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Nematic kink states in a laser field
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We have investigated the nonlinear optical interaction of uniform and kink states of a nematic and a
ferrofluid-doped nemati¢ferronematig¢ liquid crystal with an incident laser field. We find that the transition
between the permitted uniform oreintational states of these systems is of first order in the case of nematics, and
of second order in the case of ferronematics. In the latter case we also find the phenomenon of reentrance. We
find new kink states in a magnetic field with topological winding different frerim the case of nematics, and
24 in the case of ferronematics. In ferronematics, due to grain segregation the phase diagrams for uniform and
kink states are entirely different. In these systems we find a first or second order structural transformation from
a single kink into a pair of kinks. Further, we obtain a rich variety of kink states as the intensity of the laser
field is varied.[S1063-651%99)12811-3

PACS numbsg(s): 61.30.Gd, 61.30.Jf, 42.70.Df

[. INTRODUCTION With the availability of the high power lasers nonlinear ef-
fects have become relevant. In such cases it is nhecessary to
Nonlinear optical effects in liquid crystals have received asolve self-consistently both equations of elastic equilibrium
great deal of attention in recent timés,2]. The light in- and Maxwell's equations of electrodynamics.
duced Frederickz transition, director reorientation, and grat- \We have worked out the structural transitions between
ing effects have been extensively studi@] both theoreti-  different permitted kinks in the presence of a laser field and
cally and experimentally. However, optical effects that cand static magnetic field. For a certain range of parameters, we
occur when a laser is used for probing topological defectdind a new kink state which connects the director along the
appear to have not attracted as much attention. Here we ag@lectric field to one perpendicular to it. Such a kink state is
dress ourselves to nonlinear optical effects on nonsinguldiorbidden in static fields in view of the inherent symmetry of
topological defects called planar walls. In these the directothe nematics. We have extended our studies to ferronematic
distortions are in one dimension and are often called solitonkquid crystals. Here also we obtain many new kink states,
in literature[5]. Yet, unlike true solitons these do not pre- and the phase diagram of structural transformations in kink
serve their shape and velocity after a pairwise collision. Furstates exhibits tricritical points and reentrant phenomenon.
ther, since these are like kinks structurally, we refer to them
as kinks hereatfter. Il. THEORY
Kink states in liquid crystals were first discussed by Hel-
frich [6]. These are static walls in a nematic in the presence The free energy density of a nematic has contributions
of an external static magnetic field. Walls arise because ofom both the elastic deformations and externally applied
the degeneracy in the director orientation, which can be eifields. In the one elastic constant approximation and with a
ther parallel or antiparallel to the external field. There can bétatic magnetic field it is given bjl0]
pure twist walls or splay-rich or bend-rich walls. In each case K
the director turns through 180° along a direction normal to _ 2 21 XL o Xa 2
the wall. Also, there can be kinks known as Brochard-Leger Fa=Z LV (VX)T = ZoH5 =52 n- 1% ()
walls which are associated with the Freederickz transition.
These arise from the degeneracy in director tilt with respectvheren is the nematic directo is the Frank elastic con-
to the field above a threshold value. Kinks also appear natwstant,H is the static magnetic field, ang, is the diamag-
rally in the form of a lattice[7,8] near a field induced tran- netic anisotropy which is equal to¢(— x, ), with x; andx,
sition of a cholesteric to a nematic state. It has been sugas the diamagnetic susceptibilities parallel and perpendicular
gested 9] that kinks also play an important role in a smectic to the director, respectively. In a free samplayill be either
C* to smecticA transition. parallel or perpendicular to the magnetic field depending on
The electric field associated with a laser beam can simuwhethery, is positive or negative.
late the effect of an external static field, since the torque on Ferronematics are a dilute uniform suspension of needle-
the nematic director depends quadratically on the field. Théike magnetic grains in a nematic. The grains are preferen-
coupling between the director and the electric field of thetially aligned along the local nematic director when the sys-
laser beam arises due to optical dielectric anisotropy. Howtem is cooled from its isotropic phase. The director orienta-
ever, this is possible only if the intensity is high enough.tion in these systems may be altered by the application of
static magnetic fields as low as 10-100 G. On the other
hand, to effect the same change in a normal nematic, mag-
*Electronic address: vatsa@rri.ernet.in netic fields as high as 1 kG would be required because of the
TElectronic address: gsr@rri.ernet.in small value of the diamagnetic anisotropy. Further, if the
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grain concentration is low enough we can ignore the effects < z,k z,k H
of magnetic grains on the passage of a light wave throughthe BK! !l
medium. In this case there are additional contributions to the T
free energy density, one due to ferromagnetic interaction

