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Viscoelasticity of randomly branched polymers in the vulcanization class
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We report viscosity, recoverable compliance, and molar mass distribution for a series of randomly branched
polyester samples with long linear chain sections between branch points. Molecular structure characterization
determinesr=2.47+0.05 for the exponent controlling the molar mass distribution, so this system belongs to
the vulcanizationlmean-field universality class. Consequently, branched polymers of similar size strongly
overlap and form interchain entanglements. The viscosity diverges at the gel point with an exgpefeht
+0.3, that is significantly larger than the value of 1.33 predicted by the branched polymer Rouse model
(bead-spring model without entanglemenifEhe recoverable compliance diverges at the percolation threshold
with an exponent=3.2+0.2. This effect is consistent with the idea that each branched polymer of size equal
to the correlation length stor&gT of elastic energy. Near the gel point, the complex shear modulus is a power
law in frequency with an exponent=0.33+0.05. The measured rheological exponents confirm that the
dynamic scaling lawu=t/(s+t) holds for the vulcanization class. Sinsés larger andu is smaller than the
Rouse values observed in systems that belong to the critical percolation universality class, we conclude that
entanglements profoundly increase the longest relaxation time. Examination of the literature data reveals clear
trends for the exponentsandu as functions of the chain length between branch points. These dependencies,
qualitatively explained by hierarchical relaxation models, imply that the dynamic scaling observed in systems
that belong to the vulcanization classnisnuniversal[S1063-651X99)12210-4

PACS numbegs): 61.41+e, 82.70.Gg

INTRODUCTION domly branched polymers is not well understood. Our previ-
ous work[21,22] demonstrated that a molten polyester sys-

The evolution of molecular structure during randomtem with N=2, prepared by polycondensation under

branching processes that ultimately leads to gelation is uneonditions of unbalanced stoichiometry, belonged to the
derstood by percolation theofit,2]. There are two univer- critical percolation universality class. A simple bead-spring
sality classes for the gelation problem, separated by anodel, with the usual Rouse approximation of no hydrody-
Ginzburg criterion[3,4] that depends upon the chain length namic or topological interactions, completely predicted the
between branch points [4,5] as well as the concentration of observed rheological properties. Indeed, this Rouse model
any nonreacting solver{6]. In the absence of solvent, the was found adequate for systems with valuedNais high as
vulcanization of long linear polymer chairgarge N) be-  20[22-24.

longs to the mean-field class and is modeled by Flory- In this paper we have prepared stable randomly branched
Stockmayer theor}j7—18|. Critical percolationsmallN) de-  polyesters, by reacting all the acid groups in an excess of
scribes the polymerization of small multifunctional hydroxyl groups, thereby halting the chemical reaction by
monomerg1,19,20. An experimental system with interme- stoichiometric imbalance. This approach allows us to deter-
diate N will exhibit a crossover between mean-field behaviormine the molar mass distribution and measure the terminal
far from the gel point and critical behavior, close to the per-rheological properties, even near the gel point where the
colation threshold, in a manner similar to other continuoudongest relaxation time is very large. We report structural
phase transitions. and rheological data for a system wikh=900 (vulcaniza-

In contrast to the molecular structure, the rheology of rantion clas$, demonstrating that topological interactions domi-
nate the rheological response for systems with long linear
chains between branch points. In particular, we find that the

*Author to whom correspondence should be addressed. Preseétanched polymer Rouse model is not sufficient to describe
address: Imaging Research and Advanced Development-Materialthe physics of these systems, and we suggest that entangle-
Eastman Kodak Company, Rochester, NY 14650-2109. ments must be accounted for to correctly predict the ob-

"Present address: Heidelberg Digital, LLC, Rochester, NY 14650served dynamic response.
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TABLE I. Static exponent values for percolation theory. A number of measurable quantities are ratios of the moments
of the molar mass distribution

Critical Vulcanization
Exponent  Percolatiof (mean-field®  Defining Relation
d(M)MYdM
T 2.20 = 0.05 3 ) My= _ (5)
o 0.452 + 0.011 i ) f d(M)MI™tdM
1.78 = 0.09 1 6 . . . .

4 © The ratio withq=2 yields the weight-average molar mass

v 0.88 = 0.02 3 (4 M,,, which diverges at the critical point %]
Calculated, at 95% confidence, by pooling the series and Monte M,~& 7. (6)
Carlo data tabulated in R€f25].
PExact values, from Refl]. Higher order moment ratios, such @s 3 for the zaverage

molar massM,, are all proportional to the characteristic
BACKGROUND THEORY largest molar mas#l g5 [1,19].

Two important parameters completely describe the state Experimental determination of requires measuring the

of any randomly branched polymer prepared by melt conEXtent of reactiorp and the critical extent of reaction at the

densation: the relative extent of reactierand the average gel pointp;. These measurements are 'mad_e .W'th a certain
number of Kuhn monomers between branch poltsThe random error, thus, the r_elatlve uncertalntyslrdlverges at
relative extent of reaction is defined from the number ofthe gel point[1,19. We circumvent this problem by corre-

crosslinks formedp, and the number required to reach the lating two measurements Wlth finite relative uncertainties.
gel pointp, [1], For example, using the scaling law

