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Theoretical model for layer rotations in smectic-A* liquid crystals subject
to asymmetric electric fields

T. Carlsson and M. A. Osipov*
Physics Department, Division of Microelectronics and Nanosciences, Chalmers University of Technology, S-412 96 Go¨teborg, Sweden

~Received 11 January 1999!

Recently, observations of the rotation of smectic layers under certain experimental conditions have been
reported in the literature. In this work, the mechanism of such rotations in chiral smectic-A* liquid crystals
under the action of asymmetric, periodic electric fields is studied theoretically. The general conditions for layer
rotations have been established using symmetry arguments, and a generalized dynamical theory of the chiral
smectic-A* phase, coupling layer rotations and the electroclinic effect, has been developed. The theory is
applied in the specific case when an asymmetric sawtooth electric field is applied over the system, and the
dependence of the average angular velocity of the smectic layers on the relevant material constants of the liquid
crystal and experimental control parameters is calculated. By rewriting the final equations into dimensionless
form, it is demonstrated that the system exhibits a universal behavior, reducing the number of independent
material constants and control parameters considerably.@S1063-651X~99!09211-9#

PACS number~s!: 61.30.Cz
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I. INTRODUCTION

During the past few years, the experimentally observ
rotation of smectic liquid-crystal layers under the action
external electric fields has attracted a significant amoun
attention@1–5#. This unusual effect is observed only in chir
smectic phases and is believed to be related to the ele
clinic effect @6#. At present, however, there exists no the
retical explanation of such a layer rotation and it is the p
pose of this paper to present a theoretical model for
simplest case of the chiral smectic-A* (SmA* ) phase. From
a general point of view, the phenomena of layer rotations
be explained by an analysis of different torques acting on
smectic layer normal. Thus the paper begins with a disc
sion of torques created by an external electric field app
over a smectic liquid-crystalline system. Following this d
cussion, some general conditions for layer rotations that
low from symmetry arguments are considered.

The ordering of smectic-C* (SmC* ) liquid crystals can
generally be described by specifying two unit vectors. Th
vectors represent the layer normala and thec directorc, the
latter denoting the tilt direction of the directorn within the
smectic layers. If an external electric or magnetic field
applied over the system, a torqueGext is exerted on the di-
rector. The consequence of this torque is most easily inv
tigated by dividingGext into one part,Gi

ext, which is parallel
to the layer normal, and another part,G'

ext, which is confined
within the smectic layers. It is easily seen that the torqueGi

ext

acts to rotate the director~or thec director, which is equiva-
lent! around the smectic cone at constant tilt, whileG'

ext tends
to rotate the director in such a way that the tilt changes@7#. If
one studies a system for which the tilt is assumed to be fix
the consequence of the torqueG'

ext is instead to rotate the
entire smectic layers.

*Permanent address: Institute of Crystallography, Academy
Sciences, Leninsky pr. 59, 117333 Moscow, Russia.
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Generally, when studying the dynamics of SmC* liquid
crystals from a theoretical point of view, only the torqueGi

ext

is taken into account. This approach is equivalent with
assumption that the smectic layers remain fixed, irrespec
of which torques are acting on the system. This implies t
there must be some external stabilizing countertorqueGc that
compensates the torqueG'

ext, which, as is easily derived
from the form of the smectic stress tensor@7#, inevitably
must be nonzero in most situations. The origin of this cou
tertorque is of course the substrates which normally surro
a liquid-crystalline sample. If the countertorque is stro
enough, the solution of the dynamical equations can be
vided into two parts. TheGi

ext equation governs the rotatio
of thec director, while theG'

ext equation just gives the coun
tertorque required to keep the smectic layers fixed. It is
experimental fact that in most cases the smectic layers
unaffected by external forces, and thus the approach of
glecting G'

ext when studyingc-director dynamics is justified
in these cases.

Recently, however, in both SmC* and SmA* liquid-
crystalline systems confined between parallel glass plate
the bookshelf geometry, a macroscopic rotation of the la
normal has been observed@1–5#, both when ac and dc elec
tric fields have been applied across the cell. In these ob
vations the rotation axis of the layer normal is parallel to t
electric field, i.e., the smectic layers are not tilted with r
spect to the surrounding glass plates, but the system rem
in the bookshelf geometry.

The basic conditions for the layer rotation in the SmA*
phase in external electric fields can be understood us
some very general symmetry arguments. Consider the s
plest possible case of a flat SmA* layer with the electric field
E applied parallel to the smectic plane, perpendicular to
glass plates surrounding the cell. One knows from exp
ments that in such systems the layers are rotating around
direction of the external field. This is not surprising as t
electric field is the only vectorial physical quantity of th
system. The rotation of smectic layers is characterized by
f
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5620 PRE 60T. CARLSSON AND M. A. OSIPOV
angular velocityv and for symmetry reasons this is expect
to be parallel to the electric fieldE. If one considers only a
linear relation betweenv andE, one arrives at

v5kE, ~1!

wherek is determined by some material parameters of
SmA* phase.

One notes that Eq.~1! is a relationship between the pola
vector E and the pseudovectorv. This linear relationship
can only be valid if the constantk is a pseudoscalar an
therefore the medium must be chiral. Thus the smectic-la
rotation can only take place in chiral smectic phases. Sec
one notes that the vectorsv and E have different transfor-
mation properties with respect to time reversal. The ang
velocity changes signs under time reversal while the elec
field is not necessarily changed. This contradiction can
resolved by substituting Eq.~1!, which relates the angula
velocity to the external electric field, by a similar relatio
between the angular velocity and the time derivative of

electric fieldĖ,

v5sĖ. ~2!

Now the two sides of Eq.~2! have the same symmetry pro
vided the constants is a pseudoscalar.

From a general point of view, Eq.~2! indicates that the
rotation of chiral smectic layers in a time-dependent elec
field is allowed by symmetry. The corresponding angu
velocity must change signs under time reversal of the ex
nal field, which indeed is observed experimentally. It sho
be noted that the rotation is actually induced by the ti
derivative of the electric field and thus it is not expected
occur in a constant field. The latter conclusion, howev
appears to be in contradiction with experiments beca
layer rotation~in the SmC* phase! has been observed in a d
electric field @5#. On the other hand, in this experiment th
liquid crystal was doped by charged impurities which p
duced an electric current across the cell. One notes tha
symmetry of electric currentI is exactly the same as that o

the time derivative of the electric fieldĖ. This means that
one can write down the same type of linear relationship
tween the angular velocity and the electric current

v5s̃I . ~3!

