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Simple model with facilitated dynamics for granular compaction
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A simple lattice model is used to study compaction in granular media. As in real experiments, we consider
a series of taps separated by large enough waiting times. The relaxation of the density exhibits the character-
istic inverse logarithmic law. Moreover, we have been able to identify analytically the relevant time scale,
leading to a relaxation law independent of the specific values of the parameters. Also, an expression for the
asymptotic density reached in the compaction process has been derived. The theoretical predictions agree fairly
well with the results from the Monte Carlo simulation.@S1063-651X~99!17810-3#

PACS number~s!: 81.05.Rm, 05.50.1q, 81.20.Ev
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I. INTRODUCTION

One of the characteristic complex behaviors exhibited
granular materials is compaction@1–4#. It can be roughly
defined as the density relaxation of a loosely packed sys
of many grains under mechanical tapping or vibratio
Granular compaction is important to many industrial app
cations related with the production and manipulation o
wide variety of systems composed by many macrosco
particles or grains@2#. In the last few years, a series of e
periments have been carried out trying to identify the phy
cal principles underlying granular compaction@2,3,5#. Start-
ing from a loosely packed initial configuration, systems
monodisperse glass beads were tapped vertically. The w
ing time between successive taps was large enough to a
the system to relax, so that the beads were at rest befor
next tap started. The time evolution of the density toward
steady state has been analyzed, and it has been shown
can be accurately described by an inverse logarithmic
with four adjustable parameters, whose values depend
on the tapping strength measured by the peak acceleratio
a tap. The logarithmic relaxation has been found in ma
different models@6–8# suggesting that such a behavior
quite general@9#. Although several mechanisms have be
proposed to explain the behavior observed in the exp
ments, a fully satisfactory theory is still lacking.

Here we consider a one-dimensional model sim
enough as to allow some detailed calculations. One of
aims was to try to identify the relevant time scale over wh
the relaxation~compaction! of the system takes place. This
the first step in the search of general laws governing
physics of densification. A main difficulty in studying com
paction is that there are two different series of element
processes involved in the experiment. The system is sub
ted to taps or pulses separated by time intervals for which
system is allowed to relax freely. The initial state for ea
tap is the final state from the previous relaxation. Both p
cesses, tapping and free evolution, must be considere
detail, and they are rather different from a physical point
view. For instance, while the duration of the pulse is clea
a relevant parameter of the problem, the free relaxatio
PRE 601063-651X/99/60~5!/5685~8!/$15.00
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assumed to last by definition until the system gets trap
and it is at rest. Quite interestingly, the experiments ha
shown that it is useful to measure time by the number
pulses applied to the system. Another central question is h
much settling will occur for a given vibration intensity, an
also if the stationary value of the density depends on
initial configuration. How these facts appear in our mod
and which is the role played by the duration and amplitude
the pulses are points we will address here.

The plan of the paper is as follows. In the next section
model will be presented. It consists of a lattice whose s
can be occupied by particles. The dynamics is formulated
means of a master equation and it is facilitated, in the se
that the rates of adsorption and desorption of a particle
proportional to the number of particles in the nearest nei
bor sites. The model can be exactly solved in the no des
tion limit, which corresponds to the very low temperatu
limit. The solution is obtained in Sec. III and describes t
evolution of the system without external perturbation. The
fore, it will be used to study the relaxation of the syste
towards a metastable state between pulses. In spite of
simplicity of the system, the general solution for arbitra
strength of the external energy source is rather complica
We have considered the limit of short duration of the ta
not only because of mathematical convenience, but also
cause it seems to be the limit in which the time scales
volved in the problem become well separated.

The sequence of taps and free relaxation processes,
compaction is the subject of Sec. IV. An expression for
density after then11 tap in terms of the density and th
probability distribution of two holes separated by a site af
the previous tap is derived. Although this relation does
provide an explicit expression for the evolution of the de
sity, it allows to identify the relevant time scale, which tur
out to be proportional to the duration of a tap times a para
eter measuring their strength. Curves describing the den
evolution of systems starting from the same initial state
corresponding to different values of the parameters
shown to be the same when plotted as functions of the sc
time. Besides, the single scaled curve is very well fitted
the inverse logarithmic law known from real experiments
5685 © 1999 The American Physical Society
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In the limit of many taps, the density reaches a stea
value that is discussed in Sec. V. By using a pair appro
mation it is found that the steady density is proportional
the time relevant parameter mentioned above. This pre
tion agrees well with the numerical results from the simu
tions. Finally, the last section contains some final rema
and comments.

