar(regime V). The four regimes are exami- Wang have pointed out that the first-passage time approxi-
nated in detail in the following subsections. mation to the dynamic entropy breaks down in this limit
We emphasize that while some parallelism exists betweefil4], so this shortcoming is to be expected. An estimate of
the mean square displacement and the first-passage time, tfee  expected plateau inS(e) corresponding to the

A. Inertial regime
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FIG. 7. First-passage time distributioRs(t) in the inertial re-

FIG. 5. Probability of first-passage tini.(t) for the A andB gime. The main figure contains six different temperatures at
particles afT=0.451 ande=0.1. Inset: Same data represented in a=0.1 plotted on a log-log scale. The solid line indicates &q7),
semilog scale. where the constant of proportionality has been adjusted to best fit

the data. The long-dashed line indicates the cutoff distribution func-
Kolmogorov-Sinai entropy can be obtained by determining dion [Eq. (3.8] with no free parameters. Inse®.(t) at T=0.468
cutoff time of the first-passage time distributions in the fastfor €=0.03. This value ok is less than the velocity decorrelation
dynamics regime. scale € mdlcatec_i in Fl_g. 6. Equatlo_n(;&?) and (3.8) are also

The dynamics in this regime is examined by setting the-shown in comparison Wlth' thc_e sw_nulaﬂon data. Note the absence of
magnitude of the first-passage sphéeesphere about the e long tail in the inset distribution.
center of each particle to be small enough that a collision . .
does not usually occur before the particle leavesetbphere € IS app'arent. A f‘?”"”eaf dependencsv-cnfn gdevelops as
(see Fig. 1 By focusing on the particle first-passage time in the particle velocities decorrelate at a “velocity decorrelation

this regime we identify a time and space scale over whictCl€” €,~0.05. This distance corresponds to the time

L 1Be i : :
particle velocities begin decorrelating. The first-passage timg" 0:6 (on the order of 10°°s in argon units We find thate,

in this regime is insensitive to the tyi& or B) of particle, ~&nd 7, are approximately independent of temperature in the
since they have the same mass. This is apparent in Fig. §r€Sent simulatiotsee also Fig. B

where the first-passage time distributions for bothAhand We obtain further insight into the decorrelation of particle
B particles are shown for the coldest run ane0.1 velocities in the inertial regime by examining the distribution

The idealization of ballistic particle motion implies the ©f first-passage t_imesl?f(t), as a quction ofe. Figure 7
time 7(€) it takes for the particle to exit the sphere of radius SNOWsP (1) for e=0.1 and 0.03 fofl =0.468. We obtain a
e equalse/v,. Figure 6 shows an expanded plotofersus good approximation t® (t) in the inertial regime through a

€ in the smalle regime where this linear dependencerafn ~ Saussian approximation f@(r, t) [44] in conjunction with
the first-passage distribution for Brownian pafd$|. The

first-passage time distributioA_(t) scales as

0.3
0 P.(t) exp( e (3.7)
i R |
0.2 & 10° at short times, and decays exponentially at long times,
. 102 E’E(t)~exq—t/7(e)] [45]. We then introduce the approxima-
{i—” tion:
-3 ¢
10
01 [ P A 1/ € \? t 3.8
<02\t T H o) 38
whereA is a normalization constantr?)*2 in Eq. (3.7) has
00 == ; ‘ ‘ been replaced byt based on the assumption that the par-
000 002 004 006 008 0.0 ticle displacements are nearly “ballistic” in the inertial re-

