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T. Carlsson and M. A. Osipdv
Physics Department, Division of Microelectronics and Nanosciences, Chalmers University of Technology, S-AtEb&&G8weden
(Received 11 January 1999

Recently, observations of the rotation of smectic layers under certain experimental conditions have been
reported in the literature. In this work, the mechanism of such rotations in chiral smécliquid crystals
under the action of asymmetric, periodic electric fields is studied theoretically. The general conditions for layer
rotations have been established using symmetry arguments, and a generalized dynamical theory of the chiral
smecticA* phase, coupling layer rotations and the electroclinic effect, has been developed. The theory is
applied in the specific case when an asymmetric sawtooth electric field is applied over the system, and the
dependence of the average angular velocity of the smectic layers on the relevant material constants of the liquid
crystal and experimental control parameters is calculated. By rewriting the final equations into dimensionless
form, it is demonstrated that the system exhibits a universal behavior, reducing the number of independent
material constants and control parameters considerg®h063-651X99)09211-9

PACS numbd(s): 61.30.Cz

I. INTRODUCTION Generally, when studying the dynamics of G liquid
crystals from a theoretical point of view, only the torcﬂ‘“fé‘t
During the past few years, the experimentally observeds taken into account. This approach is equivalent with the
rotation of smectic liquid-crystal layers under the action ofassumption that the smectic layers remain fixed, irrespective
external electric fields has attracted a significant amount off which torques are acting on the system. This implies that
attention[1-5]. This unusual effect is observed only in chiral there must be some external stabilizing countertoldfuthat
smectic phases and is believed to be related to the electr@ompensates the torquE™, which, as is easily derived
clinic effect[6]. At present, however, there exists no theo-from the form of the smectic stress tenddf, inevitably
retical explanation of such a layer rotation and it is the purmuyst be nonzero in most situations. The origin of this coun-
pose of this paper to present a theoretical model for thgertorque is of course the substrates which normally surround
simplest case of the chiral smec#ic- (SmA*) phase. From 3 liquid-crystalline sample. If the countertorque is strong
a general point of view, the phenomena of layer rotations cagnough, the solution of the dynamical equations can be di-
be explained by an analysis of different torques acting on thgjged into two parts. Thﬁfxt equation governs the rotation
smectic layer normal. Thus the paper begins with a discusss the ¢ director, while thd-\ixt equation just gives the coun-
sion of torques created by an external electric field applie%rtorque required to keep the smectic layers fixed. It is an
over a smectic liquid-crystalline system. Following this dis- experimental fact that in most cases the smectic layers are
cussion, some general conditions for layer rotations that f°|[maffected by external forces, and thus the approach of ne-

low from symmetry arguments are considered. lecti ext : : e e
. . o ectingI'T™ when studyingec-director dynamics is justified
The ordering of smectiG* (SmC*) liquid crystals can ﬁ’] thesge cLases yihge y J

generally be described by specifying two unit vectors. These Recently, however, in both SBf and SrA* liquid-

Yeitc t(r)rj rr? ptriﬁsetr;t trt]i?t Igi);ertrilor: f tﬂd tth(:c ?'rfﬁ?hriﬁ :ﬂe crystalline systems confined between parallel glass plates in
atter denoting the ection of Ine directa NN ° the bookshelf geometry, a macroscopic rotation of the layer
smectic layers. If an external electric or magnetic field ISormal has been observgt-5], both when ac and dc elec-

i Xt i i ,
applied over the system, a torqli® is exerted on the (.j" §t/ric fields have been applied across the cell. In these obser-
. . ) Lo /ations the rotation axis of the layer normal is parallel to the
tigated by dividingI"*into one partI'™, which is parallel  g|ecyric field, i.e., the smectic layers are not tilted with re-

to the layer normal, and another pdrf, which is confined spect to the surrounding glass plates, but the system remains

within the smectic layers. It is easily seen that the torBff® iy the bookshelf geometry.

acts to rotate the directdor thec director, which is equiva- The basic conditions for the layer rotation in the Sm

lent) around the smectic cone at constant tilt, whifg'tends  phase in external electric fields can be understood using

to rotate the director in such a way that the tilt charlg@slf ~ some very general symmetry arguments. Consider the sim-

one studies a system for which the tilt is assumed to be fixedhlest possible case of a flat ®¢h layer with the electric field

the consequence of the torqli€* is instead to rotate the E applied parallel to the smectic plane, perpendicular to the

entire smectic layers. glass plates surrounding the cell. One knows from experi-
ments that in such systems the layers are rotating around the
direction of the external field. This is not surprising as the

*Permanent address: Institute of Crystallography, Academy oglectric field is the only vectorial physical quantity of the
Sciences, Leninsky pr. 59, 117333 Moscow, Russia. system. The rotation of smectic layers is characterized by the
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angular velocityw and for symmetry reasons this is expectedinterested in the constant part of the angular velo@igy, the
to be parallel to the electric fielH. If one considers only a zero-frequency component af).
linear relation betweemw andE, one arrives at The average angular velocity, can be obtained by inte-
gration of Eq.(2) over time
w=kE, (1)
a T.

where « is determined by some material parameters of the wO_?JO Edt, @)
SmA* phase.