II. DESCRIPTION OF THE MODEL

We consider a one-dimensional lattice withN sites. Each
site can be either occupied by a particle or empty. A c
figuration of the system is specified, for instance, by giv
an ordered sequence ofN particles and holes. Let us intro
duce a set of variablesm[$mi ; i 51,2,...,N%, such thatmi
vanishes if there is a particle at sitei, while it takes the value
1 if there is a hole; i.e., the sitei is empty.

The dynamics of the system is defined as a Markov p
cess and formulated by means of the master equation fo
conditional probabilityp1/1(m,tum8,t8) of finding the system
in the configurationm at time t, given it was in the configu-
ration m8 at time t8,t @10#,

]

]t
p1/1~m,tum8,t8!5(

i
@Wi~Rim!p1/1~Rim,tum8,t8!

2Wi~m!p1/1~m,tum8,t8!#, ~1!

whereRim[$m1 ,...,Rimi ,...,mN% with Rimi512mi , i.e.,
Rim is the configuration obtained fromm by changing the
state of hole or particle of sitei. The above equation is to b
solved with the initial condition

p1/1~m,t8um8,t8!5dm,m85)
i 51

N

dmimi8
. ~2!

The one-time distribution

p~m,t !5(
m8

p1/1~m,tum8,0!p~m8,0! ~3!

also obeys Eq.~1!, although now the initial condition mus
be given in each specific situation.

The possible elementary processes occurring in the
tem are the adsorption of a particle on an empty site from
surrounding bulk and the desorption of a particle from
lattice to the bulk. Both processes are restricted in the
lowing way. A particle can be adsorbed on or desorbed fr
a site only if at least one of its nearest neighbor sites
empty. More precisely, the probability rate for the events
proportional to the number of nearest neighbor holes. T
condition tries to model naively the short-ranged geometr
constraints that make structural rearrangements difficult
granular material. Thus the probability that an adsorpt
attempt be made on sitei in the infinitesimal time interval
betweent and t1dt is k1nidt, whereni is the number of
nearest neighbors holes of sitei. Of course, a particle can b
adsorbed only if the site is empty. In the same way,
probability per unit of time that a given particle try to leav
the lattice isk2ni . Therefore, we assume that the transiti
rates are given by
y
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Wi~m~ i !,mi51!5k1

mi 211mi 11

2
,

Wi~m~ i !,mi50!5k2

mi 211mi 11

2
, ~4!

with m( i )5$m1 ,...,mi 21 ,mi 11 ,...,mN%, and we have used
that the number of nearest neighbor holes isni5mi 21
1mi 11 . The factor 2 in the denominators of Eq.~4! will
simplify subsequent calculus. A similar kind of facilitate
dynamics has been used previously in the context of Is
models@11#. Although we restrict ourselves here to the on
dimensional case, the model can be formulated for arbitr
dimension. A possible physical interpretation of this faci
tated dynamics in the context of granular media is to iden
a hole with a ‘‘region’’ of the granular system that has low
than average packing fraction, and a particle with a reg
which has higher than average packing fraction. Then a
packing fraction region can facilitate a neighboring region
change its state, because the first region can respond to
tuations of the latter region. On the other hand, a high pa
ing fraction region would not be able to respond to su
fluctuations in neighboring regions, and slowing down t
dynamics of the system.

Let us introduce new constant parametersn ande by

n5k21k1 , e5
k2

k21k1
. ~5!

The constantn has the dimensions of a frequency ande is a
dimensionless parameter defined in the interval 0<e<1. For
e51 no particle is adsorbed by the system, while fore50
desorption processes do not occur. In terms of these pa
eters, Eqs.~4! can be written together as

Wi~m!5
n

2
~mi 211mi 11!@e1mi~122e!#. ~6!

The ratio of the desorption transition rates to the adsorp
ones is

Wi~m~ i !,mi50!

