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Simple model with facilitated dynamics for granular compaction
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A simple lattice model is used to study compaction in granular media. As in real experiments, we consider
a series of taps separated by large enough waiting times. The relaxation of the density exhibits the character-
istic inverse logarithmic law. Moreover, we have been able to identify analytically the relevant time scale,
leading to a relaxation law independent of the specific values of the parameters. Also, an expression for the
asymptotic density reached in the compaction process has been derived. The theoretical predictions agree fairly
well with the results from the Monte Carlo simulatidi$1063-651X99)17810-3

PACS numbeps): 81.05.Rm, 05.50:q, 81.20.Ev

[. INTRODUCTION assumed to last by definition until the system gets trapped
and it is at rest. Quite interestingly, the experiments have
One of the characteristic complex behaviors exhibited byshown that it is useful to measure time by the number of
granular materials is compactidd—4]. It can be roughly pulses applied to the system. Another central question is how
defined as the density relaxation of a loosely packed systemmuch settling will occur for a given vibration intensity, and
of many grains under mechanical tapping or vibration.also if the stationary value of the density depends on the
Granular compaction is important to many industrial appli-initial configuration. How these facts appear in our model
cations related with the production and manipulation of aand which is the role played by the duration and amplitude of
wide variety of systems composed by many macroscopithe pulses are points we will address here.
particles or graing2]. In the last few years, a series of ex-  The plan of the paper is as follows. In the next section the
periments have been carried out trying to identify the physimodel will be presented. It consists of a lattice whose sites
cal principles underlying granular compactigh3,5]. Start-  can be occupied by particles. The dynamics is formulated by
ing from a loosely packed initial configuration, systems ofmeans of a master equation and it is facilitated, in the sense
monodisperse glass beads were tapped vertically. The waithat the rates of adsorption and desorption of a particle are
ing time between successive taps was large enough to alloproportional to the number of particles in the nearest neigh-
the system to relax, so that the beads were at rest before tiher sites. The model can be exactly solved in the no desorp-
next tap started. The time evolution of the density towards dion limit, which corresponds to the very low temperature
steady state has been analyzed, and it has been shown thaliritit. The solution is obtained in Sec. Il and describes the
can be accurately described by an inverse logarithmic lavevolution of the system without external perturbation. There-
with four adjustable parameters, whose values depend onlfpre, it will be used to study the relaxation of the system
on the tapping strength measured by the peak acceleration tfwards a metastable state between pulses. In spite of the
a tap. The logarithmic relaxation has been found in manyimplicity of the system, the general solution for arbitrary
different models[6—8] suggesting that such a behavior is strength of the external energy source is rather complicated.
quite genera[9]. Although several mechanisms have beenWe have considered the limit of short duration of the taps,
proposed to explain the behavior observed in the experinot only because of mathematical convenience, but also be-
ments, a fully satisfactory theory is still lacking. cause it seems to be the limit in which the time scales in-
Here we consider a one-dimensional model simplevolved in the problem become well separated.
enough as to allow some detailed calculations. One of our The sequence of taps and free relaxation processes, i.e.,
aims was to try to identify the relevant time scale over whichcompaction is the subject of Sec. IV. An expression for the
the relaxatior(compaction of the system takes place. This is density after then+1 tap in terms of the density and the
the first step in the search of general laws governing th@robability distribution of two holes separated by a site after
physics of densification. A main difficulty in studying com- the previous tap is derived. Although this relation does not
paction is that there are two different series of elementarprovide an explicit expression for the evolution of the den-
processes involved in the experiment. The system is submisity, it allows to identify the relevant time scale, which turns
ted to taps or pulses separated by time intervals for which theut to be proportional to the duration of a tap times a param-
system is allowed to relax freely. The initial state for eacheter measuring their strength. Curves describing the density
tap is the final state from the previous relaxation. Both pro-evolution of systems starting from the same initial state but
cesses, tapping and free evolution, must be considered gorresponding to different values of the parameters are
detail, and they are rather different from a physical point ofshown to be the same when plotted as functions of the scaled
view. For instance, while the duration of the pulse is clearlytime. Besides, the single scaled curve is very well fitted by
a relevant parameter of the problem, the free relaxation ithe inverse logarithmic law known from real experiments.
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In the limit of many taps, the density reaches a steady A mi_y+mi g
value that is discussed in Sec. V. By using a pair approxi- Wi(m('),mi:1)=k+f.
mation it is found that the steady density is proportional to
the time relevant parameter mentioned above. This predic- m._m
tion agrees well with the numerical results from the simula- Wi(m(”,miZO)zk_M, (4)
tions. Finally, the last section contains some final remarks 2