Thus the rotation of chiral smectic layers can also be indu
by an electric current.

Equations~2! and ~3! prove the general possibility o
layer rotation in the SmA* phase and describe some con
tions required for this effect. At the same time, nothing
said about the particular mechanism of the rotation in ch
smectic phases. In this paper such a mechanism for
SmA* phase is proposed. Before discussing the equatio
motion in this case, one notes that in all experiments wit

periodic electric fieldE(t), the time derivativeĖ(t) changes
signs during the period. According to Eq.~2!, this means that
the layers are rotating in opposite directions for positive a

negative values ofĖ, respectively. In practical application
the period of the electric field is small, and thus one is o
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interested in the constant part of the angular velocity~i.e., the
zero-frequency component ofv!.

The average angular velocityv0 can be obtained by inte
gration of Eq.~2! over time

v05
s

t E
0

t

Ė dt, ~4!

where t is the period of the field. For any periodical fiel
E(t) the integral in Eq.~4! vanishes, i.e.,

E
0

t

Ė~ t !dt50, ~5!

and thus, at average, there is no rotation. This problem
be resolved by taking into account that the smectic layers
stabilized by the countertorqueGc, which has its origin from
interactions with the surrounding glass plates. In this case
smectic layers are actually rotating if the driving torque e
ceeds some threshold value. In other words, the layers
only rotating during the part of the period when the tim

derivativeĖ is sufficiently large. Equation~2! is valid only
during this part of the period as well. Now the integral in E
~4! does not vanish because one actually has to integrate

over these parts of the total period when the derivativeĖ(t)
is large enough.

In this paper, a theoretical model for describing the lay
rotation in chiral smectic systems subjected to ac elec
fields across the sample is presented. Only dynamic eff
are considered. This means that only layer rotations rela
to time-dependent electric fields are taken into account,
thus the layer rotation observed by Yoshinoet al. @5# in a dc
electric field, which is related to ionic impurities in th
sample, is not considered. The study is also restricted to
SmA* phase and we postpone the study of the SmC* phase
to future work.

The outline of the paper is as follows. In Sec. II th
mechanisms causing layer rotations in the SmA* phase are
discussed. The coordinates employed in the calculations
defined and a general discussion of torques in smectic liq
crystals is performed. In Sec. III the electroclinic effect in t
SmA* phase, which is the driving force of the layer rotatio
in this phase, is discussed and the concept of electroc
torque is introduced. The general equation governing the
namics of the layer normal in the SmA* phase is derived in
Sec. IV and in Sec. V this equation is solved for the ca
when an asymmetric sawtooth electric field is applied to
system. Finally, in Sec. VI the outcome of the calculations
discussed, showing that the results describe existing exp
mental data correctly. Thus, to our knowledge, the pres
paper presents the first coherent model for describing la
rotations in the SmA* phase.

II. FORMULATION OF THE PROBLEM—
INTRODUCTION OF NOTATIONS AND DEFINITION

OF COORDINATES

In this work we study the dynamics of a SmA* liquid
crystal in the bookshelf geometry. Thus the smectic lay
are standing perpendicular to the surrounding glass pla
the layer normal always being parallel to these plates.
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PRE 60 5621THEORETICAL MODEL FOR LAYER ROTATIONS IN . . .
applying an ac electric field perpendicular to the glass pla
the system is switching, the mechanism of the switching
ing the electroclinic effect@6#. However, in contrast to al
previous treatments of the problem, we do not assume
smectic layers to be fixed in space. As concluded by sym
try arguments in the preceding section, in the SmA* phase a
time-dependent electric field is expected to exert a torque
the layers, causing these to rotate around an axis parall
the field. Thus the system will remain in the bookshelf g
ometry during the switching, however the layer normal h
now the possibility of rotating around this axis.

At this stage it is appropriate to discuss what should
meant by a rotating smectic layer. Mathematically, this
synonymous to a system for which the layer normala is
changing its direction in time. There are, however, seve
ways to interpret this situation from a microscopic point
view as depicted in Fig. 1. In this figure is shown a syst
for which the smectic layers are rotated 90° counterclo
wise. To keep track on the mass flow associated with
rotation, imagine that three molecules are labeled, deno
them X, Y, and Z. By using the very naive picture that
smectic system consists of separate individual layers, wh
are piled up on top of each other, the rotation would
accompanied by a macroscopic mass flow, and the th
moleculesX, Y, and Z would move according to~a!. This
picture is probably highly unrealistic. If instead one inte
prets a rotation of a smectic layer as a combination o
change of the preferred direction in which the molecules
pointing and a motion of the molecules on a microsco
scale of the order of half a layer thickness or less~b!, the
layer normal can be allowed to rotate without being acco
panied by a huge macroscopic mass flow in the system.
the other hand, now the molecules which once formed
smectic layer, may find themselves after a rotation belong
to different layers. This latter model for the layer rotation
probably the more correct one. However, we will not discu
the layer rotation from this microscopic point of view, b
rather we describe the phenomenon from a macrosc
point of view by keeping track only on the mathematic
quantitya(t).

In Fig. 2, the coordinates used in this work are defin
The surrounding glass plates are taken to be parallel to thxz
plane, while they axis is perpendicular to these plates. T

FIG. 1. The two extreme ways of rotating smectic layers.~a!
Each molecule stays in its original layer implying that the rotat
must be accompanied by a macroscopic mass flow.~b! The mol-
ecules only move on a microscopic scale, gradually jumping
tween the layers.
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electric field, which is parallel to they axis, is taken to be
positive along the positivey direction. In order to describe
the layer normala, which for standing layers is always con
fined within thexz plane, an angleg is introduced, counting
g positive for a rotation ofa around the positivey axis. With
the present assumptions, the director will always be confi
within the xz plane. To describe the tilt of the director wit
respect to the layer normal, it is thus sufficient to introdu
one coordinateu. Also u is introduced in such a way thatu is
positive for a rotation of the director with respect to the lay
normal around the positivey axis.

When, due to the electroclinic effect, the tilt is changi
in time after an ac electric field has been applied across
system, a torque will be exerted on the layer normal.
discussed before by symmetry arguments, and as will
shown later by a straightforward mathematical argume
this torque is parallel to the electric field and will thus tend
rotate the smectic layers around this, still keeping the sys
in the bookshelf geometry. Once the layers start rotating,
should expect some kind of frictional torque to be exerted
the layers due to the interaction between the substrate
the liquid crystal. Thus we introduce a threshold torqueG0
into the model having the consequence that for a driv
torque which is less thanG0 , a balance between the drivin
torque and the frictional one is possible and no rotation
the smectic layers occurs. Only when the driving torque
ceedsG0 should a rotation of the smectic layers be expec
to be observed.