Wi~m~ i !,mi51!
5

k2

k1
5

e

12e
5x, ~7!

where the last equality defines the parameterx.
The stochastic process we have formulated has a ste

one-time distribution of the form

pst~m!5
1

~11x!N )
i 51

N

xmi, ~8!

and the density of holes~average number of holes divided b
the total number of sitesN! in the steady state is

^mi&st5(
m

mipst~m!5
x

11x
5e, ~9!

and, consequently, the steady density of particles isrst51
2e. As x increases, the equilibrium density of particles d
creases.
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The quantityx(e) can be related with a temperature p
rameterT by defining an energyE(m) for the system. A
possible choice is

E~m!5e0(
i 51

N

mi , ~10!

where e0 is a constant fixing the energy scale. If now t
distribution given by Eq.~8! is identified with the equilib-
rium canonical distribution, it is easily obtained that

x5e2be0, ~11!

with b5(kBT)21, kB being the Boltzmann constant. Thu
the limit x→` (e→1) is equivalent toT→02 and the limit
x→0 (e→0) to T→01. A purely random distribution of
particles and holes corresponds formally to the equilibri
distribution fore51/2 or T→`. With the above definitions
of energy and temperature, our system can be related to
family of kinetic Ising models introduced in Ref.@11# to
study glassy relaxation. Nevertheless, it must be stressed
in the context of granular systems this temperature does
have the usual meaning, but it is related to the strength of
tapping process. So, we cannot expect a ‘‘thermodynam
theory based on this concept of temperature to apply to c
pact granular systems@12#.

The transition rates given in Eq.~7! define an irreducible
Markov process fore.0, except for the state with all th
sites occupied by particles that can not evolve. In the li
N→`, the probability of this state is negligible, and all th
solutions of the master equation relax to the steady distr
tion given by Eq.~8! @10#. The situation is different in the no
desorption limite50. The density of particles cannot de
crease, and all the states of the system having every
surrounded by two particles are absorbent; no evolution
possible from them.

Our one-dimensional lattice model can be regarded a
very simple picture of an horizontal section of a real granu
system, near the bottom of the container. Consider first
freely evolving case. In a real granular medium, partic
cannot go up due to gravity. They can only go down, as lo
as there is enough empty space in their surroundings. Th
fore, the packing fraction grows until the hard-core intera
tion prevents more movements of particles, and a mech
cally stable configuration is found. This situation is naive
resembled by the evolution of our model in the no desorpt
limit, e50. Starting from a given configuration of particle
and holes, the system evolves by means of adsorption
cesses, occurring on those sites having at least one ne
neighbor hole. This leads to a monotonic increase of
density until all the holes become isolated, i.e., surroun
by two particles.

Next, suppose a granular system submitted to vertical
bration. During the vibration, particles belonging to a lo
horizontal section can go up, making the local packing fr
tion decrease. The hard-core repulsion is also fundament
the vibrated case, since particles always need enough
volume close to them in order to move. In our model, the
pulses are introduced by allowing particles to be desorb
but the dynamics is ‘‘facilitated.’’ A particle can only b
adsorbed or desorbed if at least one of its nearest neig
he
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sites is empty. This is done to mimic the short-ranged
namical constraints in the real granular system. Of cou
the relative magnitudee of the desorption rate and the puls
durationt0 are the parameters characterizing the process

Then, tapping processes have been modeled in our la
system in the following way. We started from a purely ra
dom configuration, i.e., the equilibrium configuration fore
51/2. Then, the system was allowed to relax withe50 until
reaching a steady metastable configuration, characterize
all the holes being isolated, from which the system can
evolve any more. This is a convenient initial state for t
compaction experiment and corresponds to the loos
packed conditions used in real laboratory experiments@2#. In
this way the average initial density of particles in our tappi
process has beenr.0.7.

Pulses are modeled by suddenly increasing the valuee
to a value greater than zero. This is equivalent to increase
temperature of the system. The duration of each pulse
t0!1. Between pulses the system relaxes with no exte
excitation, i.e., withe50. The waiting time between con
secutive pulses was much larger than the relaxation t
needed for the system to become trapped in a new metas
configuration. The density was measured just before star
a new pulse. The whole process was designed to mimic w
is done in real experiments.