and comments. ) .
with mO={m;,...m;_;,m,,...m"}, and we have used

that the number of nearest neighbor holesnis=m;_;
+m;,,. The factor 2 in the denominators of E@t) will

We consider a one-dimensional lattice withsites. Each  Simplify subsequent calculus. A similar kind of facilitated
site can be either occupied by a particle or empty. A condynamics has been used previously in the context of Ising

figuration of the system is specified, for instance, by givingmodels[11]. Although we restrict ourselves here to the one-
an ordered sequence bf particles and holes. Let us intro- dimensional case, the model can be formulated for arbitrary

Il. DESCRIPTION OF THE MODEL

duce a set of variablesi={m;;i=1,2,...N}, such thatm dimension. A possible physical interpretation of this facili-
vanishes if there is a particle at sitewhile it takes the value tated dynamics in the context of granular media is to identify
1 if there is a hole; i.e., the siteis empty. a hole with a “region” of the granular system that has lower

The dynamics of the system is defined as a Markov prothan average packing fraction, and a particle with a region
cess and formulated by means of the master equation for théhich has higher than average packing fraction. Then a low
conditional probabilityp;,,(m,t|m’,t") of finding the system Packing fraction region can facilitate a neighboring region to
in the configuratiorm at timet, given it was in the configu- Cchange its state, because the first region can respond to fluc-
rationm’ at timet’ <t [10], tuations of the latter region. On the other hand, a high pack-

ing fraction region would not be able to respond to such
d fluctuations in neighboring regions, and slowing down the

Epm(mﬂm',t'):Ei [Wi(Rim)py(Rim,t|m’,t") dynamics of the system.

Let us introduce new constant parametend e by
—Wi(m)pga(m,tjm’,t")], () ‘

k +k, ®

whereRm={m;,... Rm;,...,my} with Rm;=1—-m;, i.e., v=k-tky, €=

R;m is the configuration obtained fromm by changing the

state of hole or particle of sie The above equation is to be The constant has the dimensions of a frequency anid a
solved with the initial condition dimensionless parameter defined in the intervaleg= 1. For

e=1 no particle is adsorbed by the system, while éer0
desorption processes do not occur. In terms of these param-

=

pa(m,t’|m’,t") = 5m,m’:|=l Sy’ - (2)  eters, Egs(4) can be written together as
. . . . 14
The one-time distribution Wi (m)= E(mi’ﬁ mi,)[e+m(1—2¢)]. (6)
p(m,t)=>, py(m,tm’,00p(m’,0) (3)  The ratio of the desorption transition rates to the adsorption
m'’ ones is
also obeys Eq(1), although now the initial condition must W,(m,m=0) k E
be given in each specific situation. — = = =X, 7)

; L m m=1) _
The possible elementary processes occurring in the sys- Wim®,m=1) k. 1-e

tem are th rption of rticle on an empty site from . )
em are the adsorption of a particle on an empty site fro Wvhere the last equality defines the parameter

surrounding bulk and the desorption of a particle from the The stochastic process we have formulated has a stead
lattice to the bulk. Both processes are restricted in the fol- : chastic p y
ne-time distribution of the form

lowing way. A particle can be adsorbed on or desorbed fronf

a site only if at least one of its nearest neighbor sites is 1 N

empty. More precisely, the probability rate for the events is _ H m; 8)
. . ) Psi(M) N1l X, (

proportional to the number of nearest neighbor holes. This (1+x)Vi=1

condition tries to model naively the short-ranged geometrical

constraints that make structural rearrangements difficult in &nd the density of holegverage number of holes divided by
granular material. Thus the probability that an adsorptiorthe total number of sitell) in the steady state is

attempt be made on siiein the infinitesimal time interval
betweent andt+dt is k. n;dt, wheren; is the number of
nearest neighbors holes of siteOf course, a particle can be
adsorbed only if the site is empty. In the same way, the
probability per unit of time that a given particle try to leave and, consequently, the steady density of particles,js 1

the lattice isk_n;. Therefore, we assume that the transition—e. As x increases, the equilibrium density of particles de-
rates are given by creases.