[
with the external field and the other due to entropy of mixing Ko GZ) n
between the guesginagnetic grainsand hostinematig. The 77 X 6@
net contribution is given by11] ﬁﬁ_’ € 5_76* €
fkgTInf
Fin=—M -H+——r 2 (a) (b)

FIG. 1. Geometries showing the orientation of the director
with respect to the electric fiel& of the incident light and a static
magnetic fieldH. () H=0, (b) H is perpendicular t&E, k is the
direction of propagation of the light, arfd is the magnetic vector
Ussociated with the light which is perpendicular to the plane of the

Heref is the volume fraction of ferromagnetic grains in the
nematic matrixM is the magnetization in the mediuiky is
Boltzmann’s constant is the absolute temperature, ands
volume of the sample. Due to mechanical coupling betwee
trlle grains 3”?} the dlre_ctgr, tg; gv;arage mr?gnetlzatld)m IS figure. StructuresSK and BK are splay-rich and bend-rich kinks,
alongn, and the magnitude d¥l is f times the average grain respectively.

magnetization. In these systems the uniform state has a con-

stantf. However, as large director distortions are associated o , .
with the kink statef varies substantially from point to point state with its director confmed to thez plane and. having

in a kink, resulting in “grain segregation.” This is due to varying alongz. Also we restrict ourselves to a linearly po-

migration of ferromagnetic grains from energetically less fa—![""_r'zed tl'gr; V\I/ave tp;]ropag_atl%]] a'off‘%ogax'_s )[’.V'th its elelc-
vorable regions into energetically more favorable regions. ''C VECOre aiong théxaxis. fhen neice varations are also

Now we consider the contribution to the free energy den_along z The geometry is depicted in_ Fig(al. Itis easy to
sity by electric and magnetic fields of a laser beam. Everrc® from the geqmet_ry that the polarization of t.he light wave
though these fields oscillate at a high frequency ofS Preserved during its passage through the kink. The Max-

101-10'5 Hz, they can exert a torque ansince the torque well's wave equation is solved in the approximation that the

arising from dielectric and diamagnetic anisotropy of the me_dlrector distortions in the medium are on a length scale large

dium depends quadratically on the field. In principle, there iscompared to the wavelength of light. Then solutions to the

a contribution to the free energy density from both electricVaVeé equatiori4) become{3]
and magnetic fields. In fact, the two energy densities are ) 1a

equal in vacuum. But, in nematics both the diamagnetic sus- E(2)=A(€, + €;5ir o)

ceptibility and its anisotropy are very small each being of the 2

order of 10 ®. Hence for optical fieldg|£|?=|H|?, wheree Xex;{ —iko(euq)uzf (€, +e,site) Yz
is the dielectric constang andH are electric and magnetic

fields of the laser beam. In an anisotropic medium the free (5)

energy density due to the optical field is given[I8y12]

€, Sin 6 cosh

—_pA—2" T
&2) (€, + €, st H)%*

€; )
]—"o=—2 —SJkEJ-(r,t)Ek(r,t), j.k=x,y,z, 3
jk T

where, € is the second rank dielectric tensor of the medium, X exr{ — iko(qu)l’ZJZ(q + e, sirt0) Yz’
and &(r,t) is a component of the electric field of the light

wave. The equations of elastic equilibrium is obtained by (6)
minimizing the total free energf= [ (F,+ Fint+ Fo)dV. In

the present case, in addition to these equations, we have to TABLE I. The various stable and metastable states of the uni-
solve the Maxwell's wave equation for the laser wave in theform and kink states in the different regions of the phase diagram