III. EVOLUTION WITH CONSTANT TRANSITION RATES

In this section we will study the evolution equations th
determine the relaxation of the density. First, we will deri
these equations for an arbitrary value of the parametee
characterizing the relative probability of a desorption eve
Secondly, we will analyze the free relaxation without deso
tion, i.e., in the limit e50, and the effect of pulses sepa
rately, taking into account that the final state for one of t
processes gives the initial condition for the other.

In the following we will restrict ourselves to homoge
neous and isotropic states. This requires to consider ap
priate initial and boundary conditions, and it is consiste
with the qualitative picture depicted in the previous Sectio
It will be assumed that the limitN→` has been taken. Let u
define probability distributions of groups ofr 11 consecu-
tive holes by

Dr~ t ![^mimi 11¯mi 1r& t5(
m

mimi 11¯mi 1rp~m,t !.

~12!

The homogeneity of the system implies that the above
pression does not depend on the starting sitei considered.
Evolution equations for the momentsDr(t) are easily ob-
tained from the master equation,

]

]t
D0~ t !5eD0~ t !2D1~ t !, ~13!

]

]t
D1~ t !5e@D0~ t !1C0,0~ t !#2D1~ t !2D2~ t !, ~14!

and
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]

]t
Dr~ t !52rD r~ t !2Dr 11~ t !1eC0,r 21~ t !

1eFDr 21~ t !1(
j 51

r 21

Cj 21,r 2 j 21~ t !G . ~15!

for r>2. Here we have introduced the probability distrib
tions of two groups of holes separated by a site

Cr ,s~ t !5^mimi 11¯mi 1rmi 1r 12¯mi 1r 1s12& t . ~16!

Besides, from now on we use the dimensionless time s
defined byt* 5nt, although the asterisk is omitted for th
sake of simplicity. Again as a consequence of homogene
the functionsCr ,s(t) do not depend on the sitei taken as the
origin to measure them. Moreover, isotropy implies the sy
metry propertyCr ,s(t)5Cs,r(t). In Eq. ~13! it is seen that
the time evolution of the density of holesD0(t) involves the
nearest neighbor pair distribution of holesD1(t). When the
equation~14! for this latter distribution is considered, th
situation becomes more complex. Not only the three c
secutive hole distributionD2(t) shows up, but also the sec
ond neighbor pair momentC0,0(t) appears.

On the other hand, the whole hierarchy of equations g
much simpler in the limite→0. As discussed in Sec. II thi
is the no desorption limit and corresponds toT→01 ~very
low temperatures!. For e50, Eqs.~13!–~15! reduce to

]

]t
Dr

~0!~ t !52rD r
~0!~ t !2Dr 11

~0! ~ t !, ~17!

for all r. Hereafter, the superindex 0 indicates that a quan
is evaluated in a system evolving withe50. The hierarchy
~17! can be easily solved by using, for instance, the gene
ing function method@10#. We introduce a generating func
tion

G~0!~y,t !5(
r 50

`
yr

r !
Dr

~0!~ t !. ~18!

From Eqs.~17! it is obtained thatG(0)(y,t) obeys the equa
tion

]

]t
G~0!~y,t !1~y11!

]

]y
G~0!~y,t !50, ~19!

whose solution is

G~0!~y,t !5G0@~y11!e2t21#, ~20!

whereG0(y)5G(0)(y,0) is the initial condition, that will be
determined by the final situation after a pulse. This expr
sion has been previously obtained in a different context@13#.
For large timesG(0)(y,t) approaches the limit

G~0!~y,`!5G0~21!, ~21!

and, consequently,

lim
t→`

D0
~0!~ t !5G0~21!, lim

t→`

Dr
~0!~ t !50, ~22!
le

y,

-

-

ts

y

t-

s-

r>1. The last result reflects the property that fore50 all the
holes are isolated in the long time limit, i.e., they are alwa
between two particles. Therefore, the probability of findi
two consecutive sites withmi51 is null. This is a genera
property that does not depend on the initial conditions.
course, the asymptotic value ofD0

(0)5^mi&
(0) is determined

by the initial state of the system, being smaller than its init
value. It must be noticed that the hierarchy~17! admits as a
stationary solution any constant value forD0 as long as
Dr ,st50 for r>1.