X

1+x © ©)

(My)si= % m;ps(mM) =
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The quantityx(e) can be related with a temperature pa-sites is empty. This is done to mimic the short-ranged dy-
rameterT by defining an energf(m) for the system. A namical constraints in the real granular system. Of course,
possible choice is the relative magnitude of the desorption rate and the pulse
durationt, are the parameters characterizing the process.

Then, tapping processes have been modeled in our lattice
E(m)=e021 m;, (100 system in the following way. We started from a purely ran-
"~ dom configuration, i.e., the equilibrium configuration fer
=1/2. Then, the system was allowed to relax with 0 until
reaching a steady metastable configuration, characterized by
all the holes being isolated, from which the system can not
evolve any more. This is a convenient initial state for the
x=ge Aeo, (12) compaction experiment and corresponds to the loosely

packed conditions used in real laboratory experimgRjsin

with 8= (ksT) %, kg being the Boltzmann constant. Thus this way the average initial density of particles in our tapping
the limit x— (e—1) is equivalent taf -0~ and the limit ~ Process has begn=0.7. _ _

x—0 (e—0) to T—07. A purely random distribution of Pulses are modeled by sudd.enlly increasing th_e value of
particles and holes corresponds formally to the equilibrium© a value greater than zero. This is equalent to increase the
distribution fore=1/2 or T—. With the above definitions temperature of the system. The duration of each pulse was
of energy and temperature, our system can be related to tfe<1. Between pulses the system relaxes with no external
family of kinetic Ising models introduced in Ref11] to exuta@ﬂon, i.e., withe=0. The waiting time between. con-
study glassy relaxation. Nevertheless, it must be stressed thggcutive pulses was much larger than the relaxation time
in the context of granular systems this temperature does nit¢eded for the system to become trapped in a new metastable
have the usual meaning, but it is related to the strength of theonfiguration. The density was measured just before starting
tapping process. So, we cannot expect a “thermodynamic’@ New pt_JIse. The whple process was designed to mimic what
theory based on this concept of temperature to apply to coniS done in real experiments.

pact granular systenj4d2].

The transition rates given in E¢7) define an irreducible |11 EVOLUTION WITH CONSTANT TRANSITION RATES
Markov process fore>0, except for the state with all the . . . . .
sites occupied by particles that can not evolve. In the limit N this section we will study the evolution equations that
N—, the probability of this state is negligible, and all the determine the relaxation of t_he density. First, we will derive
solutions of the master equation relax to the steady distribut’€S€ €quations for an arbitrary value of the parameter
tion given by Eq(8) [10]. The situation is different in the no characterizing t_he relative probability of a des_orpt|on event.
desorption limite=0. The density of particles cannot de- S.ecopdly,.we W|Illan.alyze the free relaxation without desorp-
crease, and all the states of the system having every hol®" i-€. in the limite=0, and the effect of pulses sepa-
surrounded by two particles are absorbent; no evolution i§&t€ly, taking into account that the final state for one of the
possible from them. processes gives the |n|t|a_l cond|t_|0n for the other.