3—71=0v, 7
Pl W 7 "
Pe we determine the exponenfrom a plot ofM ¢,,,againstM,,

since

The degree of polymerization between branch paihts
estimated from knowledge of the molecular structure ob- M char~ M Yo7~ M HE=7) 8
tained from size exclusion chromatograpt§EQ experi-
ments. Linear and branched structures have different swollen The exponenv is related to the other static exponents in
fractal dimensions, and exhibit different exponents on plotghe critical percolation class through the hyperscaling rela-
of intrinsic viscosity versus molar mass. We determhie tion [1,19,28
from the intersection of these two power laws as described in

i i T—1
the experimental section. 3. ( ) (critical percolatio. 9)

Static structure In the mean-field limit, the Fisher lajl] plays a corre-

We review briefly the molecular structure predictions of sponding role,
the percolation theory of gelation. The mean-figldlcani-

zation and critical percolation classes have the same form vy (3—17) L

for their scaling relations, but differ in their exponent values v=5="5,  (vulcanization. (10

[1]. Static critical exponents for gelation are summarized in

Table I. Using similar scaling laws, all static exponents can be calcu-

The molar mass distribution of a gelling system is char-lated from knowledge of any two, in either universality class.
acterized by two scaling exponentsind o [1]. The number  For vulcanization, the percolation model is exactly solvable,
fraction of branched polymer® (M) of molar massM is a  so we can write the cut-off function of E) explicitly,
power law in molar mass that is truncated at a characteristic
molar massM 4, by an exponential cut-off functioh: fMe(M/M ¢ha) =exd —M/(2M¢ha) ] (11)

®(M)~M~F(M/Mgpa)- 2) The mathematical form of the cut-off function in the criti-
cal percolation class is unknown, because the three-
M har diverges with exponent &/ as the gel point is ap- dimensional critical percolation problem has only been
proached, solved numerically. Experimentally{21,22,27 and via
Monte Carlo simulationi28—3( it has been established that
M char~s 1. (3)  the critical percolation cut-off functioi(M/M,,) of Eq.
(2) is approximated by a shifted Gaussian functi@®) of
The size of the largest branched polyngds the correlation  the form
length for gelation and its divergence at the gel point defines
another exponent through the power layl], exp(— [ Zmax— (M/M ghan “12)
fsg(M/M ¢na) =~ 2
E~e . (4) exXpl — Ziay

(12
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The parametez,,,,=0.623 depends only on the values of the no longer overlap significantly. Here, the static structure of
critical exponentsr and o and the mathematical form of Eq. the system crosses from the mean-field class to the critical
(12). The calculation is presented in Appendix A of Ref. class[3,4]. Closer to the gel pointg<eg) branched poly-
[22]. mers continue to grow in such a way that they remain at the
When dissolved in a solvent to form a dilute solution, theoverlap thresholdwith N=1) [32].
branched species may be separated according to their hydro- At e only one characteristic molecule spans a correlation
dynamic size using SEC. In solution, the siReof a ran-  volume andn reaches a value of unity. Solving E@.6) for
domly branched polymer is related to its molar milsby its  the Ginzburg point(using mean-field exponent valyese
swollen fractal dimensiou [1,20]; recover the famous de Gennes formfdd

R~ M s, (13 eg~N"18 (17

Intrinsic viscosity{ 7] is the initial slope of a plot of viscosity Equation(17) implies that for largeN, eg is quite small.

as a function of polymer concentration. It is related to theThus, the entire range of experimentally accessibléll be
radius of gyration, molar mass, and swollen fractal dimenn the vulcanization class and the studied branched polymers
sion through 20] will be modeled by the Flory-Stockmayer thedi#~18]. We

find that our N=900 system exhibits vulcanization class

[ 7]~ R_sta (14) scaling in accord with these ideas. Further discussion of Eq.
ey ' (17), and its implications, as well as recent computer simu-
lation and experimental results supporting it can be found in
with [22].
a= di_ 1. (15) Dynamic scaling and linear response
S

Theories predict[23,33-36 and experiment confirms
_ _ o [19,21-24,35,37-92hat in the vicinity of the liquid to solid
Chain overlap and the Ginzburg criterion transition, the rheological properties obey scaling laws. At

The key concept necessary to understand both the statffe gel point, the shear relaxation modulBét) is a power
and the dynamic properties of randomly branched polymer@Ww in time. The complex shear modul@&*(w) and the
is chain overlap Daoudet al.[31] calculated the number of complex viscosityp™ (w) are power laws in frequency:
overlapp_lng correlation _volumes_ln the gel as the ratio of the G(t)~t"Y and
gel fraction to the density of a single network stramdich
spans the correlation volumeThis concept is equivalent to
the numbemn of overlapping randomly branched characteris-
tic molecules of siz& and molar mas$/ 5

G*(iow)=iwn*(iw)~(iw)". (18

Below the gel point, the rheological properties exhibit
n=NY2 ~3v+(r-1lo (16) power law scaling on time scales shorter than the longest
relaxation time7, beyond which the system follows the stan-

This result applies both above and below the gel poindard terminal response of a viscoelastic liq#3]. 7'is the
[22,32: time it takes a characteristic molecule, of molar mfg,

In the critical percolation clasdl=1, and hyperscaling and size¢, tq fully relax. In analogy with other continuous
(9) requires that £—1)/o=3v [1]. Thus, the number of phase transition$54] we define the dynamic exponeat
overlapping characteristic moleculass a constant of order through
unity. This result implies that the largest branched molecules
in the system do not overlap with each other in the critical
limit. Using this fact, and the self-similar structure of the
branched polymers, it can be shoyh,32] that branched
polymers of a given size do not overlap each other in th
critical percolation class. The pervaded volume of a give
randomly branched polymer in this limit is filled only with foc

n=

T~ g 2. (19)

The viscosity » is the integral of the stress relaxation
modulus[53]. The divergence of the viscosity at the gel
ﬁ)oint defines the dynamic critical exponent

smaller molecules.