€ gime. Note that the limiting expression f&.(t) given by
FIG. 6. 7 Vs e in the smalle regime, 0.00% e<0.15, forT ~ Ed-(3.7) can also be deduced by assuming a Maxwell veloc-
=0.468. Inset: log-log plot of the same data. Note that theity distribution (one dimensional due to the near rectilinear
asymptotic linear scaling of(e)=1.14e (solid line3 breaks down ~Mmotion) with the velocity replaced by/t. Figure 7 shows
around a values,~0.05, corresponding te,~0.6. €, and 7, are that EQ(37) (SO'Id Ilne) does not prqwde an accgratg fit to
approximately independent of temperat(see also Fig. 8 Forthe  the data using/o=1/1.14 from the linear slope in Fig. 6,
T range considered in the simulation. while the approximate expression Eg.8) fits well for e less
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t
12 L FIG. 9. First-passage time distributioRs(t) for T=0.451, at
o different values ok neare.=0.21+0.02. The dashed line indicates
= \ an inverse power law 2 for comparison.
ST e
- (b) \\E‘\‘__ﬁ 5 scaling behavior in Eq3.4) implies thatA(e) corresponds
7, S - & to the fractal dimension 1/of the particle trajectories. Fig-
0.44 0.48 0.52 0.56 0.60 ure ga) shows that for alll, A(€)—1 for smalle, andA(e)
T seems to approach a constant valueftf large e. At inter-

FIG. 8. (a) A(e)=d In {e)/dIn(e) for (from top to bottory T~ Mediate values oé, we observe thal(¢) develops a maxi-
—0.451, 0.457, 0.468, 0.480, 0.505, and 0.550. Inset: “cage” sizdNUM atec, corresponding to the inflection point in Fig. 3.
€. Vs T. (b) A=maxA(e) plotted vsT. The dashed line is a power- This length scale defines a distance that is difficult for the
law fit to the data, as indicated in the text. particle to exceed, and thus we defineas the “cage” size.

The inset in Fig. 8) shows that, decreases with tempera-
than the “velocity decorrelation scale’e,~0.05. For fure, so thatincreased particle confinement occurs with cool-

e>e,, P(t) shows evidence of developing a power-lawing- Independent evidence indicating the significance of this
“tail’yat Iéng times, as seen in the main part of Fig. 7. This characteristic scale is discussed later in this subsection.

tendency becomes more developed at lakgexs discussed We denote the value dk(e) at e, by _the “localization

in Sec. IllB. The inset of Fig. 7 shows first-passage timeParameter”A(T)=maxA(e)=A(e), and itsT dependence
data fore<e, , where the tail is nearly absent and the cutoffiS shown in Fig 8b). The value of A(T) increases with
is evident. At this point, we note that in liquides charac- cooling, c0n5|st_ent W|th mcreas_lng_partlcle Iocal_lzatl(ln
teristically scales as the inverse of the average interparticl&-1/2). The relatively noisy data in E'%éa) can be fitted by
collision time and thus has the interpretation of a micro-& Power law,A(T)=2+0.15(T—T¢) ™, with T,=0.435.
scopic “collision rate”[12,14]. The timer, can be consid- Our identification of the cage sizg from the maximum
ered as an average particle collision time, so that an invers¢alue ofA(e) is further supported by the examination of the
relation betweeths and 7, is expected. We do not consider first-passage time distributioR(t) for e neare.. We find
the relation betweer, and hys, since simulations over a thatP(t) develops a long time power-law tail in this inter-
broader temperature range and the direct calculation of thgediate regime which is symptomatic of the development of
Kolmogorov-Sinai entropy through Lyapunov exponentintermittency in particle motion and particle localization

spectra46,47] are required for such an investigation. [36]. In Fig. 9 we show, forT=0.451, P(t) at several
values ofe neare.=0.21+0.02. The apparent power law for

. o . the P (t) tail varies withe and has a value near 2 fer- ¢ .
B. Particle localization regime This power-law tail behavior iP_ (t) is shared by the

The tendency of particle motion to become increasinglyfour coldest temperatures, as shown in Fig. 10, where the
localized, as emphasized by the mode-coupling theory, is asymptotic behavior of the distributions is seen to be numeri-
conspicuous feature of experimental and simulation data ooally very similar. The difference in their first momefi®.,
supercooled liquids. The “plateau” in the mean square dis-r(€;) in Fig. 3] reflects both the differences between the
placement log-log plotésee Fig. 2 indicates transient par- distributions in Fig. 10 at short times, and the asymptotic
ticle localization or *“caging,” and the persistence of this cutoff in the distributions that is difficult to resolve numeri-
plateau increases with decreasin¢48]. Next we utilize the  cally.
dynamic entropy concept to quantify this localization. Odagaki[36] suggested that the second and first moments