medium. That is£€ must be obtained from shown in Fig. 2a).
w2 Uniform state Kink state
VX[VXEr)]——D(r)=0. (4) ) - :
c Region Stable Metastable Topological Split occurs
states states charge at
w is the frequency of the light wave,is the velocity of light,
and D is the displacement vector whose components aré —ml2 w2 ™
given by D;=Zey&. The determination of the steady p a2 w2 0 - 0
state structure requires a knowledge &fermitted by the
Maxwell's equations. Since a nematic is cylindrically sym-C /2 0 /2

metric aboutn, it is optically uniaxial. Then the eigenstates
of the electric field vecto€, which go through the medium

unaltered, are€ parallel and perpendicular to the director g 0 o T
In this paper, we consider only a splay-rich or bend-rich kink:

0 T w2 T 2
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FIG. 2. (a) Phase diagram for the uniform state as well as the kink state in a nematic. The dashed curve is a line of first order transition
The dotted lines 1 and 2 are stability lines. Héris the measure of intensity=2.89, €, =2.25, andK=10° dyn. (b) (i) Effective
potentialV as a function o#. (i) Kink solutions. Heré is in rad ands?>=K/y,H? is the coherence lengttt) Director configuration of the
kinks in the regionsA,B,C,D, andE of the phase diagrar@).

whereky=w/c, A is the amplitude of the light wave, and also may vary across the wave front as it propagates through
0= 0(z) is the angle between the directoand the€ vector.  the kink structure. In the case of a twist wall in the geometri-
Then from Egs(3), (5), and(6), the optical field free energy cal optics approximation, applicable to cases with director
density becomes distortions along the direction of light propagation, the direc-
tion of light propagation is along the helix axis. In this ap-
proximation the director distortions are on a length scale
very large compared to the wavelength of the light. Then for
the twist wall this leads to the Maugin limit or adiabatic
wherel [=(|A|2/87rc)(eHeL)1’2] is a measure of the inten- limit. In this Iimi_t the base states are linearly pola_rized par-
sity of light. We note that in the limit of small dielectric allel or perpendicular to the local director. Hence if the inci-
anisotropy or for small director distortion&, goes over to dent light is initially polarized parallel to the director, then it
the familiar expression for the field contribution to free en-always remains parallel to the local director. This does not
ergy density in static electric fields. result in any change in the director configuration, as it does
It must be remarked that in any other geometry either thenot lead to any optical torque on the director. Only at low
polarization of the light wave may change and or the phasenagnetic fields is this approximation valid and the wall

(ee)™?

Fo=—| ——m——————,
° (€, +eysirtH)L?

()
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structure unaffected. At higher fields this approximationinstead of Eqs(5) and (6), in the case of static fields we
breaks down since the wall thickness may become compasbtain E,=const andE,= e, sin 0 cosoE, /(e, + €, SirP6).
rable to or less than the wavelength of the light. In such cases
we find that there could be reflection and/or diffraction of ll. KINK STATES
light by the soliton; also, the polarization state of the laser
wave is not preserved as it propagates through the soliton.
Further, if the incident light is initially perpendicular to the ~ We first study kinks permitted in an optical field. The
director, then the kink structure remains unaffected up to &elevant geometry is that shown in Figal The free energy
threshold intensity of the laser. Beyond this threshold intendensity for planar distortions is
sity the director configuration in the kink structure is af- 5 12
fected. These situations lead to complex director configura- _K ‘9_0) _ e

9z)  (1+ usirtg)V?’