In the vulcanization claskl>1, and the hyperscaling re-
lation does not apply sincer{-1)/0>3v. Consequently, ~gmvEImW s (20)
n>1 and multiple overlapping characteristic molecules span
a correlation volume of siz& Prior to the commencement of \where
the vulcanization reaction in a melt of long linear chains,
there areN''? other polymer chains that share the same per- s=vz(1—u). (21
vaded volume of a given polymer cd20]. As the reaction
proceeds, the branched molecules grow—the largest ond$e recoverable compliand® is related to the first moment
overlapping each other to a lesser extent because the expof the stress relaxation modul{is3]. The divergence of the
nent ofe in Eq. (16) is positive. The Ginzburg poinig is  recoverable compliance at the gel point defines the dynamic
the relative extent of reaction at which the largest polymerritical exponent,

T
G(t)dt~f tudt~71"u

0 0
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1 (e Equation(24) can be rewritten using Eq$25) and (28) to
J0=— | tG(t)dt give
e 772 0

—1
1 T u= .
~_2f tlfudt~8237—27u ovZ
n 0

Thus,z is the only independent dynamic exponent for gela-
, (22 tion. Furthermore, Eq928)—(30) show that all the physics

necessary to explain the rheology of branched polymer ma-
with t=rz(2—u) - 2s. Eliminating s using Eq.(21) deter-  terials is contained in the molar mass distribution, the relax-
mines ation time, and the correlation length. The chain length be-
tween crosslink$N affects all three of these.

As discussed previously for statics, our inability to deter-
mine the gel point with sufficient precision precludes any
meaningful calculation of the relative extent of reactigrso
we evaluate exponent ratios by plotting measured quantities
t against each other. We make use of
(24)

(30

NSZsf vz(zfu)wgft

t=vzu. (23

Combining Eqgs.(21) and (23) by eliminating the exponent
combinationyz yields the dynamic scaling law

u= —:.
STt 7~MS 7~ M (31)

char

We demonstrated previously that E@4) is valid for sys-  for viscosity, and
tems withN=2 [21,22 andN=20[22,24] Kuhn segments
between branch points; herein we confirm it for a system B~MUY~M (32
with N=900.
The relaxation time exponentz in Eq. (19) can be ex- for recoverable compliance, as well as

pressed in terms af andt by eliminatingu in Egs.(21) and _
(23), Jor 7S~y u, (33)

(25) An important test of dynamic scaling is to verify that the
same relaxation exponent is determined in the terminal

Equation (25) is a manifestation of the linear viscoelastic Z0n€ from Eq(33) and at higher frequencies from EQ.8).

relationship between the relaxation time and the termina¥Ve have previously verified this scaling for the critical per-

vZ=S+t.

flow propertieg53,55,56: colation clasgwith N=2) [21,22, and in the crossover re-
gion (with N=20) [22,23 . In this paper we find that it also
T7=327. (26)  holds in the vulcanization clagsvith N=900).
Beyond the gel point, the equilibrium modulus is under- EXPERIMENT

stood to be proportional tkgT per network strand because )
each branched polymer of size equal to the correlation length "€ molecular structure and rheology data discussed be-
storeskgT of elastic energy24,57—59. With n overlapping low are tabulated in Table Il. The main results of this section

network strands in each correlation volurti® the network '€ that theN =900 polyester system belongs to the vulcani-
modulus beyond the gel point is zation (mean-field static universality class and that its rhe-

ology is not modeled by the branched polymer Rouse model.
n Entanglement effects should be prevalent in this system
Ge= zkgT~N " 1g(m Do N~1gt, (27 sinceM,=2100[61], which is of the same order as the mo-
¢ lar mass of the precursor molecules.

Thus, there is a simple scaling relation for the “modulus

exponent”t that is valid in both static universality classes Polyester synthesis
[24]: Hydroxy terminated polyesters with very low acid num-
ber were prepared from adipic adiéiD), trimethylolpropane
t= —1 (28) (TMP), Terathane 2900(DuPonj—a polytetramethylene
o’ glycol oligomer(PTMG) with M ,=2900—and Fascat 4100

(butyl stannoic acigcatalyst. Reactants were purchased from
sot=2.65 for critical percolation anti=3 for vulcanization.  Aldrich Chemical Company and Eastman Chemical Com-
Both values have been observed experimen{@H;44,6Q.  pany and used without further purification. The catalyst was

Since Eq.(28) relatest directly to the static exponents de- purchased from M&T Chemicals and used without further
scribing the molar mass distribution, it is in essence a strucpurification.

tural quantity itself. Eliminating from Eq. (21) using Egs. The motivation for selecting this system was to produce

(24), (25), and(28) yields stable branched polyesters with molecular structure in the
vulcanization limit. Appropriate amounts of AD, TMP, and

P —1 _ (29) PTMG were determined using the “Eastman Polyester

Resin” computer program{Eastman Chemical Company
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TABLE II. Molecular structure and rheology data. Entries indicatechveitf next to theiM,, denote
points appearing in Fig. 6.