One notes that Ed1) is a relationship between the polar where 7 is the period of the field. For any periodical field
vector E and the pseudovectap. This linear relationship E(t) the integral in Eq(4) vanishes, i.e.,
can only be valid if the constant is a pseudoscalar and
therefore the medium must be chiral. Thus the smectic-layer
rotation can only take place in chiral smectic phases. Second,
one notes that the vectots and E have different transfor-
mation properties with respect to time reversal. The angulaand thus, at average, there is no rotation. This problem can
velocity changes signs under time reversal while the electribe resolved by taking into account that the smectic layers are
field is not necessarily changed. This contradiction can betabilized by the countertorqud&, which has its origin from
resolved by substituting Eq1), which relates the angular interactions with the surrounding glass plates. In this case the
velocity to the external electric field, by a similar relation smectic layers are actually rotating if the driving torque ex-
between the angular velocity and the time derivative of theceeds some threshold value. In other words, the layers are
electric fieldE, only rotating during the part of the period when the time

derivative E is sufficiently large. Equatio2) is valid only
w=oE. (2)  during this part of the period as well. Now the integral in Eq.
(4) does not vanish because one actually has to integrate only

Now the two sides of Eq(2) have the same symmetry pro- over these parts of the total period when the derivai{®
vided the constandr is a pseudoscalar. is large enough.

From a general point of view, Eq2) indicates that the In this paper, a theoretical model for describing the layer
rotation of chiral smectic layers in a time-dependent electridotation in chiral smectic systems subjected to ac electric
field is allowed by symmetry. The corresponding angularfields across the sample is presented. Only dynamic effects
velocity must change signs under time reversal of the exterare considered. This means that only layer rotations related
nal field, which indeed is observed experimentally. It shouldto time-dependent electric fields are taken into account, and
be noted that the rotation is actually induced by the timethus the layer rotation observed by Yoshigtoal. [5] in a dc
derivative of the electric field and thus it is not expected toelectric field, which is related to ionic impurities in the
occur in a constant field. The latter conclusion, howeversample, is not considered. The study is also restricted to the
appears to be in contradiction with experiments becaus8mA* phase and we postpone the study of theC3nphase
layer rotation(in the SnC* phasé has been observed in a dc to future work.
electric field[5]. On the other hand, in this experiment the  The outline of the paper is as follows. In Sec. Il the
liquid crystal was doped by charged impurities which pro-mechanisms causing layer rotations in theASnphase are
duced an electric current across the cell. One notes that thdiscussed. The coordinates employed in the calculations are
symmetry of electric curreritis exactly the same as that of defined and a general discussion of torques in smectic liquid

the time derivative of the electric fielE. This means that Crystals is performed. In Sec. Il the electroclinic effect in the
one can write down the same type of linear relationship beSMA* phase, which is the driving force of the layer rotation

JOTE(t)dt=O, )

tween the angular velocity and the electric current in this phase, is discussed and the concept of electroclinic
torque is introduced. The general equation governing the dy-
w=7. (3)  namics of the layer normal in the 2 phase is derived in

Sec. IV and in Sec. V this equation is solved for the case

Thus the rotation of chiral smectic layers can also be inducethen an asymmetric sawtooth electric field is applied to the
by an electric current. system. Finally, in Sec. VI the outcome of the calculations is

Equations(2) and (3) prove the general possibility of discussed, showing that the results describe existing experi-
layer rotation in the Si* phase and describe some condi- mental data correctly. Thus, to our knowledge, the present
tions required for this effect. At the same time, nothing ispaper presents the first coherent model for describing layer
said about the particular mechanism of the rotation in chirarotations in the S* phase.
smectic phases. In this paper such a mechanism for the

SmA* phase is proposed. Before discussing the equation of Il. FORMULATION OF THE PROBLEM—
motion in this case, one notes that in all experiments with a INTRODUCTION OF NOTATIONS AND DEFINITION
periodic electric fielde(t), the time derivativee(t) changes OF COORDINATES

signs during the period. According to E®), this means that In this work we study the dynamics of a % liquid

the layers are rota.ting in opposite directions for positive a”‘!:rystal in the bookshelf geometry. Thus the smectic layers
negative values oE, respectively. In practical applications are standing perpendicular to the surrounding glass plates,
the period of the electric field is small, and thus one is onlythe layer normal always being parallel to these plates. By
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FIG. 2. Definition of coordinates in the present work. Assuming
FIG. 1. The two extreme ways of rotating smectic layggs.  that the system remains in the bookshelf geometry, two coordinates

