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Nematic kink states in a laser field

S. K. Srivatsa* and G. S. Ranganath†

Raman Research Institute, Bangalore 560 080, India
~Received 1 February 1999!

We have investigated the nonlinear optical interaction of uniform and kink states of a nematic and a
ferrofluid-doped nematic~ferronematic! liquid crystal with an incident laser field. We find that the transition
between the permitted uniform oreintational states of these systems is of first order in the case of nematics, and
of second order in the case of ferronematics. In the latter case we also find the phenomenon of reentrance. We
find new kink states in a magnetic field with topological winding different fromp in the case of nematics, and
2p in the case of ferronematics. In ferronematics, due to grain segregation the phase diagrams for uniform and
kink states are entirely different. In these systems we find a first or second order structural transformation from
a single kink into a pair of kinks. Further, we obtain a rich variety of kink states as the intensity of the laser
field is varied.@S1063-651X~99!12811-3#

PACS number~s!: 61.30.Gd, 61.30.Jf, 42.70.Df
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I. INTRODUCTION

Nonlinear optical effects in liquid crystals have received
great deal of attention in recent times@1,2#. The light in-
duced Fre´ederickz transition, director reorientation, and gr
ing effects have been extensively studied@3,4# both theoreti-
cally and experimentally. However, optical effects that c
occur when a laser is used for probing topological defe
appear to have not attracted as much attention. Here we
dress ourselves to nonlinear optical effects on nonsing
topological defects called planar walls. In these the direc
distortions are in one dimension and are often called solit
in literature @5#. Yet, unlike true solitons these do not pr
serve their shape and velocity after a pairwise collision. F
ther, since these are like kinks structurally, we refer to th
as kinks hereafter.

Kink states in liquid crystals were first discussed by H
frich @6#. These are static walls in a nematic in the prese
of an external static magnetic field. Walls arise because
the degeneracy in the director orientation, which can be
ther parallel or antiparallel to the external field. There can
pure twist walls or splay-rich or bend-rich walls. In each ca
the director turns through 180° along a direction normal
the wall. Also, there can be kinks known as Brochard-Le
walls which are associated with the Freederickz transiti
These arise from the degeneracy in director tilt with resp
to the field above a threshold value. Kinks also appear n
rally in the form of a lattice@7,8# near a field induced tran
sition of a cholesteric to a nematic state. It has been s
gested@9# that kinks also play an important role in a smec
C* to smecticA transition.

The electric field associated with a laser beam can si
late the effect of an external static field, since the torque
the nematic director depends quadratically on the field. T
coupling between the director and the electric field of
laser beam arises due to optical dielectric anisotropy. H
ever, this is possible only if the intensity is high enoug
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With the availability of the high power lasers nonlinear e
fects have become relevant. In such cases it is necessa
solve self-consistently both equations of elastic equilibriu
and Maxwell’s equations of electrodynamics.

We have worked out the structural transitions betwe
different permitted kinks in the presence of a laser field a
a static magnetic field. For a certain range of parameters
find a new kink state which connects the director along
electric field to one perpendicular to it. Such a kink state
forbidden in static fields in view of the inherent symmetry
the nematics. We have extended our studies to ferronem
liquid crystals. Here also we obtain many new kink stat
and the phase diagram of structural transformations in k
states exhibits tricritical points and reentrant phenomeno

II. THEORY

The free energy density of a nematic has contributio
from both the elastic deformations and externally appl
fields. In the one elastic constant approximation and wit
static magnetic field it is given by@10#

Fn5
K

2
@~“•n!21~“3n!2#2

x'

2
H22

xa

2
~n•H!2, ~1!

wheren is the nematic director,K is the Frank elastic con
stant,H is the static magnetic field, andxa is the diamag-
netic anisotropy which is equal to (x i2x'), with x i andx'

as the diamagnetic susceptibilities parallel and perpendic
to the director, respectively. In a free sample,n will be either
parallel or perpendicular to the magnetic field depending
whetherxa is positive or negative.