Our one-dimensional lattice model can be regarded as a !N the following we will restrict ourselves to homoge-
very simple picture of an horizontal section of a real granulaf’€0Uus and isotropic states. This requires to consider appro-
system, near the bottom of the container. Consider first th@fiaté initial and boundary conditions, and it is consistent
freely evolving case. In a real granular medium, particleé"”th the qualitative picture _deplcted in the previous Section.
cannot go up due to gravity. They can only go down, as Iondt wﬂl be assumgd tr_lat Fhe .I|mrt|—>oo has been taken. Let us
as there is enough empty space in their surroundings. Ther@€fine probability distributions of groups oft-1 consecu-
fore, the packing fraction grows until the hard-core interac-tivé holes by
tion prevents more movements of particles, and a mechani-
cally stable configuration is found. This situation is naivel _ _
resé,mbled by thegevolution of our model in the no desorptign Dr(t)_<mimi+1mmi“>t_§ MM 37 M P(M, L)
limit, e=0. Starting from a given configuration of particles (12
and holes, the system evolves by means of adsorption pro-
cesses, occurring on those sites having at least one near@$te homogeneity of the system implies that the above ex-
neighbor hole. This leads to a monotonic increase of theression does not depend on the starting isitensidered.
density until all the holes become isolated, i.e., surrounde&volution equations for the momeni, (t) are easily ob-
by two particles. tained from the master equation,

Next, suppose a granular system submitted to vertical vi-
bration. During the vibration, particles belonging to a low
horizontal section can go up, making the local packing frac- 57 Do(t) = €Do(t) =Dy (1), (13
tion decrease. The hard-core repulsion is also fundamental in
the vibrated case, since particles always need enough free p
volume close to them in order t_o move. In our model, these —Dy(t)= [ Do(t) + Cot)]—D1(t) —Dy(t), (14
pulses are introduced by allowing particles to be desorbed,
but the dynamics is “facilitated.” A particle can only be
adsorbed or desorbed if at least one of its nearest neighband

N

where e, is a constant fixing the energy scale. If now the
distribution given by Eq(8) is identified with the equilib-
rium canonical distribution, it is easily obtained that
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d r=1. The last result reflects the property that éer0 all the
EDr(t)Z —rD (1) =Dy q(t)+€Cqp_4(1) holes are isolated in the long time limit, i.e., they are always
between two particles. Therefore, the probability of finding
two consecutive sites witin;=1 is null. This is a general
+e DH(tHZl Ci—1r-j-1()|. (1D  property that does not depend on the initial conditions. Of
" course, the asymptotic value B’ =(m,)(® is determined
for r=2. Here we have introduced the probability distribu- PY the initial state of the system, being smaller than its initial
tions of two groups of holes separated by a site value. It must be noticed that the hierarolyr) admits as a
stationary solution any constant value fbr; as long as
Cr,s(t):<mimi+l'"mi+rmi+r+2'"mi+r+s+2>t- (16) DF,St:_O fOI‘I’?.l. . . .
An interesting particular case is when the system is at
Besides, from now on we use the dimensionless time scalequilibrium with a given value ok>0 before being sud-
defined byt* = »t, although the asterisk is omitted for the denly changed te=0. In terms of the temperature intro-
sake of simplicity. Again as a consequence of homogeneityduced in Sec. Il this is equivalent to a quench of the system
the functionsC, ¢(t) do not depend on the sitdaken as the to T=07". The initial condition for this process is no\gee
origin to measure them. Moreover, isotropy implies the sym-Eq. (8)],
metry propertyC, ((t)=Cg,(t). In Eqg. (13) it is seen that 1
the time evolution of the density of hol&xy(t) involves the D/(0)=€"" (23)
nearest neighbor pair distribution of holBg(t). When the Then
equation(14) for this latter distribution is considered, the
situation becomes more complex. Not only the three con- Goly) = ee?, (24)
secutive hole distributio®,(t) shows up, but also the sec-
ond neighbor pair momer@, ((t) appears. and Eq.(22) yields
On the other hand, the whole hierarchy of equations gets
much simpler in the limite— 0. As discussed in Sec. Il this DY () =ee™ . (25
is the no desorption limit and correspondsTe-0" (very o o o
low temperatures For e=0, Eqgs.(13)—(15) reduce to For a purely random initial distribution e&1/2) it is
D(()O)(OO):O.3033, i.e., less than one third of the sites are
d DO (1) = ) ) empty in the final metastable state, characterized by a “fro-
51D (O==rD () =Dy (), (17 zen” configuration.
In the above discussion there was no need for considering
for all r. Hereafter, the superindex 0 indicates that a quantitghe time evolution of the distributior, ¢(t) defined in Eq.
is evaluated in a system evolving with=0. The hierarchy ~(16). Nevertheless, it is evident that in the lintitso0, C{%)
(17) can be easily solved by using, for instance, the genera@pproaches a constant value fixed by the initial conditions of
ing function method 10]. We introduce a generating func- the relaxation process, whil@ﬁf’s)(t)ao for r>0 or s>0,
tion since the last ones involve adjacent sites.
Next we analyze the evolution of the system wéb 0
but for a time intervaky<<1. This corresponds to the pulse
preceding, and also following, each of the free relaxations
without desorption. Therefore, the initial conditions we will