An interesting particular case is when the system is
equilibrium with a given value ofe.0 before being sud-
denly changed toe50. In terms of the temperature intro
duced in Sec. II this is equivalent to a quench of the syst
to T501. The initial condition for this process is now@see
Eq. ~8!#,

Dr~0!5e r 11. ~23!

Then

G0~y!5eeey, ~24!

and Eq.~22! yields

D0
~0!~`!5ee2e. ~25!

For a purely random initial distribution (e51/2) it is
D0

(0)(`).0.3033, i.e., less than one third of the sites a
empty in the final metastable state, characterized by a ‘‘f
zen’’ configuration.

In the above discussion there was no need for conside
the time evolution of the distributionsCr ,s(t) defined in Eq.
~16!. Nevertheless, it is evident that in the limitt→`, C0,0

(0)

approaches a constant value fixed by the initial conditions
the relaxation process, whileCr ,s

(0)(t)→0 for r .0 or s.0,
since the last ones involve adjacent sites.

Next we analyze the evolution of the system withe.0
but for a time intervalt0!1. This corresponds to the puls
preceding, and also following, each of the free relaxatio
without desorption. Therefore, the initial conditions we w
be interested in correspond to a final state obtained aft
long time relaxation withe50,

D0~0!5m0 , Dr~0!50 for r>1, ~26!

C0,0~0!5c0 , Cr ,s~0!50 for r>1 or s>1. ~27!

For timest<t0!1 we approximate by means of a first-ord
Taylor expansion using Eqs.~13!–~15!,

D0~ t !.m01em0t, ~28!

and similarly

D1~ t !.e~m01c0!t, ~29!

D2~ t !.ec0t, ~30!

while distributionsDr(t) with r>3 are at least of ordert2.
Now, we can define the generating function correspondin
the pulse in a similar way as it was done fore50 in Eq.
~18!. For this short time limit it is
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G~y,t !5(
r 50

`
yr

r !
Dr~ t !5m01tem01te~m01c0!y

1 1
2 tec0y21O~ t2!. ~31!

IV. TAPPING PROCESSES

In this section we will use the previous results to inves
gate the dependence of the density on the number of t
Let us consider the free relaxation withe50 after then
11 pulse. The initial condition for this process will be th
final state reached during the pulse, i.e., using Eq.~31!,

Gn11
~0! ~y,0![G0,n11~y!5m0,n1t0em0,n1t0e~m0,n1c0,n!y

1 1
2 t0ec0,ny21O~ t0

2!, ~32!

wherem0,n andc0,n are the values of̂mi& and ^mimi 12& at
the end of the relaxation following then-th tap, respectively.
The time evolution of the system during the relaxation
described by Eq.~20! and in the long time limit by Eq.~21!,
that particularized for the above initial condition yields

Gn11
~0! ~y,`!.m0,n2ec0,n

t0

2
~33!

and, therefore,

m0,n11.m0,n2 1
2 et0c0,n . ~34!

The above equation is expected to hold for smallt0 but ar-
bitrary ‘‘amplitude’’ of the pulsese. Sincec0,n is by defini-
tion positive it follows that the density of holes decreas
and the system compacts monotonically as a function of
number of tapsn. We stress that the density is measured
the end of each free relaxation as it is actually done in r
experiments.

We have checked Eq.~34! by comparing it with the re-
sults obtained from Monte Carlo simulation of the Mark
process defining the dynamics of the system. An exampl
given in Fig. 1 where we have plotted both 2(rn11
2rn)/et0 andc0,n as functions of the number of tapsn. Here
rn512m0,n is the density of particles after thenth tap. In

FIG. 1. Plot of bothc0,n ~solid line! and 2(rn112rn)/et0 ~dia-
monds! as functions of the number of tapsn, for e50.5 and t0

50.02.
-
s.

s
e
t

al

is

fact, sincem0,n112m0,n is a rapidly fluctuating quantity,
each of the points we have plotted corresponds to the ave
of those functions over 10 consecutive taps. The data sh
have been obtained in a system of 104 sites withe50.5 and
t050.02, and have been averaged over 103 runs. It is seen
that the prediction of the theory is verified quite accurate
For the sake of clarity, we have restricted ourselves to
3103 taps, although the same behavior is observed until
system comes near the steady state discussed in the
section.