M w M max M char n (P) J(e’(cmzldyn)
12 300 27 000
15206 30700 10800 408
18900 36700 17 200 832
24 2006 47 300 20400 2020
27 900 56 900 45500 4180 0.000 009 20
37500 76 600 77 000 11600 0.000 0175
45300 99 000 135000 27 000 0.000 0320
53 400 129000 172000 51200 0.000 0428
58 300 144000 187 000
68 300 174000 282000 358000 0.000 0873
85300 222000 422 000 524000 0.000 144
145 006 587 000 1020 000 39800 000 0.00133
226 006 1190 000

Entering arguments were a PTMG:TMP molar ratio of 3:1,680 nm in THF. The eluent was uninhibited tetrahydrofuran
an acid number of zero. For each target number averagdHF). All samples were prefiltered through Q.2 Anatop
molar mass, the computer program calculated the reactaiforganic membranes and injected in 120 amounts. No
quantities to use. The reactants were then weighed and fiters were inserted between the columns and the detectors.
yield of 250 g of polymer. into a triple neck 500-ml round- The effective interdetector volume between the TALLS and
bottom flask along with 0.25 g of Fascat 4100. The ADDR| detectors was determined using the systematic approach
concentration was adjusted to produce a series of randomyescribed in[62]. The column set used consisted of three
crosslinked end products at the specified molar masses. Thes_mm.diametex300-mm-long  Polymer  Laboratories
flask was fitted with a Teflon blade stirrer, Teflon bearing, ixedC PL gel columns. The nominal flow rate was 1.0
nitrogen inlet, and a steam heated partial condensing pack l/min with sample concentrations in the range 2.0 mg/ml

column with a water cooled distillation head and receiver.(highest molar masseg 6.0 mg/mi(lowest molar massgs
The flask was then immersed in a 200 °C salt bath and ConAcetone(O.ZO/@ was used as an internal flow marker.

tinuously stirred from 1.75 to 3.75 h, collecting the water  rjq e 1 is a plot of the intrinsic viscosity, as a function of
distillate formed. The bath temperature was then increased Weight—average molar mass, combining SEC fractions from
220°C and stirring was continued for 2431 h. At this stageg| ihe samples in this study. Two power laws are evident—
the branched polymer was stirred under water aspiratofq,q Eqgs(14) and (15—and their intersection at a molar
vacuum for approximately 0.5 h, then poured from the flasky, 545 o\, =66 000 indicates the typical linear chain mo-
into amber storage jars and cooled to room temperaturgeq - weight in the system. Fractions of the distribution

Samples were stored under dry nitrogen to minimize the ab\ivith 1.2x10'<M<4x 10" have slopea=0.803+0.021

sorption of water. All samples had acid numbers of 0'017.corresponding to a swollen fractal dimension df=1.66

meq/g or less as determined by_ nonaqueous tit.ration. Th'%o.oz. The known linear chain value &[20], so these
dergonstlrates the c?mplite rtehacnfon tha"hthet aC|d|groups. results indicate that linear chains dominate the low molecular
ample preparation for the four highest molar mas eight region of the distribution. Fractions withx210°

samples was slightly different. These samples were partiaIIv<M <8x% 10° have slope= .
. - ; . pe=0.449+0.016, corresponding to
reacted fo 4 h in 2500-ml flask at 200 °C while being con- f swollen fractal dimension of the branched chainsdgf

tinuoysly stirred. The samples were t.hen poured into SMAL 5 07+0.02. Thus the intersection of the two power laws in
aluminum dishes and reacted under nitrogen at 220 °C for 4§. RN ; .
ig. 1, atM=M,, determines the crossover point between

h. Acid numbers near zero again demonstrated CoranEtgranched and linear behavidi., is a measure of the avera
chemical conversion of the acid groups. L xX ge
molar mass between crosslinks. Since the PTMG repeat unit
. ) (molar masM y=72) is the same as its Kuhn segmgdi],
Size exclusion chromatography we calculateN=M,/M,=900. This value is much larger
Using SEC each sample was separated into fractions cothan the degree of polymerization of the linear PTMG pre-
taining molecules of roughly the same hydrodynamic sizecursor molecules IP=40). The linear chain between
These fractions were subsequently passed through three daranch points consists of roughly 23 PTMG oligomers. For
tectors placed in series after the SEC columns: two-anglan ideal 3:1 PTMG:TMP reaction we except 3 PTMG mol-
laser light scatterind TALLS), differential refractive index ecules per chain. Thus, the reactivity of the third OH group
(DRI), and viscometry. Used together, these detectors caon the TMP is roughly eight times slower than the reactivity
determine the molar mass, concentration, and intrinsic visef the other two OH groups.
cosity of each eluted fraction. The method is discussed in Weight-average molar mass of each samiglg deter-
[21,62,63 and references therein. The PTMG polyester has anined by integration of the low-angle light scattering detec-
specific refractive index incrememtn/dc=0.0640ml/g at tor signal (without the DR) as described i21,62,63, is
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FIG. 1. Intrinsic viscosity as a function of the molar mass from  FIG. 2. Two measures of the largest characteristic molar mass
SEC. The solid line with slope 0.450.02 corresponds to a ran- correlated with the weight-average molecular weight. Open circles
domly branched polymer. The solid line with slope G802 cor-  are M ,,,, determined from light scattering as described in the text.
responds to a linear polymer. The arrow indicates the crossovetilled circles areM 4, (divided by two to superimpose the data at
from branched to linear am,=6.6x10%, which determinesN  high molecular weightdetermined by fitting the molar mass distri-
=900. bution to the Flory-Stockmayer theory, as shown in Fig. 3. The line

indicates a slope of 2, corresponding#te 3 [see Eq(8)].