From Egs.(17) it is obtained thaG(?(y,t) obeys the equa- be interested in correspond to a final state obtained after a

r—1

GO(y.0= 3, D), a9

tion long time relaxation withe=0,
P P Do(0)=my, D,(0)=0 forr=1, (26)
— GOy, +(y+1)--G%y,1)=0, (19
Jt ay Cod0)=Co, C,s(0)=0 forr=1 or s=1. (27)
whose solution is For timest<ty,<1 we approximate by means of a first-order
Taylor expansion using Eq§13)—(15),
GOy, =Gol(y+1)e -1, o VP 9 Fas9~aY
. . . . Do(t)=mg+ empt, (28
whereG(y)=G((y,0) is the initial condition, that will be
determined by the final situation after a pulse. This expresand similarly
sion has been previously obtained in a different con&3t.
For large timesG(9)(y,t) approaches the limit D1(t)=e(mg+Co)t, (29
Gy, ) =Go(— 1), (21) Da(t)=ecot, (30
and, consequently, while distributionsD(t) with r=3 are at least of order.
Now, we can define the generating function corresponding to
lim DBO)(t)=Go(—1), im D$°>(t):0, (22)  the pulse in a similar way as it was done fe=0 in Eq.

I
t—oo t—oo (18). For this short time limit it is
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FIG. 1. Plot of bothcy, (solid line) and 2 (41— pn)/ €t (dia-
monds as functions of the number of taps for e=0.5 andt,
=0.02.

* r

y
G(y,t)= 20 7 Dr(t)=mg -+ temg + te(mo+co)y

r=

+ 3tecoy?+ O(t?). (31)

IV. TAPPING PROCESSES

In this section we will use the previous results to investi-

Let us consider the free relaxation wig=0 after then

+1 pulse. The initial condition for this process will be the

final state reached during the pulse, i.e., using Bdj),
G2 1(Y.0)=Gop1(y)=Mgp+toemMg,+toe(MgpntCop)y
+ 3toeCony?+O(t5), (32

wheremg,, andcy, are the values ofm;) and(m;m;,,) at

the end of the relaxation following the th tap, respectively.

FIG. 2. Time evolution of the density of particles. Time is mea-
sured in the reduced scale defined in the text. In the three curves
shown, the values of the parameters are0.5 in all of them and
to=2x10"3 (diamonds, t,=0.01(square} andty,=0.02 (pluses.

fact, sincemg,,1—mg, is a rapidly fluctuating quantity,
each of the points we have plotted corresponds to the average
of those functions over 10 consecutive taps. The data shown
have been obtained in a system of Bites withe=0.5 and
t,=0.02, and have been averaged ovet fihs. It is seen

that the prediction of the theory is verified quite accurately.
For the sake of clarity, we have restricted ourselves to 5
%103 taps, although the same behavior is observed until the
system comes near the steady state discussed in the next
section.