Ferronematics are a dilute uniform suspension of nee
like magnetic grains in a nematic. The grains are prefer
tially aligned along the local nematic director when the s
tem is cooled from its isotropic phase. The director orien
tion in these systems may be altered by the application
static magnetic fields as low as 10–100 G. On the ot
hand, to effect the same change in a normal nematic, m
netic fields as high as 1 kG would be required because of
small value of the diamagnetic anisotropy. Further, if t
5639 © 1999 The American Physical Society
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5640 PRE 60S. K. SRIVATSA AND G. S. RANGANATH
grain concentration is low enough we can ignore the effe
of magnetic grains on the passage of a light wave through
medium. In this case there are additional contributions to
free energy density, one due to ferromagnetic interac
with the external field and the other due to entropy of mixi
between the guest~magnetic grains! and host~nematic!. The
net contribution is given by@11#

Ff n52M•H1
f kBT ln f

v
. ~2!

Here f is the volume fraction of ferromagnetic grains in th
nematic matrix,M is the magnetization in the medium,kB is
Boltzmann’s constant,T is the absolute temperature, andv is
volume of the sample. Due to mechanical coupling betw
the grains and the directorn, the average magnetizationM is
alongn, and the magnitude ofM is f times the average grai
magnetization. In these systems the uniform state has a
stantf. However, as large director distortions are associa
with the kink state,f varies substantially from point to poin
in a kink, resulting in ‘‘grain segregation.’’ This is due t
migration of ferromagnetic grains from energetically less
vorable regions into energetically more favorable regions

Now we consider the contribution to the free energy d
sity by electric and magnetic fields of a laser beam. Ev
though these fields oscillate at a high frequency
1014–1015 Hz, they can exert a torque onn since the torque
arising from dielectric and diamagnetic anisotropy of the m
dium depends quadratically on the field. In principle, there
a contribution to the free energy density from both elec
and magnetic fields. In fact, the two energy densities
equal in vacuum. But, in nematics both the diamagnetic s
ceptibility and its anisotropy are very small each being of
order of 1026. Hence for optical fieldseuEu25uHu2, wheree
is the dielectric constant,E andH are electric and magneti
fields of the laser beam. In an anisotropic medium the f
energy density due to the optical field is given by@3,12#

Fo52(
j ,k

e jk

8p
Ej~r ,t !Ek~r ,t !, j ,k5x,y,z, ~3!

where,e jk is the second rank dielectric tensor of the mediu
and Ej (r ,t) is a component of the electric field of the ligh
wave. The equations of elastic equilibrium is obtained
minimizing the total free energyF5*(Fn1Ff n1Fo)dV. In
the present case, in addition to these equations, we hav
solve the Maxwell’s wave equation for the laser wave in
medium. That is,E must be obtained from

“3[“3E~r …#2
v2

c2
D~r …50. ~4!

v is the frequency of the light wave,c is the velocity of light,
andD is the displacement vector whose components
given by Dj5(ke jkEk . The determination of the stead
state structure requires a knowledge ofE permitted by the
Maxwell’s equations. Since a nematic is cylindrically sym
metric aboutn, it is optically uniaxial. Then the eigenstate
of the electric field vectorE, which go through the medium
unaltered, areE parallel and perpendicular to the directorn.
In this paper, we consider only a splay-rich or bend-rich k
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state with its director confined to thex-z plane and havingn
varying alongz. Also we restrict ourselves to a linearly po
larized light wave propagating along thez axis with its elec-
tric vectorE along thex axis. Then fieldE variations are also
alongz. The geometry is depicted in Fig. 1~a!. It is easy to
see from the geometry that the polarization of the light wa
is preserved during its passage through the kink. The M
well’s wave equation is solved in the approximation that t
director distortions in the medium are on a length scale la
compared to the wavelength of light. Then solutions to
wave equation~4! become@3#

Ex~z!5A~e'1ea sin2u!1/4

3expF2 ik0~e ie'!1/2Ez

~e'1ea sin2u!21/2dz8G ,
~5!