III. THE ELECTROCLINIC EFFECT

When an electric field is applied parallel to the smec
layers across a SmA* liquid crystal, the director become
tilted with respect to the layer normal and the system exh
its a net polarizationP due to the electroclinic effect@6#. As
this effect is the driving force of the layer rotation studied
this work, a brief theoretical discussion of the electroclin
effect within the framework of Landau theory is given b
low.

As a starting point for the discussion, a Landau expans
of the free-energy density for the SmA* -SmC* phase tran-
sition is used. In the SmA* phase, a homogeneous electr

-

FIG. 2. Definition of coordinates in the present work. Assumi
that the system remains in the bookshelf geometry, two coordin
are needed in order to describe it completely. These are the ang
between the layer normal and thez axis, and the angleu between
the director and the layer normal~the tilt!. Both these coordinates
are introduced in such a way that they are positive for a rota
around the positivey axis.
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5622 PRE 60T. CARLSSON AND M. A. OSIPOV
field will couple only to spatially uniform changes of th
order parameters, which for our purpose can be chosen t
u andP, and accordingly we setd/dz[0 in the expression
for the free-energy density. To lowest order, in the SmA*
phase one can now write@8#

g5 1
2 au21

1

2«
P22CPu2EP. ~6!

In this equation,a, «, and C are the usual Landau coeffi
cients, where only the coefficienta is assumed to be tem
perature dependent,

a5a~T2T0!. ~7!

Introducing the SmA* -SmC* phase transition temperatur
Tc , one can show@8# that a can be rewritten as

a5a~T2Tc!1K̃q0
21«C2, ~8!

where K̃ is a renormalized elastic constant andq0 is the
wave vector of the pitch atTc . The equilibrium values of the
tilt and polarization in the presence of a static electric fieldE
are denotedueq and Peq, respectively. These are calculate
by minimizing the free-energy density given by Eq.~6!,

]g

]u
5au2CP50, ~9!

]g

]P
5

1

«
P2Cu2E50. ~10!

Equation~9! implies

Peq5
a

C
ueq, ~11!

which, when substituted into Eq.~10!, gives

ueq5
«C

a2«C2 E, ~12!

or, by using the relation given by Eq.~8!,

ueq5
«C

a~T2Tc!1K̃q0
2

E. ~13!

For convenience we introduce the shorthand notation

a05a~T2Tc!1K̃q0
2, ~14!

allowing the equilibrium tilt in the presence of an electr
field to be written as

ueq5
«C

a0
E. ~15!

For future use we also notice that Eqs.~8!–~10! enable us to
rewrite ]g/]u according to

]g

]u
5a0u2«CE. ~16!
be
The Landau-Khalatnikov equations are now employed
write down the dynamic equations of the system as

u̇52Gu

]g

]u
, ~17!

Ṗ52GP

]g

]P
. ~18!

The two constantsGu and GP are the kinetic coefficients
related to the relaxation of tilt fluctuations and polarizati
fluctuations, respectively, and represent inverse viscosi
i.e., by introducinggS51/Gu andgP51/GP , one can instead
write

gSu̇52
]g

]u
, ~19!

gPṖ52
]g

]P
. ~20!

HeregS is the soft-mode rotational viscosity@8# andgP is a
generalized viscosity related to polarization fluctuatio
From experiments one knows that there are two differ
relaxation times involved in the relaxation ofu andP, since
these represent rotations of the molecules around their s
and long axis, respectively@9#. It is therefore a good approxi
mation in the problem studied here to assume that the re
ation of polarization fluctuations is infinitely faster than r
laxation of tilt fluctuations. Accordingly one can setgP50
in Eq. ~20!. Physically this means that for any value of th
tilt u in the presence of an electric fieldE, the polarizationP
always adopts the equilibrium value corresponding to
given values ofu and E. Thus, from Eq.~20! one easily
derives the corresponding equilibrium value of the polari
tion as]g/]P50, implying

Peq5«Cu1«E. ~21!

The relaxation of the tilt towards its equilibrium valueueq
given by Eq.~13! or Eq.~15! is governed by Eq.~19!. Using
Eq. ~16!, the equation governing the dynamic behavior of t
electroclinic effect can thus be written as

gSu̇52a0u1«CE. ~22!

Applying a static electric fieldE0 over a SmA* liquid crystal
at time t50, the solution to Eq.~22! is given by

u~ t !5
«CE0

a0
~12e2~a0 /gS!t!. ~23!

From Eq.~23! one deduces the electroclinic response timet r
of the system as

t r5
gS

a0

5
gS

a~T2Tc!1K̃q0
2

. ~24!

Neglecting the renormalizationK̃q0
2 in the denominator of

Eq. ~24!, one can estimatet r by inserting some typical val-
ues for a and gS . If these are chosen asa;104 N/m2 K
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PRE 60 5623THEORETICAL MODEL FOR LAYER ROTATIONS IN . . .
@10,11# and gS;1 Pas@12#, the estimated value oft r at T
2Tc52 K is t r;531025 s. The inverse of this time, 1/t r
;104 Hz, should correspond to the soft-mode relaxation f
quency f S @13# of the system. Indeed, this frequency h
been experimentally determined@13,14# to be around 10–50
kHz, a couple of degrees aboveTc . As the frequencies of the
electric fields considered in this work are at most a couple
hundred Hz, the response time of the system is always m
faster than the rate of change of the electric field. Thus,
each value of the electric field, we can always assume
the tilt adopts its corresponding equilibrium valueueq given
by Eq. ~15!.

IV. DYNAMIC EQUATIONS OF THE SYSTEM WHEN
THE SMECTIC LAYERS ARE NOT ASSUMED

TO BE FIXED

The system we study is depicted in Fig. 2. It consists o
SmA* liquid crystal in the bookshelf geometry over which
time-dependent electric field has been applied, the field be
parallel to the smectic planes. Due to the electroclinic effe
the director will not stay parallel to the layer normal, and t
tilt u is introduced as a dynamic variable of the system.
contrast to all previous theoretical treatments of the elec
clinic effect, the smectic layers are not assumed to rem
fixed, because from the symmetry considerations perform
in Sec. I we expect that applying a time-dependent elec
field over the system creates a torque tending to rotate
smectic layers around the field. This means that the syste
expected to remain in the bookshelf geometry, howeve
second dynamical variableg is needed in order to keep trac
of the orientation of the smectic layer normal as depicted
Fig. 2. To describe the system, we thus have to introduce
coordinates: g, which is the angle between the layer norm
and they axis, andu, which is the tilt of the director with
respect to the layer normal. Both these coordinates are in
duced in such a way that they are counted positive fo
rotation around the positivey axis.