Equation~34! indicates that the compaction process d
pends on the productet0 and, in that sense,et0 plays in our
model the same role asG in real experiments. The latter i
defined as the ratio of the peak acceleration of the tap to
gravitational acceleration@2#. Nevertheless, Eq.~34! sug-
gests a stronger prediction, namely that the relevant t
scale for the compaction process istn5et0n. Of course, this
will be true only if the dependence ofc0,n on n also takes
place throughtn , but it is easily seen that it is really so. Th
initial condition for each pulse is a trapped configuration th
is metastable fore50. That means that the derivatives wi
respect to time of all moments are proportional toe at t
50, and in the limit of short duration pulses the change
any moment in a pulse will be proportional toet0 . This
proportionality is clearly kept by the free relaxation withe
50 that does not introduce any new time scale in the pr
lem. It is worth mentioning that the same results, i.e., E
~34!, hold in the limit e→0, with et0!1.

In Fig. 2 the relaxation of the particle density is shown
a function of the scaled timetn for different values ofe and
t0 . In all casest0!1 as required by the theory we hav
developed. The system has 104 sites. The initial state for all
the compaction experiments was the same, namely the f
random distribution. As predicted, all points lie onto a sing
curve. Moreover, this scaled curve is well described by
four-parameter heuristic law

rn5r`2
dr`

11B lnS 11
tn

tc
D , ~35!

FIG. 2. Time evolution of the density of particles. Time is me
sured in the reduced scale defined in the text. In the three cu
shown, the values of the parameters aree50.5 in all of them and
t05231023 ~diamonds!, t050.01~squares!, andt050.02~pluses!.
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with values of the parametersr`51.10, dr`50.40, B
50.39, andtc53.37. We do not observe any dependence
these constants on the values ofe or t0 , of course always in
the limit t0!1. The solid line in Fig. 2 is the fit to Eq.~35!.
We have tried to derive analytically a logarithmic law simil
to this empiric result, but we have not succeeded. It is
clear yet whether it is just a convenient fitting express
with four parameters or it has a more fundamental mean
for instance associated to some peculiar dynamical ev
which are dominant in the relaxation of the density. In th
context, it is important to realize that the law fails to descr
the asymptotic behavior in the limit of a large number of ta
and the steady value of the density that is eventually reac
In fact, the value ofr` reported above is clearly unphysic
since it is larger than one. We believe that this is a gen
limitation of the law ~35! and it is not restricted to the
present model. We can substitute in Eq.~35!

tn

tc
5

n

nc
, ~36!

with nc5tc /et0 . In this way the standard inverse logarit
mic law with time measured in number of taps is recove
@2#. But now we have an explicit dependence ofnc on et0 . A
similar result was found numerically in Ref.@6# for a two-
dimensional model with geometrical frustration. Here the
pendence appears as a consequence of the relevant sca
fining the time evolution of the system. This scale has b
identified by using analytical methods. The valuenc can be
understood as the minimum number of taps needed to
serve a significant compaction process. Forn!nc the density
remains practically with its initial value.

V. STEADY STATES

Another point we have investigated, prompted, and stim
lated by the results found in previous works by differe
authors, is the possible existence of a long time steady s
density, determined by the tapping process~i.e., the ampli-
tude and duration of the pulses in the present model! but
independent of the initial conditions@5#. Then, we have car
ried out a series of computer experiments correspondin
the same values oft0 ande but to different initial conditions
and, in particular, to different values of the initial densit
f

t
n
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ts

e
s
d.

al

d

-
de-
n

b-

-
t
te

to

The states we have chosen are equilibrium states, co
sponding to initial densities of particles 0.5, 0.75, 0.9, a
0.995. The results are presented in Fig. 3. All densities t
in the long time limit to the same steady value. The data
the figure have been obtained in a system withet050.03, but
the same qualitative behavior has been found in all the s
ied cases. One important point to remark is that it is poss
to start from a density higher than the asymptotic one a
then the density decreases as the number of tapings
creases. Once again, this behavior is analogous to wh
observed in real experiments. Average densities above
so-called random close packing limit, which is much smal
than the crystalline value, are not obtained even after ex
sive vibratory settling.