listed in Table Il. Also tabulated i#/1,,,, the peak at the
elution volume corresponding to the maximum scattered inecules with molar mass smaller than this are mostly linear
tensity. Table Il also presenid ., determined from the mo- polymer chains.
lecular weight distribution using the fitting procedure dis- For linear polymers, one exped,<M,,, and indeed
cussed below. Previous gelation studies demonstrated thwe find that
M maxM, Mo [21,22,27,64—66 Typical uncertainties in
molecular weight, averaging 6 to 8 replicate analyses, are M max
+10% inM,,; =12% in M, and =20% inM, . v~ 2-03£0.11(95%)  Mma<My. (35
. N w

Assuming that each elution volumé corresponds to a
single molar mass, the number of moleculeéM;) of mo-
lecular weightM, is given by[22,62,63

To determine the static universality class for the system,
®(M) was calculated by Eq34) for each sample. These
DM Na ¢ dv 34 data were Ithen f|ftf tfo the product of a powe(; law and an
i)=- 7 , exponential cut-off function. Data corresponding Ny
2:303M;)” ¢ dlog(M;) <2M, were removed from the distribution so that just the
effects of the random branching could be studied. Fhe
wherec is the area under the DRI chromatogram, apit is ~ value was not immediately obvious from the shape of the
the weight fraction of polymer in théth retention volume Molar mass distribution for the samples closest to the gel
V;, and the derivative is obtained from the standard SEQ0int because the cut-off function interfers with the power
[log(M) vs V] calibration curve. law slope. Fitting thed (M) data first to Eq(2) with 7=3
Two measures of the characteristic largest moleculapnd the vulcanization cut-off function given by H@d1), and
weight,M ., andM 4,5 are plotted againddl,, in Fig. 2. The ~ second to Eq(2) with 7=2.2 and the critical percolation
expected power law correlatioi8) fails for M, vs M, at ~ cut-off function given by Eq(12) with z;,,,=0.632, pro-
low molecular weights M ,,< 10°) because th# ., peak is duce_d equally g_ood results, as d_emonstrated in Fig. 3. This
dominated by the signal from the linear chains. Closer to thépurious result is due to the limited range covered by the
gel point, the data are consistent with static scaling expectdnolar mass distribution that corresponds to branched poly-
tions: M Mcpg. Judging from the figure, the effect of Mers. The fittedVl ;ny values from both fits are plotted in Fig.
linear chains persists up td g,=2M, . 4 as functions of weight-average molar mass. Whg,, val-
Scaling theory predicts that the correlation lengtis the ~ ues from the vulcanization class fit, with= 3 are presented
only relevant length scale in the gelation problem near thdn Table II. Linear regression of these points in Fig. 4 deter-
gel point[1,19. Hence,M ., is the only relevant molar Mines 1/(3-7)=1.87+0.19, thus
mass scaleM,=6.6x10" represents the lower bound in
M ¢har Where percolation/gelation ideas can be applied. Mol- 7=2.47£0.05 (95%), (36)
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FIG. 3. Experimentally determined molar mass distributiewn 3
ery tenth point for the sample withM,,=8.53x 10*. Curves are 10190 PR "'(')51 I B
) .0 1 10

two-parameter fits to the two possible forms of the distribution
function: the critical percolation limitdashed curveusing 7=2.2
with Egs. (2) and (12), and the vulcanization limifsolid curve
using 7= with Egs.(2) and (11).

M/ M

char

FIG. 5. Universal molar mass distribution constructed from Eq.
(37). Molar masses smaller thanM2, were removed from each
curve prior to shifting. The solid line is a power law with slope of
for the N=900 system. The parallel slopes W, values 2 The excellent data collapse refers to E2j7) in this plot dem-
obtained from the critical percolation and vulcanization mod-onstrates that this system with=900 is in the vulcanization uni-
els of the distribution, shown in Fig. 4, demonstrate that versality class.
=3 for this system regardless of which fit was used. Thus
the choice ofr=2.2 in the critical percolation fit is inconsis- tent. Therefore, the molecular structure of tie=900 ran-

domly branched polyesters places them in the vulcanization
— — universality class.

I The molar mass distribution master curve, Fig. 5, is the
final proof that this system belongs to the vulcanization uni-
versality class. The master curve is constructed from the ex-
108 + + perimentakb (M) for all the samples wittM,>6.6x 10* and
E ] the fittedM .., data forr=3 according to the equation

Mchar5/2q)(M)M(M/Mchar)_smexq_M/(ZMchar)]- (37)

Attempts to construct similar master curves usig2.2 and
105 4+ 1 the SG cut-off function12) failed [22].

Alchar

Oscillatory shear

Small-amplitude oscillatory strain response was measured
using a Rheometrics System Four rheometer with 25-mm-
diameter parallel plates. Standard linear viscoelasticity pro-
] cedureg 53] were employed as detailed [22]. Since this
] polymer has a melting transition at about 22 °C, samples
10° 104 10° 108 were molded under weak vacuui@bout 0.2 atrhat approxi-

mately 70 °C under a 10-Ib compressional load. After several
w days, the heat was removed and the sample allowed to re-

FIG. 4. Correlation of the characteristic largest molar mass Withcrystalllze for several more days. It could then be easily re-

the weight-average molar mass. Each SEC data set was fit to bofoved from tohe mold and inserted in the rheometer and
mean-field distribution(filled symbols: =% with Egs. (2) and ~ne€ated to 60°C for testing in the liquid state. Frequency