Today, no dynamical theory capable of describing
system studied in this work exists in the literature. The m
roscopic dynamic theory for chiral and nonchiral SmA and
SmC liquid crystals@7# shows clearly that there exists a co
pling between layer rotations and rotations of the direc
around the smectic cone, and can be employed when st
ing layer rotations in the SmC* phase@16#. This theory,
however, concerns only systems of constant tilt and is t
not applicable when the electroclinic effect is present in
switching as it must clearly be in the SmA* phase. The ther-
modynamic approach@8# ~discussed in Sec. III! to the elec-
troclinic effect, based on a Landau expansion, provide
good description of the electroclinic effect, but assumes
smectic layers to remain fixed. Thus neither of the two
proaches is sufficient to model the system studied in
work.

One notes that the two dynamical variables in the sys
~i.e., the tilt angleu and the layer rotation angleg! are not
equivalent from a thermodynamic point of view. The t
angleu can be called a thermodynamic variable, because
free energy of the SmC* phase depends upon it. The dynam
ics of u is relaxational in nature, i.e., the tilt angle relaxes
its equilibrium value determined by the field. In the case
-
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fixed smectic layers, this relaxation process is described
the Landau-Khalatnikov equations~17! or ~22!. In contrast,
the angleg does not enter the expression for the free-ene
density of the ideal SmA* or SmC* phases. On the othe
hand, the change ofg is obviously associated by some e
ergy dissipation. In this sense the variableg is analogous to
the directorn in the homogeneous nematic phase. In t
latter case the free-energy density also does not depen
the orientation of the director, but the change of the orien
tion is accompanied by a dissipation. In the SmA* phase,
when the system is subject to an external electric field,
variablesu andg are coupled, this coupling determining th
rotation of the smectic layers. The dynamics of such a co
plex system can be described by the more general appr
based on the Rayleigh dissipation function. The applicat
of this approach to the study of the dynamics of nema
liquid crystals is discussed in detail by Vertogen and de
@17#.

In this approach the state of the system~which is assumed
to be close to thermodynamic equilibrium! is specified by a
set of macroscopic variablesXi and their time derivatives

Ẋi . The properties of the system are described by using
free-energy density functionalg5g(Xi) and the dissipation

functionD5D(Ẋi). Then the dynamics of the system is d
scribed by a set of Euler-Lagrange equations,

]D

]Ẋi

52
]g

]Xi

. ~25!

Assuming the relaxation of the spontaneous polarization
be infinitely faster than the relaxation of the tilt, the pola
ization will always follow the tilt according to Eq.~21!. The
system studied is then characterized by the two dynam
variablesg andu, which are determined from the two equ
tions

]D

]ġ
52

]g

]g
, ~26a!

]D

]u̇
52

]g

]u
. ~26b!

In the general case, the dissipation functionD is written as a

quadratic form of the time derivativesġ and u̇,

D5 1
2 b1ġ21 1

2 b2u̇21b12ġ u̇, ~27!

where the last term describes the dynamical coupling
tween the variablesg and u. For the dissipation~27! to be
positive definite one must demandb1 andb2 to be positive
as well as the determinantb1b22b12

2 . Thus the following
inequalities must be fulfilled by the dynamical coefficien
b i :

b1.0, b2.0, ub12u,Ab1b2. ~28!

The coefficientb12 can thus adopt both positive and negati
values, however its magnitude is restricted according to
last of the inequalities~28!.
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5624 PRE 60T. CARLSSON AND M. A. OSIPOV
The elastic energyg in Eqs.~26! is of course the Landau
energy given by Eq.~6!. As there is nog dependence in this
expression,]g/]g50, while ]g/]u is given by Eq.~16!.
From Eqs.~26! and ~27! one obtains

b1ġ1b12u̇50, ~29!

b2u̇1b12ġ52a0u1«CE. ~30!

Comparing with a system for which the smectic layers
assumed to be fixed@Eq. ~22!#, one can conclude thatb2
represents the soft-mode rotational viscosity, i.e.,b2[gS .
Instead, assuming the tilt to be identically zero one noti
that the coefficientb1 corresponds to the rotational viscosi
of the smectic layers@18#. The coefficientb1 can thus be
identified to correspond to one of the viscosity coefficie
(l4) in the above-mentioned dynamic theory@7# for SmA
and SmC liquid crystals, i.e.,b1[2l4 , whereb1 is the dy-
namic coefficient introduced by Eq.~27! andl4 is one of the
viscosity coefficients defined by the stress tensor given
Ref. @7#.

One notes that the Landau-Khalatnikov equation~17! ap-
pears to be a particular case of Eqs.~26b! and ~30!. Indeed,
in the case of fixed smectic layers the dissipation functionD

can be written asD5 1
2 b2u̇2 and then Eq.~26b! is reduced to

Eq. ~17!. Thus Eqs.~26b! and ~30! describe a relaxation o
the tilt angleu in a rotating layer. On the other hand, E
~26a! represents a counterbalance of the two general
torques acting on the smectic layer normal.

At this stage one should notice that there are three dif
ent time scales involved in Eqs.~29! and~30!. The response
time of the electroclinic effectt r given by Eq. ~24! falls
within the submillisecond regime as discussed at the en
Sec. III. The period of the electric fields considered in t
work is typically a few tens of a millisecond, while the ro
tation of the smectic layers has been found experiment
@1,2,15# to correspond to a time scale of several secon
When solving Eqs.~29! and~30! one can thus proceed in tw
steps. The angleg defining the smectic layer normal can b
assumed to be constant in a time interval correspondin
one period of the electric field. Thus the termb12ġ in Eq.
~30! can be neglected and this equation can be approxim
as

b2u̇52a0u1«CE. ~31!

This is the equation governing the dynamical behavior of
electroclinic effect~22!, recalling that we have already iden
tified the dynamical coefficientb2 with the soft-mode rota-
tional viscositygS . Once Eq.~31! is solved foru(t), this
solution is substituted into Eq.~29! to obtainġ,

ġ52
b12

b1
u̇. ~32!