An increase in the slope of i{e) versus Ire in Fig. 3  of the first-passage time distribution at the scale of one in-
provides evidence for localization. A numerical differentia- terparticle distance diverge at. and at the glass transition
tion of the data in Fig. 3 is shown in Fig(a88, whereA(e) temperaturdly, respectively, and a recent paper by Hiwatari
denotes the logarithmic derivativé(e)=dIn 7/dIine. The  and Muranakd49] supported this glass transition scenario.
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. . T FIG. 11. Apparent fractal dimensiak(e) of particle displace-
FIG. 10. Flrst-pas§age time d'Str'bUt'or&c(t) at the cage ments in regime Ill. From Fig. 8, the highest and lowest simulation
scale,e=ec, for four differentT. temperature§ =0.5510 and 0.4510 are shown for 8.€<1.0.

A transition to intermittent particle motion at the glass tran-
sition was also suggested by Douglas and Hubparyl Our ~ 0.7<e<1.0 in Fig. 11. The value ot at which A(e)=2
observations are consistent with the growth of intermittencyprovides a more precise estimate for the beginning of regime
of particle motion asT. is approached, but we cannot con- lll. Although the data are noisy, we find that(e)~2 for
firm theoretical predictions of a dynamical transition in the high T within numerical error, and is nearly independent of
degree of intermittancy until lower temperatures are exame. Particle displacement at high temperature is then reason-
ined. An accurate test of these predictions will require careably approximated by Brownian motion on these spatial
fully equilibrated data belowTl., beyond the temperature scales. However, a substantially smaller average value of
range of the simulations analyzed here. We point out that, i\ (¢) ~1.7 (dashed line in Fig. 1iis found for the lowesT.
the present system, the scale at which this intermittency ocfhus, we find the particle motion becomes increasingly per-
curs is substantiallsmaller than one interparticle spacing, sjstent on cooling.
and instead pertains to motion at the scale of the cage size, Why is persistent motion not observed in the mean square
€c- displacement? The tendency for persistent particle motion is
_ _ _ _ not apparent ifr2(t)) shown in Fig. 2 or in the inset of Fig.
C. Regime of persistent particle motion 4 because, when averaging over the squared displacements,
Previous work has shown that particle motion becomeghe contribution of the few particles that are at any given
increasingly collective in this supercooled liquid, and that antime moving persistently is “washed out.” However, these
important mode of motion at the scale of the interparticleparticles give a large contribution to the mean first-passage
distance involves the stringlike collective motion of par-time, so that this quantity is therefore a more sensitive indic-
ticles. A visualization of this proced$0] suggested to us tor of persistent particle motion.
that this process becomes increasingly “coherent” or “jum-  We can obtain insight into the emergence of persistent
plike” at lower temperatures, and this tendency toward “co-particle motion in our cooled liquid from idealized models of
herent jumping” has been noticed in a number of otherBrownian motion subject to potential fluctuations. If the po-
physical systemgémelting of hard disk$51], hexatic liquids tential fluctuations are quenched, there is a tendency toward
[52] and ordering plasmd$3]). In this subsection we utilize particle localization/54], but the occurrence of fluctuations
S(e€) to further quantify this effect. in the potential in both space and time can lead to persistent
Regimes | and Il were defined by characteristic spatiaparticle motion. In particular, if the fluctuations afecorre-
scales at which changes occur in the first-passage time ditated in both space and time, then the exporeertjuals 3/2
tributions. However, the long run times of the simulations[55]. The effects observed in Rdb5] are qualitatively con-
analyzed here necessitated the storing of configurations onsistent with our understanding of the origin of correlated
logarithmic, rather than linear, time scale, for all but themotion. At short times, the existence of relatively immobile
coldest simulatio3]. As a consequence, first-passage timeparticles leads to a randomly fluctuating field “felt” by those
distributions cannot be obtained over a continuous range of particles free to move at a given point in time. This spatially
for large e. In the absence of complete information, we fluctuating field is responsible for the particle caging or lo-
roughly identify regime Ill by the tendency for the non- calization on time scales short compared to the decorrelation
Gaussian parameter(t) to decreasésee Fig. 4 In Fig. 11  time 7, of the “structural fluctuations'(associated with the
we show the apparent fractal dimensiaie) in regime 1l relatively immobile particles At longer times, the formerly
for the highest and lowest temperatur@he results for alll ~ immobile particles become mobile and the potential field
are shown over an extended scale in Fig. [8otice that fluctuates in time, leading to an enhancement in the particle
persistent particle motiopA (€) <2] develops fore>0.6 in  displacement. At still longer times, thermal fluctuatigaad
Fig. 8 (althoughA remains near 2 at the highest tempera-associated additive noiseestore equilibrium and particle
tures and consequently we show(e) for the range displacement ultimately becomes diffusive.
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10 > model [24]. The investigation of the anticipated ergodic-
At 3/’ nonergodic transition and its possible relation to a vanishing
©8(e=1.0) - of hgg requires the calculation of the full Lyapunov spec-
| O S(e0.40) /g/ e trum, Whiph is currently prohibi_tive f(?r a system of the
i o present size. However, we can investig&{e) at a larger
X " scale on the order of an interparticle spacing. This should be
Py e interesting because of the strofigdependence irS(e) at
o . E this length scale noted aboysee Fig. 3.
T A o7 expocted variation In Fig. 12 we examine th& dependence d(T;e€) at the
//Q /<>'/ scale of one interparticle separatier- 1. We observe that
W b 7 hks | S(T;e=1) obeys a powerllaw tq a good approximation over
- the temperature range investigated, and tB&T;e=1)
s seems to extrapolate to zero at the mode-coupling tempera-
e To Tc T ture T,=0.435. As shown in Fig. 12, a reasonable fit to the