Equation(34) indicates that the compaction process de-
pends on the produet, and, in that senset, plays in our
model the same role dS in real experiments. The latter is
defined as the ratio of the peak acceleration of the tap to the
gravitational acceleratiof2]. Nevertheless, Eq(34) sug-
gests a stronger prediction, namely that the relevant time
scale for the compaction processris= eton. Of course, this

The time evolution of the system during the relaxation iswill be true only if the dependence @b, on n also takes

described by Eq(20) and in the long time limit by Eq(21),
that particularized for the above initial condition yields

to
GRla(Y,%2) =My~ eCopy (33

and, therefore,
Mo+ 1=Mop— 3 €toCop - (34)

The above equation is expected to hold for smalbut ar-
bitrary “amplitude” of the pulsese. Sincecg,, is by defini-

place throughr,,, but it is easily seen that it is really so. The
initial condition for each pulse is a trapped configuration that
is metastable foe=0. That means that the derivatives with
respect to time of all moments are proportional eéat t
=0, and in the limit of short duration pulses the change in
any moment in a pulse will be proportional td,. This
proportionality is clearly kept by the free relaxation with
=0 that does not introduce any new time scale in the prob-
lem. It is worth mentioning that the same results, i.e., EqQ.
(34), hold in the limite—0, with ety<1.

In Fig. 2 the relaxation of the particle density is shown as
a function of the scaled time, for different values of and

tion positive it follows that the density of holes decreasesto_ In all casesty<1 as required by the theory we have
and the system compacts monotonically as a function of th@eyeloped. The system has*igites. The initial state for all
number of taps). We stress that the density is measured age compaction experiments was the same, namely the fully

the end of each free relaxation as it is actually done in realanqom distribution. As predicted, all points lie onto a single

experiments. o curve. Moreover, this scaled curve is well described by the
We have checked Ed34) by comparing it with the re- four-parameter heuristic law

sults obtained from Monte Carlo simulation of the Markov
process defining the dynamics of the system. An example is

Opa
given in Fig. 1 where we have plotted both g2( 4 Pn=Po— 4, (35
—pp)l ety andcy, as functions of the number of taps Here 1+B In( 1+ Tn
pn=1—mq, is the density of particles after theth tap. In Tc
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with values of the parameterp,=1.10, 5p..=0.40, B
=0.39, andr,=3.37. We do not observe any dependence of 1l ..
these constants on the valueseddr ty, of course always in
the limit ty<<1. The solid line in Fig. 2 is the fit to Eq435).
We have tried to derive analytically a logarithmic law similar 0.0t
to this empiric result, but we have not succeeded. It is not
clear yet whether it is just a convenient fitting expression P
with four parameters or it has a more fundamental meaning,
for instance associated to some peculiar dynamical events
which are dominant in the relaxation of the density. In this
context, it is important to realize that the law fails to describe

the asymptotic behavior in the limit of a large number of taps
and the steady value of the density that is eventually reached. . . . . . . .
In fact, the value op., reported above is clearly unphysical 2 6 10 14
since it is larger than one. We believe that this is a general In(1+n)

limitation of the law (35 and it is not restricted to the FIG. 3. Evolution of the density as a function of the number of

present model. We can substitute in £85) taps, for four different values of the initial densities. The parameters
characterizing the tapping process are0.5 andt;=0.06 in all
n_n (3p)  cases.
T Ne’

with n.=7./ety. In this way the standard inverse logarith- 1he states we have chosen are equilibrium states, corre-
mic law with time measured in number of taps is recovered®Ponding to initial densities of particles 0.5, 0.75, 0.9, and

[2]. But now we have an explicit dependencengion et,. A 0.995. The results are presented in Fig. 3. All densities tend
similar result was found numerically in R€B] for a two- 1N the long time limit to the same steady value. The data in

dimensional model with geometrical frustration. Here the de{he figure have been obtained in a system wifr0.03, but

pendence appears as a consequence of the relevant scale (. Same qualitative behavior has been found in all the stud-
fining the time evolution of the system. This scale has beeffd cases. One important point to remark is that it is possible
identified by using analytical methods. The valyecan be to start from a_densny higher than the asymptotic one and
understood as the minimum number of taps needed to oh€n the density decreases as the number of tapings in-

serve a significant compaction process. fiem, the density ~ Cr€ases. Once again, this behavior is analogous to what is
remains practically with its initial value. observed in real experiments. Average densities above the

so-called random close packing limit, which is much smaller
than the crystalline value, are not obtained even after exten-
sive vibratory settling.