It is an experimental fact@1,2,15# that ġ andu̇ have the same
sign, implying the condition

b12,0. ~33!

For convenience we introduce the constantk according to
e

s

s

in

d
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k52
b12

b1
.0, ~34!

allowing Eq.~32! to be rewritten as

ġ5ku̇. ~35!

This equation, together with Eq.~31!, is the equation being
used in the next section to study the rotation of the sme
layers induced by the electroclinic switching when an asy
metric sawtooth electric field is applied over the system.

V. ROTATION OF THE SMECTIC LAYERS
DUE TO THE APPLICATION

OF AN ASYMMETRIC ELECTRIC FIELD

In this section, the dynamical behavior of the smectic la
ers when the system is subject to an asymmetric sawto
electric field is studied. The field under consideration is
sumed to be oscillating between the values6E0 and is de-
picted in Fig. 3. The rise timet1 is assumed to be shorte
than the decay timet2 , and an asymmetry ratioh of the field
is introduced according to

h5
t2

t1
.1. ~36!

The frequencyf of the field is related tot1 andt2 as

f 5
1

t11t2
~37!

and is assumed to be much less than the soft-mode relax
frequency of the system. This condition can be expresse

t11t2@t r , ~38!

wheret r is the electroclinic response time given by Eq.~24!.
This condition is well fulfilled as long as we consider field
with frequencies of 1 kHz or less. Studying one period of t
electric field, the time dependenceE(t) of the electric field
can be expressed as

FIG. 3. Asymmetric sawtooth electric field. The field oscillat
between6E0 and the rise timet1 is assumed to be shorter than th
decay timet2 .
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E~ t !5E0S 2t

t1
21D when tP@0,t1#, ~39!

E5E0S 2t1

t2
112

2t

t2
D when tP@t1 ,t11t2#, ~40!

while the rate of change of the electric field can be written

Ė5
2E0

t1
when tP@0,t1#, ~41!

Ė52
2E0

t2
when tP@t1 ,t11t2#. ~42!

Due to the fact that the rate of change of the electric field
much slower than the electroclinic response time, one
safely assume that during the switching the tilt will alwa
adopt its equilibrium value~15! for the given electric field.
The rate of change of the tilt is then simply given by

u̇5
«C

a0
Ė. ~43!

From Eqs.~35! and~43! the equation governing the dynam
cal behavior of the layers is now derived,

ġ5
k«C

a0
Ė, ~44!

which, by using Eqs.~41! and ~42! can be written as

ġ5
2k«CE0

t1a0
when tP@0,t1#, ~45!

ġ52
2k«CE0

t2a0
when tP@t1 ,t11t2#. ~46!

The net rotation,Dg, of the smectic layers during one perio
of the electric field is now calculated as

Dg5E
0

t11t2
ġ dt. ~47!

The value ofDg calculated from Eqs.~45!–~47! is obviously
zero. This is easily understood because the larger pos
value ofġ during the shorter timet1 is exactly compensate
by the smaller negative value ofġ during the longer time
interval t2 .

However, to achieve a system in the bookshelf geome
some kind of surface treatment must be imposed on the g
plates surrounding the sample. Due to this there must ex
stabilizing torqueGs , which is responsible for keeping th
preferred orientation of the layers. In order to rotate the l
ers, the driving torque must exceed some threshold, co
sponding to the maximum possible value of the stabiliz
torque, denoted byG0 . The stabilizing torqueGs has the
nature of a friction torque and adopts the value needed
balance the driving torque as long as this is not large, imp
ing that in this caseġ50. However, if the driving torque
exceeds a critical value, the stabilizing torque can no lon
increase, but adopts its maximum valueG0 , always opposing
s

s
n

ve

y,
ss
t a

-
e-
g

to
-

er

the rotation of the layers. Before adding this torque to
dynamical equations~45! and ~46!, some caution must be
taken regarding the physical dimensions of the quanti
studied. The coefficientb1 represents a viscosity and has t
unit Pas@7# while the unit of ġ is s21. Rewriting Eq.~45!
slightly as

b1ġ5
2ub12u«CE0

t1a0
, ~48!

one notices that the unit of this equation
Pa5N/m25N m/m3 and thus the dimension of this equatio
is torque per unit volume. As the stabilizing torqueGs only
acts via the substrates, this quantity represents a torque
unit area, i.e., N/m. Writing down the dynamical equation f
one smectic layer, the driving torque in Eq.~48!, being a
torque per unit volume, must be multiplied bymd, m andd
being the layer thickness and the sample thickness, res
tively. The stabilizing friction torqueGs , representing a
torque per unit area, must, however, be multiplied by 2m, the
factor 2 stemming from the fact that the sample is s
rounded by two glass plates. By addingGs with the proper
sign to Eqs.~45! and ~46!, and multiplying each term with
the relevant geometrical factor, one obtains the final dyna
cal equations of the layer normal,

tP@0,t1#, E0d.
G0t1a0

ub12u«C
⇒ġ5

2k«CE0

t1a0
2

2G0

db1
,

~49a!

tP@0,t1#, E0d,
G0t1a0

ub12u«C
⇒ġ50, ~49b!

tP@t1 ,t11t2#, E0d.
G0t2a0

ub12u«C
⇒ġ52

2k«CE0

t2a0
1

2G0

db1
,

~50a!

tP@t1 ,t11t2#, E0d,
G0t2a0

ub12u«C
⇒ġ50. ~50b!

Substituting Eqs.~49! and ~50! into Eq. ~47!, the net ro-
tation Dg during one period of the electric field can be ca
culated. The average angular velocityv5^ġ& of the layers is
then obtained as

v5 f Dg, ~51!

f being the frequency of the applied field. It is easily se
from Eqs.~49! and~50! that, for a sample of given thicknes
d, there exist two threshold fields,E1 andE2 , for which the
behavior of the system changes qualitatively. These thre
olds are given by

E15
G0t1a0

dub12u«C
, ~52a!

E25
G0t2a0

dub12u«C
5hE1 , ~52b!

h being the asymmetry ratio of the field defined by Eq.~36!.
The assumptiont2.t1 implies E1,E2 and the general be
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havior of the system is as follows. IfE0,E1 , the stabilizing
torque is large enough to overcome the driving torque
the layers remain fixed during the switching. IfE1,E0
,E2 , the layers rotate in a positive sense in the time inter
tP@0,t1#, but remain fixed in the intervaltP@t1 ,t11t2#. If
E0.E2 , the layers rotate both in a positive and a negat
sense, however there is a net positive rotation during
period of the electric field. Employing Eqs.~47!, ~49!, ~50!,
and ~51!, the average angular velocity of the smectic lay
can be calculated,

E0,E1⇒v50, ~53a!