(11); and the critical percolation distributiofopen symbols ~  SWeeps from 0.001 to 100 rad/s were made at 60 °C. DSC
=2.2 with Egs.(2) and (12). Regression of the mean-field fitted €XPeriments revealed that the system’s glass transition tem-
points determines=2.47+0.05. Since the regression line through Perature remains constant B{= —74.1-1.5°C across the

the critical fitted pointgwith the exception of the lasts parallel to ~ €ntire range of samples studied.

the mean-field fitted ones, the choice ®£2.2 is inconsistent. The frequency dependence of complex viscosity is plotted
Therefore, this system belongs to the vulcanization universalitin Fig. 6, for eight representative samples. Although too

class. massive for accurate SEC determinationMf,., the vis-

104 ¢ T
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FIG. 6. Frequency dependence of the complex viscosity at FIG. 7. Determination of the exponent=0.31*0.02 from the
60 °C, for samples of increasing molar massoving vertically. two samples closest to the gel poii;,=2.26x 10° (circles and
The line is the simultaneous regression, over the frequency rangdy,=1.45<10° (squares Only data in the frequency range be-
10-100 rad/s, to a power law with exponent @, for the M,,  tween 10 and 100 rad/s corresponds to pure gelation scéiing
=2.26x 10° (triangles andM,,=1.45x 10° (circles samples. Re- interference with the crossover to terminal flown this frequency
gression to both, in the frequency region indicated in Fig. 7, yieldgange the phase angl®is related tou through the relationship
u=0.31+0.02. =26l.

coelastic response of the sample with,=2.26x 10° was mately 16 s were necessary to achieve steady state for the
also probed. Only the two samples closest to the gel poin§amples closest to the gel point. Multiple determinations
were made.

appear to have an obvious power law in the frequency de* ; _ . L L
pendence of complex viscosity that is independent of extent At Iong_tlme_s In creep the strain varies linearly V\."th time
of reaction at high frequencies. Figure 7 demonstrates thaﬁnd the viscosity is calculated as the ratio of applied stress
for the two samples with the highest molecular weight, fre-
guencies between ¥0w<100rad/s correspond to the pure
power law region where taf=G"/G’ is independent of the i
probe frequencyn. Using the loss tangent we can calculate 108 +
the relaxation exponent from the expression=26/w
[36,50,5]. Regression using data from both samples in this
region yields tar5=0.53+0.04, so tha=0.31+0.02. The
frequency dependence of complex viscosity in Fig. 6 shows
the same value af,

n (Poise)

u=0.31+0.02 (95%). (39)

105 +

I

104 ¢

Creep and recovery 3

The terminal response near the gel point cannot be deter
mined in the oscillatory strain experiment because the relax-
ation times become too lon@gee Fig. & A computerized ,
version of Plazek’s magnetic bearing torsional creep rheom- 102 T e
eter[67] was used to measure creep and subsequent reco\ 10 10 108 107
ery. Samples were molded in the same manner as for the
oscillatory strain tests. Characterization was performed in the
16-mm-diameter parallel plate geometry under nitrogen at- FiG. 8. viscosity at 60 °C as functions of weight-average molar
mosphere at a constant temperature of @G °C. The massM,, (filled circles, characteristic largest molar madg,
procedures are detailed {22]. Samples close to the gel (open triangle and the molar mass corresponding to the maximum
point required shear rates on the order of B) °s™? to light scatteringM .« (open circles Lines are regression to power
achieve zero shear rate response. Creep times of approxaws with the indicated slopes.

10° 1
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FIG. 9. Recoverable compliance at 60 °C as functions of weight- FIG. 10. Correlation of recoverable compliance with viscosity at
average molar madd,, (filled circles, characteristic largest molar 60 °C. The slope of the linear regressiontis=0.53+0.02, thus
massM o (Open triangles and the molar mass corresponding to U=0.35£0.01. The data point in the linear chain regi¢open
the maximum light scatterinl . (Open circlek Lines are regres-  squarg with M, <M, was not included in the regression analysis.
sion to power laws with the indicated slopes.

M har In Fig. 9. Few points in the linear chain regime are
and measured shear rate. Viscosity data are listed in Table #vailable because inertia interferes with the recovery mea-
and are plotted in Fig. 8 as functions of molar mass. Twasurement if the viscosity is less than about' R0 Again,
distinct regions of power law behavior corresponding to lin-samples withM,,>3.5x 10* correspond to branched poly-
ear and branched rheological response are apparent, with theers and have the exponent ratios
same crossover point as observed for intrinsic viscosity in

Fig. 1. A previous study of randomly end-linked polydim- t/y=3.1£0.2 (95%) fromM,, and
ethyl siloxane(PDMS) obtained similar resultg45].
Samples withM ¢,<M,=6.6x 10*, which corresponds to=1.7£0.2 (95%) fromM gy (42)

to M,,<3.5x 10%, are primarily comprised of linear polymer
chains. Fitting the viscosity data to a power law\hy,, we
find that these chains are entangled, since

Combining Eq(42) with the mean-field exponents=1 and
o=1 from Table | leads to two estimates farwhich we
pool to establish that

M36=02 M <M, =6.6X10%, 39
75 Mw chai™Vlx 39 t=3.2+0.2 (95%). (43)
consistent with experimental results on entangled linear
polymers[53,56. The same is obviously true fo as a
function of M, in this regime. Samples witiM,>3.5
X 10* correspond to branched polymers and have the exp