Another point we have investigated, prompted, and stimu- If we look for steady solutions of Eq34), the only con-
lated by the results found in previous works by differentsequence we can reach is that such state reqoies be
authors, is the possible existence of a long time steady statauch smaller tharmy. A more specific statement can be
density, determined by the tapping procéisss., the ampli- obtained by considering the next order in the expansion of
tude and duration of the pulses in the present molat  powers oft,. Besides, we have simplified the calculations by
independent of the initial conditior}§]. Then, we have car- considering a pair approximation for all the correlation func-
ried out a series of computer experiments corresponding ttons. More specifically, we neglected all correlations involv-
the same values df, and e but to different initial conditions ing more than two sites and approximated in E4®) and
and, in particular, to different values of the initial density. (14)

V. STEADY STATES

D(t)= _Dity 3
2( )=<mimi+1mi+2>t_m7 (37
D2(t) [Do(t)—Dy(t)]?
Cod)=(mim; o) = (mim; 1My o)+ (Mi(L—mmy )My, )= D(l)(t) + [ Oiz Do(lt() )l - (38

The above approximations can be shown to be equivalent to the dynamical mean field of clusters introduced by[D#jkman
When EQgs.(37) and (38) are substituted into Eq$13) and (14),the latter become a close pair of nonlinear first order
differential equations, namely

dDo(t)
dt

=—D4(t)+ eDo(t), (39
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dDy(t) DIV Di(t)  [Do(t)=Dy()]?
T 1( (t) eDy(t)+ € Do(t)+ 1-Dy(0) . (40

In then+ 1 pulse we have to solve the above equations, for thetijrgd that the vibration lasts. Then, a perturbative solution

in powers ofty, with the initial conditions given by

Do(t=0)=mg,, Di(t=0)=0, (41)
is easily obtained,
t2 2
_ 0 €Mop 3
Do(to) = moyn'f' étomojn"‘ E €m0’n+ € mon_ 1_— +O(t0), (42)
n
b eméjn tg emS’n 52m3 o 43
1(tg)=tg Emo'“+1—moﬂ +5 > — €Mpp+ €My — 1_m0’n_(l Mop)’ +0(tg). (43

Afterwards, the system evolves freely wit=0, and we

Mops1—Mon=— et ?Pc?+ 3 €23 Pe+ O(13"#)
measure the density of holeg),, ; at the end of this relax-

ation. We have to solve Eq&39) and (40) with e=0. Writ- +0(t5 3P+ 015 %F), (49
ing them as a closed second order equation for the density of
holesD(® it is found that and a simple dominant balance of the first and second terms
' on the right hand side of Eq47) yields =1 andc=€/2,
d[dInD{(1) 1.€.,
Bl g Oy | —
at at +InDgy7(t) | =0, (44) 1
m¢® =5 €to. (50)
and then
o We have discarded a solution® =0 that is always a trivial
dinDy(t) Di(to) fix point for the evolution of the system, corresponding to all

+InDY(t)=— (45)

dt Do(tp) I Do(to), sites being occupied by particles. Let us notice that the above
expression fom(()s) is a steady solution of the evolution equa-
since the initial conditions for the relaxation process are theions in the pair approximation up to and including ortfer
final state of the pulse, given by Eqgl2) and (43). The |t is important to note that the steady value in the tapping
value of the density at the end of the relaxation is the |0n§brocessm(5) depends both on the pulse strengttand its
time limit solution of the above equation, i.e., durationt,. Thereforem{ does not coincide with the sta-
tionary value (m;)s; of Eg. (9), which would be the
asymptotic value reached if the system was submitted to one

tap with strengthe and infinite duration.