E1,E0,E2⇒v5
2 f ub12u«CE0

b1a0
2

2 f G0t1

db1

5
2 f G0t1

db1
S E0

E1
21D , ~53b!

E0.E2⇒v5
2 f G0

db1
~t22t1!. ~53c!

In the next section is shown how the solutions~53! can be
made more tractable by rewriting them into dimensionl
form.

VI. DIMENSIONLESS FORM OF THE EQUATIONS

The key results of the previous sections are the dyna
equations~29! and ~30!, giving a quantitative description o

the coupling between the electroclinic effect (u̇Þ0) and the
rotation of the smectic layers (ġÞ0). Solving these equa
tions in the specific case when as asymmetric sawtooth e
tric field is applied over the system, the result is summari
in Eqs. ~52! and ~53!. The result of these equations is go
erned by six control parameters: the temperatureT, the elec-
tric field strengthE0 , the frequencyf of the electric field, the
rise and decay timest1 andt2 of the electric field, and the
sample thicknessd. It should, however, be observed that b
the relation~37! only two of the three parametersf, t1 , and
t2 are independent. Furthermore, six material parameters
ter the calculations. These are the three viscositiesb1 , b2 ,
and b12 and the Landau coefficientsa, «, and C. Also the
constantG0 , which is a measure of the interaction betwe
the substrates and the liquid-crystalline layers, enters the
culations. Thus, before any numerical results can be p
duced from Eqs.~53!, one needs to assign values to fi
independent control parameters and seven material const
However, by rewriting the equations into dimensionless fo
it can be shown that the system exhibits a universal behav
only depending on three independent control parameters
one combination of the material constants.

We now introduce three constantst* , d* , and E* with
the dimensions of time, length, and electric field, resp
tively,

t* 5
b2

a0
, ~54a!

d* 5
b2G0

a0ub12u
, ~54b!
d
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E* 5
a0

«C
. ~54c!

These three constants represent a characteristic time, le
and electric-field strength, respectively, the physical sign
cance of which is discussed below. We also introduce f
dimensionless quantities for time, frequency, length, a
electric-field strength according to

t̃ 5
t

t*
, ~55a!

f̃ 5 f t* , ~55b!

d̃5
d

d*
, ~55c!

Ẽ05
E

E0*
, ~55d!

as well as the notations

ũ5u, ~56a!

g̃5g, ~56b!

g̃̇5dg/d t̃5
1

t*
dg/dt, ~56c!

ũ̇5du/d t̃5
1

t*
du/dt. ~56d!

Substituting theAnsätzes~55! and ~56! into the previously
derived equations, these are transformed into dimension
form. By this procedure, the thresholds given by Eqs.~52!
are transformed into

Ẽ15 t̃1 /d̃, ~57a!

Ẽ25hẼ25 t̃2 /d̃, ~57b!

where t̃15t1 /t* and t̃25t2 /t* are the dimensionless ris
and decay times of the electric field, respectively, andh
5t2 /t1 is the previously defined asymmetry ratio of th
electric field. In the same way, Eqs.~53! are rewritten as

Ẽ0,Ẽ1⇒ṽ50, ~58a!

Ẽ1,Ẽ0,Ẽ2⇒ṽ52k f̃ ~Ẽ02 t̃1 /d̃!, ~58b!

Ẽ0.Ẽ2⇒ṽ52k f̃ ~ t̃22 t̃1!/d̃. ~58c!

One notices that the results of Eqs.~57! and~58! depend on

the three control parametersf̃ , t̃1 , and t̃2 , which are not
independent of each other. From Eqs.~36! and~37!, the fol-
lowing relations can be derived:

t̃151/@ f̃ ~11h!#, ~59a!



er

of
hr
th

he
o

in
ra

c

ic
c
f

E
u
b

e-

-
ed
o

es

er
av

ase,
hoice

be-
tities
the

ters

s-
is
de

e

he

linic
ing

rm

,

tes
ers

ob-

lts
e
rm

the

PRE 60 5627THEORETICAL MODEL FOR LAYER ROTATIONS IN . . .
t̃25h/@ f̃ ~11h!#. ~59b!

Substituting Eq.~59! into Eqs.~57! and ~58!, we finally ar-
rive at the expressions that will be employed for the num
cal calculations below,

Ẽ1 f̃ 51/@ d̃~11h!#, ~60a!

Ẽ2 f̃ 5h/@ d̃̇~11h!#, ~60b!

Ẽ0,Ẽ1⇒ṽ50, ~61a!

Ẽ1,Ẽ0,Ẽ2⇒ṽ52k@ f̃ Ẽ021/d̃~11h!#, ~61b!

Ẽ0.Ẽ2⇒ṽ52k~h21!/@ d̃~h11!#. ~61c!

From Eqs.~60! and ~61! one observes that the number
independent control parameters has been reduced to t
i.e., the product of the frequency and the strength of

electric field, f̃ Ẽ0 , the asymmetry ratioh, and the sample

thicknessd̃. It is also seen that only one combination of t
material constants enters the calculations. This is the ratik,
which is defined by Eq.~34!.

Before proceeding, we shall identify the physical mean
of the scaling parameters, showing that these are measu
by straightforward experiments. Equation~15! gives the
static electroclinic tilt angle as a function of the applied ele
tric field. Comparing this equation with the definition ofE* ,
given by Eq.~54c!, it is clear that by measuring the stat
electroclinic responseueq as a function of applied electri
field E, the scaling parameterE* is given as the inverse o
the slope of the corresponding graph. From Eqs.~23! and
~24! it is seen that the characteristic time scale defined by
~54a! is related to the relaxation of the system back to eq
librium in the presence of an electric field. Indeed it can
shown@8# that t* is related to the soft-mode relaxation fr
quencyf s , easily obtained in a dielectric experiment, by

t* 5
1

2p f s
. ~62!

The characteristic length scaled* can be determined by us
ing Eq.~58b!. From this equation one notices that for a fix
value of the electric-field strength there exists a thresh

value d̃th for the sample thickness,

d̃th5 t̃1 /Ẽ0 , ~63!

below which the smectic layers cease rotating. Such a thr
old has indeed been observed experimentally@3#. By mea-
suring the thresholddth for given values oft1 and E0 , the
scaling parameterd* is obtained as

d* 5dth

t* E0

E* t1
. ~64!