A. Kinks in an optical field

tions, and a complete solution will be an involved numerical 2

exercise when finding the solution of Maxwell's equations

and the equations of elastic equilibrium. Such situations arélere w=e,/€, . The kink state has only splay-bend distor-

not considered in this investigation. tions in the director. Minimization of the total free energy
We have confined our studies to planar distortions involvJeads to

ing splay and bend only. The splay-rich and bend-rich kinks ) 12

involve both types of distortions, and no qualitative changes K 0 _le”n

siné cosé

are found if elastic anisotropy is included, i.e., the splay elas- 97> (1+ psir? )32 '

tic constant is not equal to the bend elastic constant. In fact

we observe that elastic anisotropy leads only to an increasghe equation of equilibrium in an optical field is no longer

or decrease in the thickness of the wall depending on the sigiie familiar sine-Gordon equation that we obtain for static

of the anisotropy. Hence to extract the salient features wéagnetic fields. Numerically we find, using the Runge-

have adopted a one constant approximation. Kutta—_Fetherg mgthod, solutions to the aboye equ_llll_arlum
Before proceeding further we remark on the influence ofequation. Thes_e kln_ks are found to_be_essentlally similar to

the boundaries. Two possible geometries @eboundaries 1€ Kinks permitted in static magnetic fields.

are parallel to the wall, an(®) boundaries are perpendicular

to the wall. In the case of boundaries parallel to the wall, the B. Kinks in magnetic and optical fields

director, which is assumed to be anchored at the boundaries, 1. Nematic

will influence the distortion in the bulk. Here the exercise of

solving Maxwell's equations and equations of elastic equi-, We now con_5|der the effect of the electnca_l fidbf the
é|ght wave on kinks that are already present in the presence

computational complexity. In the case of boundaries perpean an external magnetic field. The different geometries which

dicular to the wall, we obtain a half strength defect at eac O'_“'Id b? studied include the elegtric field of the Iight wa/e .
boundary. This configuration affects the phase across a plail?'”g either parallel or perpendicular to the static magnetic
wave front of light incident on the wall, and hence does not€!d H with e, and x, being positive or negative.

conform to the geometrical optics approximation. Similar ar- _ Ve discuss only one geometry shown in Figo)l where
guments are valid for Brochard-Leger walls, briefly de-€ IS Perpendicular téi and bothe, andy, are positive. The
scribed in Sec. I. This also leads to the reflection and/ofOrresponding equation of equilibrium is

diffraction of the laser wave, and hence we do not consider it ) 1z
in this study. O rINOCOS)  egingcoss.  (®)
It is important to point out the salient features peculiar to 9% (1+ usir? 6)3? a ‘

the nonlinear optical reorientation effects as compared to re-

orientational effects in static electric fields. In the opticallt is clear from Eq.(8) that the torque acting on the director
case the Maxwell's equatioW - D=0 leads, in the plane due to the static magnetic field opposes that due to the
wave approximation, tk- D=0, wherek is the direction of  electric field€ of the light wave.

light propagation. In view of the fact that the propagation is We first work out the different uniform states permitted
along z, the variations in the field are also alorzg This by Eq.(8). In the uniform state the directar can be either
implies that the componeriD, vanishes identically. Since parallel (9=0) or perpendicular = 7/2) to the electric
D,=Zi€,& and £,=0, we obtain £,= —(e,4/€,) E. field €. As to which is allowed is obtained by appealing to
Equation(6) has been obtained from E€) using this rela-  the free energy. There can be a switch over from one uniform
tion. Further, botk€, and €, are complex functions f On  state to the other as eithéror H is changed. The phase
the other hand, in the case of the static field we have the twdiagram so obtained is shown in Figa2 The dashed line in
Maxwell's equationsVXE=0 and V-D=0. The first of the phase diagram is a line of coexistence of the two states
these equations leads to the relatie, /9z=0, and hence with §=0 and #/2. The dotted lines 1 and 2 are lines of
E, is a constant. The second equation, with appropriatatability across which a particular orientation of the director
boundary conditions, again impli€s,=0 thus leading to the goes from an unstable state to a metastable stateyiaad
same relation betweeh, andE,. The dependence &, on  versa

z coordinate is not througk, but only due to spatial varia- Now we take up kink states that can exist in the same
tions in the dielectric tensor componerts ande,,. Hence  geometry. We solve Eq@8) to obtain the permitted kink