Finally, recoverable compliance is plotted against viscos-
ity in Fig. 10, yielding a slopa/s=0.53+0.02. This ratio
0Qrovides another measure af=(t/s)/[1+(t/s)]=0.35
+0.01 (95%) in reasonable agreement with the value of

t rati . . . . .
nent ratios =0.31+0.02 obtained in the oscillatory strain experiments at
s/y=6.0+0.5 (95%) fromM,,, and intermediate frequencies. We take this as evidence that Eg.
(24) is valid and pool the two measures to obtain our best
s0=3.2+0.3 (95%) fromM s, (40) estimate for the relaxation exponent
Combining Eq.(40) with the mean-field exponents=1 and u=0.33+0.05 (95%). (44)
o=73 from Table | leads to two estimates fer which we
pool to obtain DISCUSSION
$=6.1+0.4 (95%). (41) We previously studied a system witi=2, and found

that it belonged to the critical percolation universality class
After reaching steady state in creep the stress is removed afg1,22. A simple Rouse-type bead-spring model, that ne-
the angular elastic recoirecoverable strainis measured. glects interactions between chains, adequately described the
The total recoverable strain divided by the initial appliedlinear viscoelasticity of this systerfi21-23,59,68 Even
stress is the recoverable compliardge Recoverable compli-  though the molecular weight of the largest branched poly-
ance data are listed in Table Il and plotted agaMgf and  mers becomes quite largef order 10), they do not en-
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FIG. 11. Variation of the viscosity exponesiwith the number FIG. 12. Variation of the relaxation exponantwith the number

of entanglementsl/N, between branch points for the data summa- of entanglementsl/N, between branch points for the data summa-
rized in Table Ill. The solid symbols indicate systems where bothrized in Table Ill. The solid symbols indicate systems where both
the molecular structure and the rheology were determined. Théhe molecular structure and the rheology were determined. The
open symbols are for systems where either M, is estimated as open symbols are for systems where either M, is estimated as
indicated in Table Ill. The solid line is the Rouse model predictionindicated in Table Ill. The solid line is the Rouse model prediction
of s=1.33 forN/N.<2; and Eq.46), a phenomenological form to of u=0.67 forN/N.<2; and Eq(47), a phenomenological form to
account for entanglement effects, fdfN.>2. The dashed line is account for entanglement effects, fdfN,>2. The dashed line is
calculated from Eq(45) assumingu=t/(s+t) with t=3. Eq. (45), the prediction of the hierarchical relaxation mode[&8)].

tangle because hyperscaling permits them to overlap onlwherey is a constant. We tak¢g=0.67 as in[69] and plot
with smaller branched polymersmi&1). However, theN Eq. (45 as the dashed line in Fig. 12. The dashed line in Fig.
=900 system is in the mean-field limit where significant11 is predicted usingi calculated from Eq(45) and the
molecular overlap occursng1), so that for this system equations=t(1—u)/u with t=3. It is clear from these fig-
entanglements control the dynamics. This effect is mostires that, while this theory qualitatively predicts the correct
clearly evident through examination of the values for thetrend ofu decreasing with increasing/N,, the quantitative
relaxation time exponentz as a function ofN. The Rouse comparison is quite poor.
model predictsvz=4.0, and our previous work determined  Without a proper theory, we turn to a phenomenological
vz=4.1 for both theN=2 [21,22 andN=20 [22,24] sys- description to model thé\ dependence of the rheological
tems. However, in the present N900 system we findz ~ exponents observed in systems that belong to the vulcaniza-
=9.3. tion class. Figures 11 and 12 suggest that the Rouse model

Figures 11 and 12, as well as Table Ill, demonstrate hovholds for N/N.<2. For entangled linear polymer systems,
the dynamic scaling exponents change as the number of ethe viscosity exhibits the effects of the entanglements at val-
tanglements between branch poiNts\, increasesN, is the  ues typically 2 to 3 times larger thay, [53]. It has also been
number of Kuhn monomers in an entanglement strand, andbserved that entanglement effects in randomly branched
this ratio is identical taM, /M —the ratio of the molecular systems occur at larger values Mfthan in linear systems
weight between branch points to the entanglement moleculdd5]. For example, randomly branched PDMS hg=1.0
weight. In the figures, we present data from systems in which< 10* [53], its linear chain entanglement crossover occurs at
both the statics and dynamics were characterized simultam ,=3.0x 10* [45,53, but the branched polymer entangle-
neously (filled symbolg, and also systems where the dy- ment crossover is a#l,=1.0x 10° [45]. Since there is only
namic response was measured and the static structure candee independent dynamical exponent, the data in Figs. 11
inferred from existing datéopen symbolk Itis clear thatthe and 12 must cross between Rouse and entangled dynamics at
branched polymer Rouse model predicts the observed dy single value oN/N.=2. The empirical functions are
namic response foN/N.<2. Systems with longer linear
chain sections between branch points systematically deviate
from the Rouse predictions, presumably indicating the im- s
portance of interchain entanglements.

A theory of the entangled relaxation of branched poly-
mers in the vulcanization class has been formulated for and
system right at the gel poif69]. This model predicts that
is a function ofN/Ng,

1.33 N<2N,

=12In(N/Ny)  N>2N, (46

0.67 N<2N,

N, u=——= 3 (47)
_ € s+t ——— N>2N..
u=y;  for N=Ne, (45) 3+2In(N/Ny) ¢
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TABLE lIl. Dependence of the scaling exponents NN, . data whereM, was estimatedopen symbolsabout the lines
Unless otherwise notedvl, was taken to be the precursor chain js probably due to errors in our estimation procedure, in
molecular weight. Values o, used to calculat?N/N.=M,/M.  which M, was taken to be the precursor chain length unless
were obtained fronj61]. In cases wherey was not measured di- other information was availableee footnotes in Table I
rectly the values are inferred from the static structuye:18 for | these casesM,, and thusN/N,, may have significant

7=2.2, y=14 for 7=-2.3, y=1.2 for 7=2.4, andy=1for N/Ne  grror |n all cases, values &, were obtained froni61].
>2 wherer=2.5.