Thus d* is easily obtained ift* and E* have already been
determined.

In the dimensionless version of the theory presented h
it appears as if the temperature dependence of the beh
i-
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ior

of the system has vanished. This is, however, not the c
because the temperature dependence is hidden in the c
of the temperature scaling parametert* @Eq. ~54a!#. Thus,
changing the temperature of the system, everything else
ing unchanged, the temperature dependence of the quan
calculated can implicitly be deduced by keeping track of

temperature dependence off̃ 5 f t* 5 f b2 /@a(T2Tc)

1K̃q0
2#.

Before plotting the results given by Eqs.~60! and~61!, we
must estimate between which values the control parame

f̃ Ẽ0 and d̃ are expected to vary. The assumption~38! guar-
antees that the tilt always follows the electric field. This a
sumption is fulfilled if the frequency of the applied field
much smaller than the relaxation frequency of the soft mo
and can be formulated as

f ! f s5
a0

2pb2
5

1

2pt*
, ~65!

where t* is given by Eq.~54a! and the expression for th
soft-mode relaxation frequency is given by@8#. Thus the
present calculation is valid only for frequencies for which t
relation

f t* 5 f̃ !
1

2p
. ~66!

In accordance with Eq.~66! we limit the choice off̃ in the

calculations to bef̃ P@0,0.02#. If the frequency is allowed to
adopt larger values, the assumption~38! gradually ceases to
be valid, and thus the basic assumption that the electroc
response always follows the field is also violated. Keep
only the terms of lowest order in the Landau expansion~6!
demands that the tilt is not too large. The dimensionless fo
of Eq. ~13! can be written

ũ5Ẽ. ~67!

Limiting the study to systems for whichu,30°, the maxi-

mum value ofẼ is 0.5 and thus we limit the choice ofẼ to

be ẼP@0,0.5#.

For the sample thicknessd̃ there exist a lower threshold

d̃th , below which the influence of the substrates domina
over the driving torque and no rotation of the smectic lay
occurs. This threshold is calculated from Eq.~61b! as

d̃th51/@ f̃ Ẽ0~11h!#, ~68!

and gives the lower limit ofd̃ for given values off̃ , Ẽ0 , and
h. In the next section are shown some numeric results
tained from the dimensionless model presented above.

VII. NUMERICAL RESULTS

We are now in the position to calculate numerical resu
from Eqs.~60! and ~61!. According to the discussion at th
end of the preceding section, it is only meaningful to perfo

calculations for which the productf̃ Ẽ0 is of the order of 0.01
or less. In Fig. 4 is plotted the average angular velocity of
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smectic layer normal divided byk as a function of the prod

uct f̃ Ẽ0 for four different values of the asymmetry ratioh
(h52,4,8,̀ ). The reduced layer thickness in this calculati

is chosen to bed̃5100. One observes that there exists

lower value of f̃ Ẽ0 below which the layer normal cease
rotating, corresponding to the threshold given by Eq.~60a!.
It is clear from the figure that the threshold decreases w
increasingh, approaching zero whenh approaches infinity.
It should be emphasized that the basic assumption tha
electroclinic response always follows the electric field do
not allow the limit h→` to be taken, because for a fixe
frequency this would implyt1→0. However, already a valu
of h550, which is not too large to violate this assumption
most cases, corresponds to a saturated value ofṽ which
differs by only 4% from the calculated value forh5`. Thus
the graphs corresponding toh5` can be used as a guidelin

for how the system behaves for largeh. Increasing f̃ Ẽ0
above the threshold,ṽ increases linearly until the secon
threshold@Eq. ~60b!# is reached and the averageṽ becomes

saturated, independent off̃ Ẽ0 . For large values ofh, this

saturated value has an upper limit, 1/d̃.
To investigate more thoroughly how the behavior of t

system depends on the asymmetry ratioh, study Fig. 5. In
the upper part of this figure is shown the two thresho

given by Eqs.~60!, f̃ Ẽ1d̃ and f̃ Ẽ2d̃, plotted as functions of
h. Without loss of generality it is assumed thatt2.t1 , and
thus the two thresholds are studied by varyingh between
unity and infinity. In the limith→1, the asymmetry of the
field vanishes and the two thresholds coalesce at the v

f̃ Ẽ0d̃50.5. Increasingh, the lower threshold decreases t
wards zero while the upper one is saturated at the va

f̃ Ẽ2d̃51. In the lower part of Fig. 5 is depicted the saturat
value of the average angular velocity~denoted byṽmax) of
the layer normal~i.e., the value when the second threshold

exceeded! divided byk/d̃ as a function ofh.
In Fig. 6 the thickness dependence of the rotation is

FIG. 4. Average angular velocity of the smectic layers divid
by k @Eq. ~34!# as a function of the product between the frequen
and the amplitude of the electric field. All quantities are expres
in dimensionless form according to Eqs.~54! and~55! and the cal-
culations are performed for four different values of the asymme
ratio h5t2 /t1 of the field@Eq. ~36!#. The value of the dimension

less sample thicknessd̃ in the calculations isd̃5100.
h

he
s

s

ue

e

s

-

vestigated. The average angular velocity of the layers
vided byk is plotted as a function of the sample thickness

the same values ofh as were used in Fig. 4, choosingf̃ Ẽ0
50.005. One notices that for each value ofh, there exists a

thresholdd̃tr , below which the rotation vanishes. The thres
old decreases towards zero whenh increases towards infin
ity. The features of the graph can be interpreted in the

y
d

y

FIG. 5. In the upper part of the figure are depicted the t
thresholds defined by Eqs.~60! as functions of the asymmetry rati
h5t2 /t1 of the field @Eq. ~36!#. The lower part of the figure dis-
plays the average angular velocity of the layer normal multiplied
the sample thickness and divided byk @Eq. ~34!# as a function ofh
when the second threshold is exceeded. All quantities are expre
in dimensionless form according to Eqs.~54! and ~55!.