Mon+1=D (%) =Dy(tg)e Prlto/Pollo)  (46)

and using Eqgs(42) and(43),
1

_ mOn

Mon+1=Mop fto—l Mo,
n

0.98 |

2
on 3 =
+3( fto)zmo,n—z(l_ Mo.) +O(tgmop).  (47) 0.6 .
n 6L
pe) ¢

As long asmg , is much larger thart, the third term on the
right hand side is negligible as compared with the second  0.94}

one, and the density of holes decreases monotonically, i.e. o
the system is compacting. To the order or approximation I :
considered in Eq(47) a steady value of the density will be 0.92} °
reached when . . . .
0 0.05 0.1 0.15 0.2
Mo+ 1~ Mon=O(tgMg ). (48) el

FIG. 4. Stationary value of the density of particlgs® =1
To get an expression for this steady density that we will_ m(, as a function of the parametet, characterizing the tap-

denote bym{?, let us assume that it is of the ordertgf,  ping process. The diamonds are numerical results, while the solid
(S)— Ctﬁ. Therefore, line is the analytical expression given by E§0).
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In Fig. 3 we have indicated the prediction of E§0). An provide an effective description of tapping processes, while
excellent agreement is found with the steady value reacheithe one here can in principle be used to describe more gen-
in the simulations. A comparison for several valuesfis  eral processes.
given in Fig. 4. Again the theory describes fairly well, both  In our model, compaction is due to the decrease of the
qualitatively and quantitatively, the results of the numericalnumber of holes as the system is being tapped. A qualitative
simulations. The discrepancies increases as the valeg,of picture of this very slow relaxation follows from the exis-
increases, as expected. This confirms that in the compactidence of “entropic barriers” in the system. As the number of
experiment we are considering the steady correlations argoles lowers, the number of states allowing the system to
determined mainly by the two nearest neighkair) corre-  relax become very small as compared with the total number
lations. This is due to the fact that in the free relaxationof available states. Therefore, it is very difficult for the sys-
processes the dynamics of the system is governed by them to find the way to these bottlenecks in configuration
restriction that there cannot be a hole next to another one, bgpace, being most of the time trapped exploring metastable

they are isolated, i.e., surrounded by particles. configurations with almost the same density. This picture
supports a strong relationship between structural glassy re-
VI. FINAL REMARKS laxation and compactiofil5]. In both cases there is a fast

_ ) ) _increase of the relaxation time of the system, becoming very
In the framework of a simple one-dimensional lattice |arge on the time scale of the experiment.

model with facilitated dynamics, we have studied the non- pye to the simplicity of the model we have been able to
equilibrium evolution of a system submitted to a tappingoptain some detailed analytical results. The process is char-
process. Trying to mimic what is done in real experiments gcterized by the produet,, that identifies the relevant time
the evolution of the system was modelled by a series of tW@cale for densification, at least in the limit of very short taps.
alternating steps. In the first one, the system evolves peyyer this scale the time evolution of the system is described
turbed by an external energy source, while in the second ongy a universal law, which is independent of the particular
it freely relaxes towards a metastable configuration. Theajues of the parameters defining the system. This prediction
model has been shown to share many of the characteristigas heen compared with the numerical solutions obtained by
features of granular materials under tapping. In particularyjonte Carlo simulation and a very good agreement has been
the evolution of the density can be accurately described bygynd.
means of an inverse logarithmic law with the tapping num- A main result of this paper is an analytical expression for
ber. _ S . the asymptotic density obtained in a tapping process. Quite
The model introduced in this paper has a mathematicadyrprisingly, in the limit considered there is a very simple
structure very similar to the “parking” model of E. Ben- proportionality relation between this density and both the
Naim and coworker§8]. In both models the elementary dy- qguration of the taps and their strength, the latter being mea-
namical events are the adsorption and desorption of particleg,req by the relative probability of a desorption event during

on a line, with some simple geometrical restrictions. In bothy tap. Also this theoretical prediction has been confirmed by
models an inverse logarithmic behavior has been found, anghe numerical solution.

in the case of Ref[8] it has been seen analytically. Never-
theless, there are physically relevant differences between
both models. In the parking model the duration and strength
of the taps as well as the free relaxation between them do not
appear in the formulation. The transition rates of the master This research was partially supported by the Diregcio
equation are considered as constant along the tapping prG&eneral de Investigagio Cientfica y Tecnica (Spain
cess. In this context, it could be said that Ben-Naim’s modethrough Grant No. PB96-0534.
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