Ez~z!52A
ea sinu cosu

~e'1ea sin2u!3/4

3expF2 ik0~e ie'!1/2Ez

~e'1ea sin2u!21/2dz8G ,
~6!

FIG. 1. Geometries showing the orientation of the directorn
with respect to the electric fieldE of the incident light and a static
magnetic fieldH. ~a! H50, ~b! H is perpendicular toE, k is the
direction of propagation of the light, andH is the magnetic vector
associated with the light which is perpendicular to the plane of
figure. StructuresSK and BK are splay-rich and bend-rich kinks
respectively.

TABLE I. The various stable and metastable states of the u
form and kink states in the different regions of the phase diag
shown in Fig. 2~a!.

Uniform state Kink state

Region Stable Metastable Topological Split occu
states states charge at

A 2p/2 p/2 p

B 2p/2 p/2 0 p 0

C p/2 0 p/2

D 0 p p/2 p p/2

E 0 p p



ransition

PRE 60 5641NEMATIC KINK STATES IN A LASER FIELD
FIG. 2. ~a! Phase diagram for the uniform state as well as the kink state in a nematic. The dashed curve is a line of first order t
The dotted lines 1 and 2 are stability lines. HereI is the measure of intensity.e i52.89, e'52.25, andK51026 dyn. ~b! ~i! Effective
potentialV as a function ofu. ~ii ! Kink solutions. Hereu is in rad andj25K/xaH2 is the coherence length.~c! Director configuration of the
kinks in the regionsA,B,C,D, andE of the phase diagram~a!.
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wherek05v/c, A is the amplitude of the light wave, an
u[u(z) is the angle between the directorn and theE vector.
Then from Eqs.~3!, ~5!, and~6!, the optical field free energy
density becomes

Fo52I
~e ie'!1/2

~e'1ea sin2u!1/2
, ~7!

where I @5(uAu2/8pc)(e ie')1/2# is a measure of the inten
sity of light. We note that in the limit of small dielectri
anisotropy or for small director distortions,Fo goes over to
the familiar expression for the field contribution to free e
ergy density in static electric fields.

It must be remarked that in any other geometry either
polarization of the light wave may change and or the ph
-

e
e

also may vary across the wave front as it propagates thro
the kink structure. In the case of a twist wall in the geome
cal optics approximation, applicable to cases with direc
distortions along the direction of light propagation, the dire
tion of light propagation is along the helix axis. In this a
proximation the director distortions are on a length sc
very large compared to the wavelength of the light. Then
the twist wall this leads to the Maugin limit or adiabat
limit. In this limit the base states are linearly polarized pa
allel or perpendicular to the local director. Hence if the in
dent light is initially polarized parallel to the director, then
always remains parallel to the local director. This does
result in any change in the director configuration, as it do
not lead to any optical torque on the director. Only at lo
magnetic fields is this approximation valid and the w
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structure unaffected. At higher fields this approximati
breaks down since the wall thickness may become com
rable to or less than the wavelength of the light. In such ca
we find that there could be reflection and/or diffraction
light by the soliton; also, the polarization state of the la
wave is not preserved as it propagates through the sol
Further, if the incident light is initially perpendicular to th
director, then the kink structure remains unaffected up t
threshold intensity of the laser. Beyond this threshold int
sity the director configuration in the kink structure is a
fected. These situations lead to complex director configu
tions, and a complete solution will be an involved numeri
exercise when finding the solution of Maxwell’s equatio
and the equations of elastic equilibrium. Such situations
not considered in this investigation.

We have confined our studies to planar distortions invo
ing splay and bend only. The splay-rich and bend-rich kin
involve both types of distortions, and no qualitative chang
are found if elastic anisotropy is included, i.e., the splay e
tic constant is not equal to the bend elastic constant. In
we observe that elastic anisotropy leads only to an incre
or decrease in the thickness of the wall depending on the
of the anisotropy. Hence to extract the salient features
have adopted a one constant approximation.