If we look for steady solutions of Eq.~34!, the only con-
sequence we can reach is that such state requiresc0 to be
much smaller thanm0 . A more specific statement can b
obtained by considering the next order in the expansion
powers oft0 . Besides, we have simplified the calculations
considering a pair approximation for all the correlation fun
tions. More specifically, we neglected all correlations invo
ing more than two sites and approximated in Eqs.~13! and
~14!

FIG. 3. Evolution of the density as a function of the number
taps, for four different values of the initial densities. The parame
characterizing the tapping process aree50.5 andt050.06 in all
cases.
an
er
D2~ t ![^mimi 11mi 12& t.
D1

2~ t !

D0~ t !
, ~37!

C0,0~ t ![^mimi 12& t5^mimi 11mi 12& t1^mi~12mi 11!mi 12& t.
D1

2~ t !

D0~ t !
1

@D0~ t !2D1~ t !#2

12D0~ t !
. ~38!

The above approximations can be shown to be equivalent to the dynamical mean field of clusters introduced by Dickm@14#.
When Eqs.~37! and ~38! are substituted into Eqs.~13! and ~14!,the latter become a close pair of nonlinear first ord
differential equations, namely

dD0~ t !

dt
52D1~ t !1eD0~ t !, ~39!
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dD1~ t !

dt
52D1~ t !2

D1
2~ t !

D0~ t !
1eD0~ t !1eH D1

2~ t !

D0~ t !
1

@D0~ t !2D1~ t !#2

12D0~ t ! J . ~40!

In then11 pulse we have to solve the above equations, for the timet0!1 that the vibration lasts. Then, a perturbative solut
in powers oft0 , with the initial conditions given by

D0~ t50!5m0,n , D1~ t50!50, ~41!

is easily obtained,

D0~ t0!5m0,n1et0m0,n1
t0
2

2 S 2em0,n1e2m0,n2
em0,n

2

12m0,n
D 1O~ t0

3!, ~42!

D1~ t0!5t0S em0,n1
em0,n

2

12m0,n
D 1

t0
2

2 F2em0,n1e2m0,n2
em0,n

2

12m0,n
2

e2m0,n
3

~12m0,n!2G1O~ t0
3!. ~43!
ty

th

n

on
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e
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rms
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Afterwards, the system evolves freely withe50, and we
measure the density of holesm0,n11 at the end of this relax-
ation. We have to solve Eqs.~39! and~40! with e50. Writ-
ing them as a closed second order equation for the densi
holesD0

(0) , it is found that

d

dt Fd ln D0
~0!~ t !

dt
1 ln D0

~0!~ t !G50, ~44!

and then

d ln D0
~0!~ t !

dt
1 ln D0

~0!~ t !52
D1~ t0!

D0~ t0!
1 ln D0~ t0!, ~45!

since the initial conditions for the relaxation process are
final state of the pulse, given by Eqs.~42! and ~43!. The
value of the density at the end of the relaxation is the lo
time limit solution of the above equation, i.e.,

m0,n115D0
~0!~`!5D0~ t0!e2D1~ t0!/D0~ t0!, ~46!

and using Eqs.~42! and ~43!,

m0,n115m0,n2et0

m0,n
2

12m0,n

1 1
2 ~et0!2m0,n

11m0,n
2

~12m0,n!2 1O~ t0
3m0,n!. ~47!

As long asm0,n is much larger thanet0 the third term on the
right hand side is negligible as compared with the sec
one, and the density of holes decreases monotonically,
the system is compacting. To the order or approximat
considered in Eq.~47! a steady value of the density will b
reached when

m0,n112m0,n5O~ t0
3m0,n!. ~48!

To get an expression for this steady density that we w
denote bym0

(s) , let us assume that it is of the order oft0
b ,

m0
(s)5ct0

b . Therefore,
of

e

g

d
.e.
n

ll

m0,n112m0,n52et0
112bc21 1

2 e2t0
21bc1O~ t0

31b!