PRE 60

35 T T

NEMATIC KINK STATES IN A LASER FIELD

3F m E
N
W ****
** *x
* *
25F ¥« L 4
* *
*
*
* *
oF * * -
= * *
'% * *
* *
2 * *
i°1 5F * * il
& * *
SN—
= : **
B 4 *
i * * b
* *
* *
05k %* *
’ * A *
* *
* *
o L . L . L . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
H (Gauss)
(@
35 T T T T T T T T T
3k e §
25F E
S N
st §
<
N
P
ni p
D
c
o5f | g
PN
p*™ N
At B N
T hy . . . . . . .
200 400 600 800 1000 1200 1400 1600 1800 2000

H (Gauss)

{b)

5643

-0.18 sn2, 1
A A A
08
_ 06
> @ Ed
>
i 04
02
03 2 0
Zx w2 sw2im -10 0 10 -0 [) 10
2/g 2/
sw2 1
_0.36!B B B
08
s 06
~>r @ e
04
(Y
02
~0.46 /2 0
p 2 g sw2im —20 ZE 20 20 2/E 20
i

U] (ii)
(©

(i)

[ 8[C c
-0.65 4
g
>I [:] Vo
-0.75 pi, & P 0
-n 2 5m/2 3x -10 [ 10 -10 0 10
3n—6o C 1 P
o v
6o 1)
—10 0 10 -0 0 10
-14rg %p 6l D
& 4
JAARE A
! 2
—& &
18 6o )
- 2 sm23w 10 0 10 -0 0 10
1
3-8, D
o ¥
8o 0
-10 E3 LT -] 3 10

U] (i) {iii)
(d)

FIG. 3. Phase diagram for the uniform state of a ferronematic &iglerpendicular td1, €,>0, x,<0, andM parallel toH. The starred
curve is a line of second order transition. In all our calculations in a ferronematic we have used the panam&ers, p=mv/kgT

=0.02 G 1, f= 1073, andy,=10"% cgs.(b) Phase diagram for kink states in the geometry considerég).ifThe starred curve represents
a second order transition. The dashed curve is a line of first order transition. The dotted lines are stabil®yidiresicritical point.(c)
(i) Effective potentialV as a function of6. (ii) Kink solutions and(iii) grain profiles in region® and B of the phase diagrarth).

=f/f. (d) (i) Effective potentiaV as a function of. (ii) Kink solutions andiii) grain profiles in region€ andD of the phase diagrarfb).

states. Interestingly, we find that the phase diagram for tranfhe uniform states are given by the minima-e¥(6). The
sition between different permitted kink states is the same apotential as a function of and the permitted kink solutions
that for uniform states. In this calculation we have utilizedin regionsA,B,C,D, andE of the phase diagram are shown
the particle analogy5]. We define an effective potential in Figs. 4b) and Zc), respectively. In Fig. @) we show the

V() as

V()=

Then Eq.(8) can be written as

|61/2 X
—H_ + Z2H2sirkg.
(1+psio)t? 2

a0V

P

director profiles of the kink states permitted in these regions.
The flat region in a kink profile corresponds to a local
minima in —V, or equivalently to a metastable state. As we
go from A to E, the laser intensity or consequently the

electric field € increases in magnitude. We obtain a splay-
rich kink in regionA, while we end up with a bend-rich kink

in region E. There is a first order transition between these
two kink states. On the dashed line, two new kink states
connecting— 7/2 to 0 and 0 tow/2 become permitted solu-

tions. This is unlike in a nematic in external static fields,
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TABLE II. The various stable and metastable states of the uni- %
form and kink states in the different regions of their phase diagrams
shown in Figs.8) and 3b), respectively.

201

Uniform state Kink state

Region Stable Metastable Topological Split occurs
states states charge at

A w2 5m/2 2

I(erglcny) .