Before proceeding further we remark on the influence
the boundaries. Two possible geometries are~1! boundaries
are parallel to the wall, and~2! boundaries are perpendicula
to the wall. In the case of boundaries parallel to the wall,
director, which is assumed to be anchored at the bounda
will influence the distortion in the bulk. Here the exercise
solving Maxwell’s equations and equations of elastic eq
librium become boundary value problems which add to
computational complexity. In the case of boundaries perp
dicular to the wall, we obtain a half strength defect at ea
boundary. This configuration affects the phase across a p
wave front of light incident on the wall, and hence does n
conform to the geometrical optics approximation. Similar
guments are valid for Brochard-Leger walls, briefly d
scribed in Sec. I. This also leads to the reflection and
diffraction of the laser wave, and hence we do not conside
in this study.

It is important to point out the salient features peculiar
the nonlinear optical reorientation effects as compared to
orientational effects in static electric fields. In the optic
case the Maxwell’s equation“•D50 leads, in the plane
wave approximation, tok•D50, wherek is the direction of
light propagation. In view of the fact that the propagation
along z, the variations in the field are also alongz. This
implies that the componentDz vanishes identically. Since
Dz5( ieziEi and Ey50, we obtain Ez52(ezx /ezz)Ex .
Equation~6! has been obtained from Eq.~5! using this rela-
tion. Further, bothEz andEx are complex functions ofz. On
the other hand, in the case of the static field we have the
Maxwell’s equations“3E50 and “•D50. The first of
these equations leads to the relation]Ex /]z50, and hence
Ex is a constant. The second equation, with appropr
boundary conditions, again impliesDz50 thus leading to the
same relation betweenEx andEz . The dependence ofEz on
z coordinate is not throughEx but only due to spatial varia
tions in the dielectric tensor componentsezx andezz. Hence
a-
es
f
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instead of Eqs.~5! and ~6!, in the case of static fields we
obtainEx5const andEz5ea sinu cosuEx /(e'1ea sin2u).

III. KINK STATES

A. Kinks in an optical field

We first study kinks permitted in an optical field. Th
relevant geometry is that shown in Fig. 1~a!. The free energy
density for planar distortions is

F5
K

2 S ]u

]zD 2

2
I e i

1/2

~11m sin2u!1/2
.

Herem5ea /e' . The kink state has only splay-bend disto
tions in the director. Minimization of the total free energ
leads to

K
]2u

]z2
5

I e i
1/2m sinu cosu

~11m sin2 u!3/2
.

The equation of equilibrium in an optical field is no long
the familiar sine-Gordon equation that we obtain for sta
magnetic fields. Numerically we find, using the Rung
Kutta-Fehlberg method, solutions to the above equilibriu
equation. These kinks are found to be essentially simila
the kinks permitted in static magnetic fields.

B. Kinks in magnetic and optical fields

1. Nematic

We now consider the effect of the electrical fieldE of the
light wave on kinks that are already present in the prese
of an external magnetic field. The different geometries wh
could be studied include the electric field of the light waveE
being either parallel or perpendicular to the static magn
field H with ea andxa being positive or negative.

We discuss only one geometry shown in Fig. 1~b!, where
E is perpendicular toH and bothea andxa are positive. The
corresponding equation of equilibrium is

K
]2u

]z2
5

I e i
1/2m sinu cosu

~11m sin2 u!3/2
2xaH2 sinu cosu. ~8!

It is clear from Eq.~8! that the torque acting on the directo
due to the static magnetic fieldH opposes that due to th
electric fieldE of the light wave.