1O~ t0
113b!1O~ t0

212b!, ~49!

and a simple dominant balance of the first and second te
on the right hand side of Eq.~47! yields b51 andc5e/2,
i.e.,

m0
~s!5

1

2
et0 . ~50!

We have discarded a solutionm(s)50 that is always a trivial
fix point for the evolution of the system, corresponding to
sites being occupied by particles. Let us notice that the ab
expression form0

(s) is a steady solution of the evolution equ
tions in the pair approximation up to and including ordert0

3.
It is important to note that the steady value in the tapp
processm0

(s) depends both on the pulse strengthe and its
durationt0 . Therefore,m0

(s) does not coincide with the sta
tionary value ^mi&st of Eq. ~9!, which would be the
asymptotic value reached if the system was submitted to
tap with strengthe and infinite duration.

FIG. 4. Stationary value of the density of particles,r (s)51
2m0

(s) , as a function of the parameteret0 characterizing the tap-
ping process. The diamonds are numerical results, while the s
line is the analytical expression given by Eq.~50!.
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In Fig. 3 we have indicated the prediction of Eq.~50!. An
excellent agreement is found with the steady value reac
in the simulations. A comparison for several values ofet0 is
given in Fig. 4. Again the theory describes fairly well, bo
qualitatively and quantitatively, the results of the numeri
simulations. The discrepancies increases as the value oet0
increases, as expected. This confirms that in the compac
experiment we are considering the steady correlations
determined mainly by the two nearest neighbor~pair! corre-
lations. This is due to the fact that in the free relaxati
processes the dynamics of the system is governed by
restriction that there cannot be a hole next to another one
they are isolated, i.e., surrounded by particles.

VI. FINAL REMARKS

In the framework of a simple one-dimensional latti
model with facilitated dynamics, we have studied the no
equilibrium evolution of a system submitted to a tappi
process. Trying to mimic what is done in real experimen
the evolution of the system was modelled by a series of
alternating steps. In the first one, the system evolves
turbed by an external energy source, while in the second
it freely relaxes towards a metastable configuration. T
model has been shown to share many of the character
features of granular materials under tapping. In particu
the evolution of the density can be accurately described
means of an inverse logarithmic law with the tapping nu
ber.

The model introduced in this paper has a mathemat
structure very similar to the ‘‘parking’’ model of E. Ben
Naim and coworkers@8#. In both models the elementary dy
namical events are the adsorption and desorption of part
on a line, with some simple geometrical restrictions. In b
models an inverse logarithmic behavior has been found,
in the case of Ref.@8# it has been seen analytically. Neve
theless, there are physically relevant differences betw
both models. In the parking model the duration and stren
of the taps as well as the free relaxation between them do
appear in the formulation. The transition rates of the ma
equation are considered as constant along the tapping
cess. In this context, it could be said that Ben-Naim’s mo
S
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provide an effective description of tapping processes, wh
the one here can in principle be used to describe more g
eral processes.

In our model, compaction is due to the decrease of
number of holes as the system is being tapped. A qualita
picture of this very slow relaxation follows from the exis
tence of ‘‘entropic barriers’’ in the system. As the number
holes lowers, the number of states allowing the system
relax become very small as compared with the total num
of available states. Therefore, it is very difficult for the sy
tem to find the way to these bottlenecks in configurat
space, being most of the time trapped exploring metasta
configurations with almost the same density. This pictu
supports a strong relationship between structural glassy
laxation and compaction@15#. In both cases there is a fas
increase of the relaxation time of the system, becoming v
large on the time scale of the experiment.

Due to the simplicity of the model we have been able
obtain some detailed analytical results. The process is c
acterized by the productet0 , that identifies the relevant time
scale for densification, at least in the limit of very short ta
Over this scale the time evolution of the system is descri
by a universal law, which is independent of the particu
values of the parameters defining the system. This predic
has been compared with the numerical solutions obtained
Monte Carlo simulation and a very good agreement has b
found.

A main result of this paper is an analytical expression
the asymptotic density obtained in a tapping process. Q
surprisingly, in the limit considered there is a very simp
proportionality relation between this density and both t
duration of the taps and their strength, the latter being m
sured by the relative probability of a desorption event dur
a tap. Also this theoretical prediction has been confirmed
the numerical solution.
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