=
%,
N
¥,

w

w2 5w2 60, 3m-6, (i) 2w 0y 3m-0,
(i) 37-26, c

C w0y Oy w2 (i) 20g-7m w2
(i) 37-26,

1 1 1 1 Le’ :
D - '90 '90 (l) 2 00'77 G0 500 1000 1500 2000 2500 3000

(i) 37-26, H (Gauss)

(@

where the kink connects only @r — #/2) and (or 7/2) r

states. Hence the scenario is like this-aif/2)— /2 splay- .
rich kink becomes unstable along the dotted line 1, and splits 1o} C S
into a bound pair of- 7/2—0 and 0— /2 kinks linked by N
a #=0 uniform state. Ad increases further, the separation . 7
increases, and it diverges to infinity as the dashed line is Lz .
approached. On the other side of the dashed line the permit~ .7
ted kink solution is a bound kink pair of-8 7/2 and =/2 6r ." -
— . Finally these two merge after the dotted line 2 is .
crossed, to result in a-8 7 bend-rich kink. The results are J
summarized in Table I. This depicts only one set of permit- 2
ted solutions and not their symmetry related ones. Here the s . F <
topological charge is the total change in the director orienta- *[ L
tion across the kink. The same results are obtained for the o e
case of€ parallel toH, but with €, positive andy, negative. 0 L

I(erglcn?d

I L 1 L I L I L |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

H (Gauss)
2. Ferronematic (b)

Due to an increase in the number of independent param- FIG. 4. Phase diagram for the uniform state of a ferronematic
eters in ferronematics, we have many more possibilitieswith £ perpendicular td, €,>0, x,>0, andM parallel toH. The
HereM can be either parallel or antiparalleltbwith €, and starred line represents a second order transition. The dotted line is a
Xa Positive or negative. For the purposes of our discussiofine of stability. (b) Phase diagram for kink states in the geometry

here we treat only the following two cases since these exhibﬁonsidered ifa). Starred and dashed curves are lines of second and
some new and interesting features: first orders, respectively. Dotted lines 1, 2, and 3 are stability lines.

P is the tricritical point.

Case |=¢& perpendicular toH, €,>0, x,<0 and M parallel toH,

Case Il =& perpendicular toH, €,>0, x,>0 and M parallel to H.

The other cases are similar to one or the other of these two ./ ;4\ 2 | € Xl

cases. We discuss the first case in detail. F= E(E) - THZ sifd—mfHsing
(a) Case | (1+ u sir? o)
Phase diagram for the uniform stat&he geometry for fkgT In f

this case is depicted in Fig(d). The free energy density of +—, 9

a ferronematic in a static magnetic field in the presence of a v

laser field is obtained by adding Ed4), (2), and(7), i.e., wherem is the average magnetization of an individual grain.
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TABLE Ill. The various stable and metastable states of the uniform and kink states in the different
regions of their phase diagrams shown in Figs) 4nd 4b), respectively.

Uniform state Kink state
Region Stable Metastable Topological Split occurs
states states charge at
A /2 572 27
/2 572 37/2 27 37m/2

C 72 57/2 0o 3m-6q (i) 27 0 3m-6q
(i) 37-26,

D /2 572 6o 3m/2 376y (i) 27 6o 3m/2 376y
(i) 3726, 3m/2

E -0y 0o /2 3m/2 (i) 26g-7 w2
(i) 37-246, 372

F -0y 0 72 (i) 260g-7 72

G 77'00 00 (I) 200_77
(i) 3m-26,

In the uniform state of a ferronematic there is no grain seg- Since a kink connects two uniform states, the orientation

regation, and thereforeis a constant. Hence the last term in 6., of the uniform state ar= =« can be obtained from a

the free energy is a constant. The uniform states are obtainegdinimization of the total free energy by neglecting the

from “grain segregation.” With the boundary conditioh=f at
z=*w and = 0,.= , (or 7/2), Eq.(11) becomes

| €' sin 6 coso

2 oi _ —
(17 1 sirZe) 2 +|xalH*sin8 cosd—mfHcoso=0.

(10

f=f ex pH(sind—siné..)]. (12)

Minimization with respect t@ yields
The permitted uniform states afie n along the magnetic

field (6=m/2 or 57/2) and(ii) n at an angle to the field pry |6”1/2M sin @ coso ,
(6= 6, or m— 6p). The phase diagram for the transition be- K=yt | xa|H? sind cose
tween these permitted uniform states is depicted in Fig. 3 92> (1+ wsiro)