10% T 107 data is obtained with the relation
“le

, , S(e=1)~(T—Ty)?° T.=0.435. (3.9
FIG. 12. Dynamic entropy(T,e¢) at the scale of one interpar-

ticle separatione=1, vsT—T., with T.=0.435. Diamonds refer
to the simulation data foB(e=1), and the dashed lines refer to the
power law, S(T)~(T—T.)?°% We also observe this scaling for

The scaling ofS(7;e=1) is compared in Fig. 12 to the struc-
tural relaxation timer, describing the decay of the interme-
S(e=0.4) (circles. The inverse of the structural relaxationr]/ diate _s'cat'Ferlng funptlon. .AlthOUQh the sqallng of the two
(triangles follows a power law 1#,~ (T—T,)28. Inset: Schematic quantities is qualitatively similar, the best fit exponent fqr
indication of expected temperature variation of dynamic entropy’@s the somewnhat larger value 622.8. _
hs at small scales. Note that the extrapolated ergodic-nonergodic 1he power-law scaling oS(e=1) with temperature is
transition in thee—0 limit is indicated to occur at a temperature NOt obvious since if the particle displacement were exactly
To<T.. described by Brownian motion, ther(e) would scale in
) ] ) ] ] inverse proportion to the diffusion coefficient. A determina-
Finally, we point out that particle motion can be persistentjo, of the diffusion coefficient foA particles is obtained by

even in the absence of a secondéy-called “hopping’) 5 simple least-squares fitot shown of the long time data to
peak inGg(r,t). Instead, persistent particle motion contrib- the function(r?(t))=A+6Dt. This fitting gives
utes to a long tail irG¢(r,t) in the temperature range of the

present systeri8,4]. This long tail develops into a secondary D~(T—T,)%L (3.10
peak at loweiT [56], indicating the increased contribution of

collective particle motion to transport belofy. . A more refined estimate by Kob and Andersf89] on a
. . smaller(1000 particlessystem gave an exponent 2.0 for the
D. Large scale particle displacement A particles. The diffusion data thus scales with a fractional