N/Ng 7 y sly s u Ref. CONCLUSIONS
006 22 18 076 1.3 0.69 [21,22 We measured the molar mass distribution of a series of
0.06 1.8 082 14 070 [38,40 randomly branched polyesters with long linear chain sections
0.06 1.8 098 1% [70] between branch points. We find that the mean-field Flory-
0.08 1.3  0.70 [75] Stockmayer theory adequately models the molecular struc-
0.08 0.72 [76] ture of this system. We measured an exponent2.47
0.23 14 10 12 070 (71,72 +0.05, cc_>nsiste_nt with this system belongi_ng to the vul_cani—
0.57 23 1.4 1.1 14 0.68 [22,66 zation unlv_ersallty cl_ass, YVhOSG &gnature-#s%. Co_mparl-
0.71 1.0 0.67 [43] son of the mtrmsm wsqosny and molar mass fractlons sepa-
0.71 12 0.69 [73] rated by size exclusion chromatography detgrmmes the
11 0.63 [74] number of Kuhn monomers between branch points tiNbe
14 24 12 094 11 073 [22] =900. .
5 g 1 15 18 06F [45] _From tors_;lonal_ creep and recovery experiments, we deter-
26 1 25 058 [46—48.50 mined the viscosity and mod.ulus exponesits6.1+ 0.4 and
07 1 19 043 [43]’ t=3.2+0.2 b_elow the ge! point. The stress relaxatlon.expo—
o8 1 36 05 [46-48.50 nent determlned by oscnlatpry shear agrees \_/veII with the
'7d 1 6 2.6‘ 0 ésb [45]’ f:orrespondlng value determlned from the terminal response
3. : : ' in the creep/recovery experiment. The pooled resultiis
4.6 1 19 061 80,81 =0.33=0.05. These data verify that the dynamic scaling law
6.6 1 49 038 (80,81 u=t/(s+t) applies in the vulcanization limit. The modulus
9.2 1 0.55 [78] exponentt is consistent with the idea thadgT of elastic
13 1 33 38 [77] energy is stored per characteristic molecule. The observa-
13 1 67 031 (80,81 tions, that the viscosity exponesits significantly larger than
16 1 0.34 (78] the branched polymer Rouse model prediction of 1.33 and
17 1 0.32 [78] that the relaxation exponent is much smaller than the
22 1 53 53 [79] Rouse prediction of 0.67, are consistent with entanglements
31 25 1 60 61 033 This work22] retarding the relaxation of the branched molecules. Entangle-
6% 1 0.46 [82] ments are anticipated to occur due to the increased chain
74 1 52 5.2 [83] overlap for systems in the vulcanization class.

- - — : The measured, s andt values indicate that the dynamic

8 stimated from measuresly using they values indicated in the scaling lawu=t/(s+1) is a universal feature of polymer
table. In cases wherg was not measured directly, the values are gelation. By plotting values af andu from the literature as
inferred from the static structurey=1.8 for 7=2.2, y=1.4 for  f,nctions of N/N,, we conclude that these exponents are
7=2.3,y=12 for 7=2.4, andy=1 for N/Ne>2 wherer=2.5. universalfor systems withN/N.<2, and that they support
Estimatedu from s andt usingu=t/(s+t) with the valuest=3 the branched polymer Rouse model.

ior N/Ne>2’ andt=2.67 for N/Ne=2. , ) Longer chains between branch pointé/N.>2) lead to
Estimateds from the measuredo and s/y using the effective nonuniversal exponent values that systematically change
crossover valueg=0.48 andy=1.4. _ with the number of entanglements between branch points
M, estimated using theg-factor and M. from [45] via M, N/Ng in a continuous fashion. There is no apparent second

e:EgtMC.t ds=(t(1—u)/ g t=3 and th d universality class in the largd limit. A possible resolution
gldfn;aaids_(l(zl —u)/u) using t=3 and the measured. o ¢ the annarent nonuniversal behavior may lie in some sort
-0 y=1.4.

of exponential function for thél and ¢ dependence of the
longest relaxation time. Molecular theories for the relaxation
. of branched polymers6,69 have an exponential character,
?MX chosen as the branched to linear crossover frontSE) data and our obseeveyd apparent power IaWSpmay be small sections
in [82]. The valueM =830 was use@61]. HoweverMe for poly- o 5 | niversal exponential function. The observed trends of
ethylene is controversial, with values reported in the literature in the[he rheological exponents as functionsN/N,, are in quali-
range 830 to 2100. tative agreement with theof$9]. However, more theoretical
work is needed to resolve the large quantitative discrepancies
Equations(46) and (47) model the data quite well and are between theory and experiment. In particular, future experi-
shown as the solid curves in Figs. 11 and 12. The two exmenters need to determitNdN.= M, /M, in addition to the
pressions are chosen to go through the points whigrevas  molar mass distribution exponentand rheological expo-
measured experimental(§illed symbolg. The scatter of the nentss, t andu.

fMX calculated from the measur¢8EQ number of monomers be-
tween branch point®y,,, in [78].
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