We first work out the different uniform states permitte
by Eq. ~8!. In the uniform state the directorn can be either
parallel (u50) or perpendicular (u5p/2) to the electric
field E. As to which is allowed is obtained by appealing
the free energy. There can be a switch over from one unifo
state to the other as eitherI or H is changed. The phas
diagram so obtained is shown in Fig. 2~a!. The dashed line in
the phase diagram is a line of coexistence of the two st
with u50 and p/2. The dotted lines 1 and 2 are lines
stability across which a particular orientation of the direc
goes from an unstable state to a metastable state, andvice
versa.

Now we take up kink states that can exist in the sa
geometry. We solve Eq.~8! to obtain the permitted kink
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FIG. 3. Phase diagram for the uniform state of a ferronematic withE perpendicular toH, ea.0, xa,0, andM parallel toH. The starred
curve is a line of second order transition. In all our calculations in a ferronematic we have used the parametersm52 G, r5mv/kBT

50.02 G21, f̄ 51023, andxa51026 cgs.~b! Phase diagram for kink states in the geometry considered in~a!. The starred curve represen
a second order transition. The dashed curve is a line of first order transition. The dotted lines are stability lines.P is a tricritical point.~c!
~i! Effective potentialV as a function ofu. ~ii ! Kink solutions and~iii ! grain profiles in regionsA and B of the phase diagram~b!. c

5 f / f̄ . ~d! ~i! Effective potentialV as a function ofu. ~ii ! Kink solutions and~iii ! grain profiles in regionsC andD of the phase diagram~b!.
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states. Interestingly, we find that the phase diagram for t
sition between different permitted kink states is the same
that for uniform states. In this calculation we have utiliz
the particle analogy@5#. We define an effective potentia
V(u) as

V~u!5
I e i

1/2

~11m sin2u!1/2
1

xa

2
H2 sin2u.

Then Eq.~8! can be written as

K
]2u

]z2
52

]V

]u
.

n-
s
The uniform states are given by the minima of2V(u). The
potential as a function ofu and the permitted kink solution
in regionsA,B,C,D, andE of the phase diagram are show
in Figs. 2~b! and 2~c!, respectively. In Fig. 2~d! we show the
director profiles of the kink states permitted in these regio
The flat region in a kink profile corresponds to a loc
minima in 2V, or equivalently to a metastable state. As w
go from A to E, the laser intensityI or consequently the
electric fieldE increases in magnitude. We obtain a spla
rich kink in regionA, while we end up with a bend-rich kink
in region E. There is a first order transition between the
two kink states. On the dashed line, two new kink sta
connecting2p/2 to 0 and 0 top/2 become permitted solu
tions. This is unlike in a nematic in external static field
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5644 PRE 60S. K. SRIVATSA AND G. S. RANGANATH
where the kink connects only 0~or 2p/2) andp ~or p/2)
states. Hence the scenario is like this: a (2p/2)→p/2 splay-
rich kink becomes unstable along the dotted line 1, and sp
into a bound pair of2p/2→0 and 0→p/2 kinks linked by
a u50 uniform state. AsI increases further, the separatio
increases, and it diverges to infinity as the dashed line
approached. On the other side of the dashed line the per
ted kink solution is a bound kink pair of 0→p/2 andp/2
→p. Finally these two merge after the dotted line 2
crossed, to result in a 0→p bend-rich kink. The results ar
summarized in Table I. This depicts only one set of perm
ted solutions and not their symmetry related ones. Here
topological charge is the total change in the director orien
tion across the kink. The same results are obtained for
case ofE parallel toH, but withea positive andxa negative.

2. Ferronematic

Due to an increase in the number of independent par
eters in ferronematics, we have many more possibilit
HereM can be either parallel or antiparallel toH with ea and
xa positive or negative. For the purposes of our discuss
here we treat only the following two cases since these exh
some new and interesting features:

TABLE II. The various stable and metastable states of the u
form and kink states in the different regions of their phase diagra
shown in Figs.3~a! and 3~b!, respectively.