Particle displacement in a liquid at large scales is dePower of the structural relaxation time,
scribed by Brownian motion so th&(e) should scale as- (21128, 075
ymptotically ase? for largee, regardless of temperature. It is D7, 7 =1,77, (3.11
apparent in Fig. 2 that the data in the asymptotic diffusive
regime are limited, especially at lower temperatures. Previover the temperature range investigated. Since evidence sup-
ous work has shown that there is a tendency for “mobile” ports a common temperature scalingrgfand the fluid vis-
particles, which dominate transport in cooled liquids nearcosity 7 [58], the observation implied by E¢3.11) is con-
T., to move an interparticle distance during the time insistent with the breakdown of the Stokes-Einstein relation in
which they are mobil§¢2—-5]. This happens because the par-real and simulated supercooled liquidg9—61. We there-
ticles tend to move between local minima in the potentialfore conclude thaS(e=1) scales neither exactly like the
surface describing the interparticle interacti@®,57). This  inverse structural relaxation time7l/ nor like the diffusion
feature is especially apparent in the stringlike particle motiorcoefficientD. Other characteristic times exist for this liquid.
noted before, where it has been observed that the strindshas recently been reported for the same simulations inves-
“disintegrate” once an interparticle displacement has beeriigated here that the time scale on which particle displace-
achieved[2]. Thus one interparticle distance is taken to bements are most correlated scales as a power law \ilith (
the minimal scale of the large scale particle displacement 0.435), with an exponeny=2.3+0.2[7]. This exponent
regime (regime V). notably agrees within numerical error with the exponent in

In the previous discussion, we have established$af  Ed.(3.9. We further note that the tim#& at whicha(t) is a
is insensitive to temperature for smalbver the temperature maximum(see Fig. 4 appears to diverge a— T, with an
range investigated. This insensitivity accords with the ex-exponent 1.73].
pected variation of dynamic entrogys. At higher T we Since the temperature dependenceSgé) is largest in
expect the dynamic entropy to saturate, while a decreaseig. 3 for e=1 and very small fore—0, it is natural to
should accompany the more restricted particle motion atonsider the temperature dependencé&(@f for many fixed
lower T [25]. A variation similar to that shown in the inset of € to determine how this crossover occurs. In Fig. 13 we see
Fig. 12 has been established for the ordering of ¥¥ that the scalings(T)(T— T.)?® holds fore greater than the
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10° : the range (0.7,1) where the apparent fractal dimension of the
e particle trajectories\ (e) =1/v ranges from~2 to ~1.7 as
10’ v % x P P the temperature is lowered. Thus, we observe a tendency for
. N b o % the particle motion to acquire a persistent character relative
10 - Y 3 s to Brownian motion as it is cooled. This is consistent with
o Lo ‘Z , <1 & ﬁ 8 the previous observation of correlated stringlike motion in
- T g o this liquid [2] and gives a single particle displacement per-
@ 102 [ 4 é i o ewcto spective on this phenomenon. _
. j=E e De=0.40 General arguments suggest that the dynamic entropy at
10° [ . Qoo ] microscopic scales decreases at low temperatures, but a
. <8=0.25 slower variation should be obtained at higher temperatures,
107 | yeo22 | as in the present molecular dynamics calculatgee Fig. 2
% £=0.10 The situation is not so clear for the first-passage time dy-
10° = namic entropyS(e) at the scale of one interparticle separa-
10 tion e=1. In this caseS(e=1) is inverse to the “average
(T-T)T, interparticle exchange timgs2],” r(e=1). We find that

S(€) vanishes as a power lag(e=1)x(T—T,)%° when
the mode-coupling temperaturé, is approached from
above. Thus, the cooled liquid has the appearance of ap-