The transition from one uniform state to another in this case
is of second order. In regioA we havef= /2 (or 57/2),
and in the regiorB 6= 6, (or 7— 6y). One interesting fea-
ture of this case should be stressed here. At a constant opticé/e solve this equation numerically to obtain kink solutions.
intensity below a threshold value, when the magnetic field isThe kink structures will be sensitive toand H. The kink
continuously increased the system undergoes a transiticdfates permitted in this case and2—5m/2, (7— 6y)— 6y
from a uniform state with9= 6, (or 7— 6;) to another uni- andéy— (37— 6). The resulting phase diagram for the kink
form state withé= /2 (or 57/2) and returns back to the State is shown in Fig.(8). Up to a certain magnetic field, the
initial uniform state, i.e.f= 6, (or w— 6,). Thus the system order of transition between a&/2—57/2 kink and a @
exhibits a reentrant phenomenon. — 6p)— 0 or 6p— (37— 6) kink is second order. Beyond

Phase diagram for the kink statef the case of kinks, this field strength this transition becomes first order. Thus
different parts of the kink are at different orientations with there is aricritical pointin the phase diagram. The tricritical
respect taH. This causes the grains to migrate to regions ofPoint can be fixed by appealing to the grain segregation term.
lower energy. Hence the grain concentration and thage ~ The condition is them|H|=1. The dotted lines 1 and 2 are
not constants. We then have to minimize the total free energgtability lines.
both with respect td and ¢ to find the equilibrium director Again utilizing the particle analogy, we define an effec-
configuration. tive potential

Minimization with respect td leads to

—mfH exd pH(sind—sin#,,)]cosh. (13

/
IE\:\Lz |Xa|

— T H2si6+mfH
(1+usifg)? 2

f=Cexp(pHsing—1), (1D V(6)=

whereC is a constant of integration ang=mv/kBT. Xexd pH(sing—sind..)].
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Figures 3c), 3(d), and 3e), respectively, show the potential, lines 1, 2, and 3 are stability lines. Table Il gives the essen-
the kink states, and the grain profile in regigh®,C, andD  tial features of the uniform and permitted kink states in the

of the phase diagram. In addition, the phase diagram showdifferent regions of the phase diagram. Here too we can gen-
reentrance of a kink state below a certain threshold value ofrate symmetry related solutions from the ones given in the
the light intensity. We have summarized the salient featuretable.

of the uniform and kink states in Table Il. We have not

explicitly depicted the symmetry related solutions. IV. CONCLUSIONS

(b) Case I . .
The geometry of the problem for this case is shown in We have worked out the phase diagram of transitions for

Fig. 1(b). In this case the phase diagram for the uniform statéhe uniform and kink states of nematics and ferronematics

and the kink state are shown in Figgaand 4b), respec- d_ue to _nonlinear optical_ interactions with a Iager fieId_. We
tively. The starred line in Fig.(4) is a line of second order find a .f'rSt orde_r transition between _the permitted gnlforr_n_
phase transition, and the dotted line is a line of stability. Thes.tates In nematics. This aIIow; the existence of new instabili-
permitted kink states are/2—5/2, (m— f)— 6 and 6, ties and kink states. Both uniform and kink states have the.
(37— 6,). The phase diagram i’s richer here than in theS2Me phase diagram. .In the case of ferronematlcs the transi-
previous cases. Here all the interesting features which Wgon between the permitted uniform states is of second order,

obtained in the previous cases are present n this one systefit olof$ % TR T BEEORE R SRC SRS DR
A small region in the phase diagram shown in Figb4 uld be of first or second order with an associdtexitical
shows reentrant behavior, and there are regions where thef&"

are new stable states. Interestingly, reentrant behavior is ngtomt. Herg also we f'n.d a reentrance _phenomenon. F“Fthef’
seen in the phase diagram for the uniform states. On thgue to grain seggregation the phase diagrams of the uniform

dashed line in Fig. @) we find a transformation of ar/2 and the kink states are entirely different.
—57r/2 kink into a pair of kinksviz. (7— 6y)— 6y and 6,
— (37— 6y). This transformation is second order at ldw
andH and first order at higher values bfandH implying Our thanks are due to K.A. Suresh and Sreejith Sukuma-
the existence of dricritical point on this line. The dotted ran for helpful comments.
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