Uniform state Kink state

Region Stable Metastable Topological Split occu
states states charge at

A p/2 5p/2 2p

B p/2 5p/2 u0 3p-u0 ~i! 2p u0 3p-u0

~ii ! 3p-2u0

C p-u0 u0 p/2 ~i! 2u0-p p/2
~ii ! 3p-2u0

D p-u0 u0 ~i! 2u0-p
~ii ! 3p-2u0
tw

f
of
ts

is
it-

-
e
-
e

-
s.

n
it

FIG. 4. Phase diagram for the uniform state of a ferronem
with E perpendicular toH, ea.0, xa.0, andM parallel toH. The
starred line represents a second order transition. The dotted line
line of stability. ~b! Phase diagram for kink states in the geome
considered in~a!. Starred and dashed curves are lines of second
first orders, respectively. Dotted lines 1, 2, and 3 are stability lin
P is the tricritical point.

i-
s

Case I ⇒E perpendicular toH, ea.0, xa,0 and M parallel to H,

Case II ⇒E perpendicular toH, ea.0, xa.0 and M parallel to H.
in.
The other cases are similar to one or the other of these
cases. We discuss the first case in detail.

(a) Case I
Phase diagram for the uniform state. The geometry for

this case is depicted in Fig. 1~b!. The free energy density o
a ferronematic in a static magnetic field in the presence
laser field is obtained by adding Eqs.~1!, ~2!, and~7!, i.e.,
o

a

F5
K

2 S ]u

]zD 2

2
I e i

1/2

~11m sin2u!1/2
1

uxau
2

H2 sin2u2m f H sinu

1
f kBT ln f

v
, ~9!

wherem is the average magnetization of an individual gra
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TABLE III. The various stable and metastable states of the uniform and kink states in the dif
regions of their phase diagrams shown in Figs. 4~a! and 4~b!, respectively.

Uniform state Kink state

Region Stable Metastable Topological Split occurs
states states charge at

A p/2 5p/2 2p

B p/2 5p/2 3p/2 2p 3p/2

C p/2 5p/2 u0 3p-u0 ~i! 2p u0 3p-u0

~ii ! 3p-2u0

D p/2 5p/2 u0 3p/2 3p-u0 ~i! 2p u0 3p/2 3p-u0

~ii ! 3p-2u0 3p/2

E p-u0 u0 p/2 3p/2 ~i! 2u0-p p/2
~ii ! 3p-2u0 3p/2

F p-u0 u0 p/2 ~i! 2u0-p p/2
~ii ! 3p-2u0

G p-u0 u0 ~i! 2u0-p
~ii ! 3p-2u0
eg
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In the uniform state of a ferronematic there is no grain s
regation, and thereforef is a constant. Hence the last term
the free energy is a constant. The uniform states are obta
from

I e i
1/2m sinu cosu

~11m sin2u!3/2
1uxauH2 sinu cosu2m f H cosu50.

~10!

The permitted uniform states are~i! n along the magnetic
field (u5p/2 or 5p/2) and ~ii ! n at an angle to the field
(u5u0 or p2u0). The phase diagram for the transition b
tween these permitted uniform states is depicted in Fig. 3~a!.
The transition from one uniform state to another in this c
is of second order. In regionA we haveu5p/2 ~or 5p/2),
and in the regionB u5u0 ~or p2u0). One interesting fea-
ture of this case should be stressed here. At a constant op
intensity below a threshold value, when the magnetic field
continuously increased the system undergoes a trans
from a uniform state withu5u0 ~or p2u0) to another uni-
form state withu5p/2 ~or 5p/2) and returns back to th
initial uniform state, i.e.,u5u0 ~or p2u0). Thus the system
exhibits a reentrant phenomenon.

Phase diagram for the kink states. In the case of kinks,
different parts of the kink are at different orientations w
respect toH. This causes the grains to migrate to regions
lower energy. Hence the grain concentration and thusf are
not constants. We then have to minimize the total free ene
both with respect tof andu to find the equilibrium director
configuration.