. - proaching an ergodic to nonergodic transition s> T.,
cage sizes; and sufficiently small reduced temperature. WeWhen viewed at the scale=1. This is consistent with the

i i it o ary e, i ol el eore. o deitons o mode.couping heon
P 9 9 " The first-passage time can also be utilized to obtain infor-

mation about the spatial dependence of mobility fluctuations
IV. CONCLUSION in cooled liquids. Perera and Harrowé83], for example,
) examined the position dependenceoét the scale of one

We have studied the length-scale and temperature depefterparticle spacing in a two-dimensional soft-sphere super-
dence of the dynamic entroi§(e) in a molecular dynamics  ¢ooled liquid, and found a tendency for particles of relatively
simulation of a model supercooled binary Lennard-Jones ”qnigh and low “mobility” (i.e., small and larger, respec-
uid. The simulations were performed above both the glasgyely) to cluster asT is lowered. A detailed study of spatial
transition temperature and the mode-coupling critical tem¢gyrelations of first-passage times in the present system will
peratureT. and correspond to equilibrated liquid staf8 be presented elsewhel@4].

S(e€) as estimated by the MFPT provides a tool for iden-  Fyture work should examine our approximate expression
tifying characteristic length and time scales of the dynamicgor S(e) in the e—0 limit through independent calculation
of liquids and provides a means for quantifying the degree off the Kolmogorov-Sinai dynamic entrop$(e— 0)=hys.
correlated motion occurring in supercooled liquids. At veryThe temperature dependence hofs in cooler liquids
small e we observe a decorrelation of particle velocity and an< 1 y should be examined to determine if there is a tendency
S(e) which is insensitive to temperature aedzariation. A for the “bare” dynamic entropy to vanish at a lower glass
decorrelation time associated with an average interparticlgansition temperaturésee the inset of Fig. 22Recent work
collision time is identified. At intermediate values efwe  pas established a phenomenological relation between dy-
observe a sharp drop i§(e) with increasinge, indicating  namic entropyhys and the equilibrium entropy in simula-
that the path motion is more “stochastic” at these lengthtions of model liquids at relatively elevated temperatures
scales.S(e) is found to have a strong temperature depen{sg]. A decrease iiics at lowerT should be accompanied by
dence as well in this regime. The logarithmic derivative  the development of collective motion at short times. Such
=dIn 7/dIn e becomes a maximum at a characterigti@lue  motion was reported in Ref49]. We expect this change in
that is identified with the particle “cage” size;, since par-  the short time dynamics to be relevant for interpreting the
ticle localization is maximal at this point. The Scaling of boson peak phenomenon in cooled ||qu|16§] Simulations
S(e) with temperature at fixed gives an independent con- have already shown that the fraction of unstable mdges
firmation of our estimation Oéc because it exhibits a quali' a cooled ||qu|d decreases in para”e' WhRS [25], and the
tatively different dependence on temperature éore. and  vanishing of f, has been identified with the temperature
e<e,. The localization parametek=A(e) increases and where the diffusion coefficierd vanisheq 66,67
the cage size, decreases as the liquid is cooled. The distri-  Finally, we note that the calculation f@(e) can be ex-
bution functions for the first-passage time at the scale of thgended to other dynamical variables associated with other
cage sizeP (1), in the coldest runs exhibit a long power- transport propertiegviscosity, thermal conductivity, etc.
law tail, consistent with suggestions that there is growingand these calculations should provide useful estimates of
intermittency in the particle displacements in glass-formingother characteristic space and time scale in cooled liquids
liquids [36,37). This feature requires further study in cooler [68]. We emphasize that although the definitionSff) is
liquids to check the predictions of these models. At stillmotivated by dynamical systems theory concepts, this quan-
larger scalegstill less than one interparticle separajiove  tity defines an independently interesting measure of corre-
observe persistent motion which follows the transient pariated motion in liquids that does not rely on the approxima-
ticle “caging.” S(¢€) obeys a power la(e)~e ¥ for ein  tion relatingS(e) to h(e).

FIG. 13. Dynamic entrop$(T,e) vs T—T,, calculated at fixed
values ofe. Dotted lines denote the power la®(T)~ (T—T.)?®.
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