FIG. 6. Average angular velocity of the smectic layers divid
by k @Eq. ~34!# as a function of sample thickness. All quantities a
expressed in dimensionless form according to Eqs.~54! and ~55!
and the calculations are performed for four different values of
asymmetry ratioh5t2 /t1 of the field@Eq. ~36!#. The value of the
product between the dimensionless frequency and the amplitud

the field in the calculations isf̃ Ẽ050.005.
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lowing way. Once the thresholdd̃tr is exceeded, the averag
angular velocity of the layer normal increases with incre
ing sample thickness. This is due to the fact that the driv
torque is a bulk effect, thus increasing with increasi
sample thickness. On the other hand, the countertorqueG0 ,
acting only at the surfaces of the substrates, is independe
the sample thickness. As long as the second threshold@Eq.
~60b!# is not exceeded, the layers rotate only during the f
changing part of the electric field~the t1 part!. At a certain
value of the sample thickness, however, the second thres
is exceeded and the layers rotate in opposite directions
ing the fast changing and the slow changing parts of
field. In this regime it is the difference between the drivi
torque and countertorque that is responsible for the net r

tion of the layers. Increasingd̃, the relative difference be
tween these torques during the fast and slow changing o
field decreases. Thus, for an infinitely thick sample the lay
just oscillate back and forth, and the average rotation of
layers approaches zero.

VIII. DISCUSSION

According to the present model, the rotation of the lay
in the SmA* phase is driven by the electroclinic effect. If th
frequency of the external electric field is sufficiently low, th
tilt angleu always follows the field and the time derivative
the tilt is proportional to that of the field. As it is an exper
mental fact, supported by the symmetry consideration p
formed in the Introduction, that the axis of rotation coincid
with that of the electric field, we do not consider the pos
bility that the layers rotate in such a way that the booksh
arrangement of the layers is destroyed. Thus the orienta
of the layers needs to be described by one angleg only,
specifying the orientation of the smectic layer normal as
picted in Fig. 2. One important result of the present theor
Eq. ~29!, describing a balance of generalized torques ac

on the smectic layers. According to this equation,ġ;u̇, and
as a result the rate of change ofg is proportional to the rate
of change of the electric field as is shown by Eq.~44!. This
explains, in principle, why a time-dependent external elec
field can rotate the smectic layers. One notes that the co
cient of proportionality in Eq.~44! contains the pseudoscala
C, which is nonzero only if the smectic material is chiral~cf.
Sec. II, where the theory of the electroclinic effect is d
cussed!. The coefficientC also determines the polarizatio
induced by the tilt in the SmC* phase. Thus the phenomeno
of layer rotation is possible only in chiral smectic phas
This conclusion also follows from general symmetry arg
ments, discussed in the Introduction, and is supported
existing experimental data@4,15#.

We note, however, that Eq.~44! alone cannot explain the
net rotation of the smectic layers under the action of
asymmetric, periodic electric field, because the field rota
the layers in opposite directions during different parts of
period, these rotations exactly canceling each other. As
cussed in Sec. III, also the interaction between the sme
layers and the substrates has to be taken into account.
interaction results in an additional frictional torque acting
the smectic layers, and due to this torque the net layer r
tion becomes nonzero. The resulting dependence of the
-
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erage angular velocity of the layers on the amplitude of
asymmetric sawtooth electric field~cf. Fig. 3! is depicted in
Fig. 4. ForE,E1 there is no layer rotation because the ra
of change of the electric field is too small to overcome t
friction at the substrates. In the intervalE1,E0,E2 , the
layers rotate only during the rise of the electric field~pro-
vided t1,t2). Finally, for large fields (E0.E2) the layers
rotates in opposite directions during the rise and decay of
field, respectively. The resulting average angular velocity
the layers in this case does not depend on the amplitud
the field and is proportional to the frictional torqueG0 . In
this regime the average angular velocity is also proportio
to the differencet12t2 , which is obviously nonzero only
for asymmetric fields. It might appear contradictory that t
rotation of the layers is proportional to the friction torqu
G0 , but in accordance with the discussion at the end of S
VII it is the asymmetry in the regime aboveE2 which is
responsible for the rotation. This asymmetry is related to
parameterG0 /d and decreases when this parameter
creases. It should also be observed from Eq.~52b! that by
increasing this parameter for a fixed amplitude of the elec
field the thresholdE2 increases, thus taking the system in
the regimeE1,E0,E2 , where Eq.~53b! clearly shows that
v decreases with increasingG0 /d, until ultimately the rota-
tion completely vanishes for a large enough value ofG0 /d.

The main results of the application of the theory dev
oped in Sec. IV are contained in Eqs.~52! and ~53!. By
rewriting these equations into dimensionless form, using
scaling parameters defined by Eqs.~54!, the result can be
reformulated according to Eqs.~60! and~61!. Only one com-
bination of the material constants,k5ub12u/b1 , enters these
equations. From Eq.~61b! one notices that by plottingṽ as a

function of f̃ Ẽ0 in the regimeE1,E0,E2 , the expected
result is a straight line, the slope of which is 2k, and thusk
can easily be determined from experiments. Concerningb12,
it is possible to conclude from the experimentally observ
@1,2,15# sense of rotation of the smectic layers thatb12
should be expected to be negative. In Figs. 4–6 the beha
of the system as a function of the various control parame
is demonstrated. These results can be used for an experi
tal check of the theory. Today, systematic investigations
the behavior of the system are very scarce in the literat
However, the features of the thresholds demonstrated
Figs. 4 and 6, as well as the general trends of the ave
angular velocity as a function of field strength, frequen
and sample thickness, seem to be confirmed by the few
periments being reported@1–4,15#.

As mentioned above, the layer rotation has been syst
atically experimentally investigated mainly in the SmC*
phase@2–4,15# and there exists practically no quantitativ
experimental information about the characteristics of the
tation in the SmA* phase. Experimental studies of the effe
in the SmC* phase are often performed using asymme
square-well electric fields, which also rotate the layers in t
phase. At the same time, the present theory indicates
there should be no rotation of the layers in the SmA* phase
under the action of an asymmetric square-well field, in co
trast to a sawtooth one. This conclusion can easily
checked experimentally and, indeed, preliminary results c
firm this prediction@15#.
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The present theoretical model explains the mechanism
layer rotations in the SmA* phase. Most of the experimenta
studies of this effect, however, have been performed in
SmC* phase. One notes that although the qualitative ori
of the rotation in the SmC* phase should, at least partly, b
the same, the particular mechanism is expected here t
more complicated. In the SmC* phase, the tilt angle is non
zero and as a result there exists one additional degre
freedom, corresponding to the rotation of the director arou
the smectic cone. Also the electroclinic effect is presen
the SmC* phase and as a result the dynamics of the SmC*
phase~including layer rotations! appears to be more com
zc

J

c

tt.

A

c-
of

e
n

be

of
d
n

plex. The generalization of the present theory to the SmC*
phase is currently in progress.
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