Minimization with respect tof leads to

f 5C exp~rH sinu21!, ~11!

whereC is a constant of integration andr5mv/kBT.
-

ed

e

cal
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on

f

y

Since a kink connects two uniform states, the orientat
u` of the uniform state atz56` can be obtained from a
minimization of the total free energy by neglecting th

‘‘grain segregation.’’ With the boundary conditionf 5 f̄ at
z56` andu5u`5u0 ~or p/2), Eq. ~11! becomes

f 5 f̄ exp@rH~sinu2sinu`!#. ~12!

Minimization with respect tou yields

K
]2u

]z2
5

I e i
1/2m sinu cosu

~11m sin2u!3/2
1uxauH2 sinu cosu

2m f̄H exp@rH~sinu2sinu`!#cosu. ~13!

We solve this equation numerically to obtain kink solution
The kink structures will be sensitive toI and H. The kink
states permitted in this case arep/2→5p/2, (p2u0)→u0
andu0→(3p2u0). The resulting phase diagram for the kin
state is shown in Fig. 3~b!. Up to a certain magnetic field, th
order of transition between ap/2→5p/2 kink and a (p
2u0)→u0 or u0→(3p2u0) kink is second order. Beyond
this field strength this transition becomes first order. Th
there is atricritical point in the phase diagram. The tricritica
point can be fixed by appealing to the grain segregation te
The condition is thenruHu51. The dotted lines 1 and 2 ar
stability lines.

Again utilizing the particle analogy, we define an effe
tive potential

V~u!5
I e i

1/2

~11m sin2u!1/2
2

uxau
2

H2 sin2u1m f̄H

3exp@rH~sinu2sinu`!#.
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Figures 3~c!, 3~d!, and 3~e!, respectively, show the potentia
the kink states, and the grain profile in regionsA,B,C, andD
of the phase diagram. In addition, the phase diagram sh
reentrance of a kink state below a certain threshold valu
the light intensity. We have summarized the salient featu
of the uniform and kink states in Table II. We have n
explicitly depicted the symmetry related solutions.

(b) Case II
The geometry of the problem for this case is shown

Fig. 1~b!. In this case the phase diagram for the uniform st
and the kink state are shown in Figs. 4~a! and 4~b!, respec-
tively. The starred line in Fig. 4~a! is a line of second orde
phase transition, and the dotted line is a line of stability. T
permitted kink states arep/2→5p/2, (p2u0)→u0 andu0
→(3p2u0). The phase diagram is richer here than in t
previous cases. Here all the interesting features which
obtained in the previous cases are present in this one sys
A small region in the phase diagram shown in Fig. 4~b!
shows reentrant behavior, and there are regions where t
are new stable states. Interestingly, reentrant behavior is
seen in the phase diagram for the uniform states. On
dashed line in Fig. 4~b! we find a transformation of ap/2
→5p/2 kink into a pair of kinksviz. (p2u0)→u0 and u0
→(3p2u0). This transformation is second order at lowI
and H and first order at higher values ofI and H implying
the existence of atricritical point on this line. The dotted
-
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e
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lines 1, 2, and 3 are stability lines. Table III gives the ess
tial features of the uniform and permitted kink states in t
different regions of the phase diagram. Here too we can g
erate symmetry related solutions from the ones given in
table.

IV. CONCLUSIONS

We have worked out the phase diagram of transitions
the uniform and kink states of nematics and ferronema
due to nonlinear optical interactions with a laser field. W
find a first order transition between the permitted unifo
states in nematics. This allows the existence of new insta
ties and kink states. Both uniform and kink states have
same phase diagram. In the case of ferronematics the tra
tion between the permitted uniform states is of second or
exibiting in addition the phenomenon of reentrance. In
case of transformations between the kink states the trans
could be of first or second order with an associatedtricritical
point. Here also we find a reentrance phenomenon. Furt
due to grain seggregation the phase diagrams of the unif
and the kink states are entirely different.
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