Each molecule stays in its original layer implying that the rotationare needed in order to describe it completely. These are the gngle

must be accompanied by a macroscopic mass flbyvThe mol- betwgen the layer normal and theaxig and the angl® betvyeen
ecules only move on a microscopic scale, gradually jumping bethe director and the layer norméthe tilt). Both these coordinates
tween the layers. are introduced in such a way that they are positive for a rotation

around the positivey axis.

applying an ac electric field perpendicular to the glass plates, o o o
the system is switching, the mechanism of the switching be€lectric field, which is parallel to thg axis, is taken to be
ing the electroclinic effecf6]. However, in contrast to all POSitive along the positiveg direction. In order to describe
previous treatments of the problem, we do not assume th@€ layer normag, which for standing layers is always con-
smectic layers to be fixed in space. As concluded by symméined within thexz plane, an angley is introduced, counting
try arguments in the preceding section, in the/8nphase a ¥ positive for a rotanpn oh arou_nd the p(_Jsmvg axis. With _
time-dependent electric field is expected to exert a torque oH'€ Present assumptions, the director will always be confined
the layers, causing these to rotate around an axis parallel ¥ithin the xz plane. To describe the tilt of the director with
the field. Thus the system will remain in the bookshelf ge-féSpect to the layer normal, it is thu§ sufficient to |ntrc_>duce
ometry during the switching, however the layer normal hasPne coordinat@. Also ¢is introduced in such a way thats
now the possibility of rotating around this axis. positive for a rotation of Fhe dlfector with respect to the layer
At this stage it is appropriate to discuss what should bélormal around the positive axis. o _
meant by a rotating smectic layer. Mathematically, this is WWhen, due to the electroclinic effect, the tilt is changing
synonymous to a system for which the layer norraals N time after an ac e_Iectnc field has been applied across the
changing its direction in time. There are, however, severapyStém, a torque will be exerted on the layer normal. As
ways to interpret this situation from a microscopic point of discussed before by symmetry arguments, and as will be
view as depicted in Fig. 1. In this figure is shown a systemShown later by a straightforward mathematical argument,
for which the smectic layers are rotated 90° counterclockihis torque is par_allel to the electrlc_ﬂeld.and W|[I thus tend to
wise. To keep track on the mass flow associated with thigotate the smectic layers around this, still keeping the. system
rotation, imagine that three molecules are labeled, denotinlf) the bookshelf geometry. Once the layers start rotating, one
them X, Y, and Z. By using the very naive picture that a Should expect some klnd of frlptlonal torque to be exerted on
smectic system consists of separate individual layers, whicH'€ layers due to the interaction between the substrate and
are piled up on top of each other, the rotation would beffhe liquid crystal. Thus we introduce a threshold torduge
accompanied by a macroscopic mass flow, and the thréto the model having the consequence that for a driving
moleculesX, Y, and Z would move according t¢a). This  forque which is less thahy, a balance between the driving
picture is probably highly unrealistic. If instead one inter-torque and the frictional one is possible and no rotation of
prets a rotation of a smectic layer as a combination of 4he smectic layers occurs. Only when the driving torque ex-
change of the preferred direction in which the molecules aré€€dsl’ should a rotation of the smectic layers be expected
pointing and a motion of the molecules on a microscopict0 be observed.
scale of the order of half a layer thickness or |élss the
Iaygr normal can be allowed to rotate Withqut being accom- Ill. THE ELECTROCLINIC EFFECT
panied by a huge macroscopic mass flow in the system. On
the other hand, now the molecules which once formed one When an electric field is applied parallel to the smectic
smectic layer, may find themselves after a rotation belongindayers across a Sit liquid crystal, the director becomes
to different layers. This latter model for the layer rotation istilted with respect to the layer normal and the system exhib-
probably the more correct one. However, we will not discussts a net polarizatior® due to the electroclinic effe¢6]. As
the layer rotation from this microscopic point of view, but this effect is the driving force of the layer rotation studied in
rather we describe the phenomenon from a macroscopithis work, a brief theoretical discussion of the electroclinic
point of view by keeping track only on the mathematical effect within the framework of Landau theory is given be-
quantity a(t). low.
In Fig. 2, the coordinates used in this work are defined. As a starting point for the discussion, a Landau expansion
The surrounding glass plates are taken to be parallel tazhe of the free-energy density for the 2th-SmC* phase tran-
plane, while they axis is perpendicular to these plates. Thesition is used. In the SA* phase, a homogeneous electric
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field will couple only to spatially uniform changes of the
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The Landau-Khalatnikov equations are now employed to

order parameters, which for our purpose can be chosen to herite down the dynamic equations of the system as

0 and P, and accordingly we sat/dz=0 in the expression
for the free-energy density. To lowest order, in the A8m
phase one can now wri{é]

1
—P?-CPH—EP.

1 2
=1a?+
g 2a9 Q¢

(6)
In this equation,a, ¢, and C are the usual Landau coeffi-
cients, where only the coefficient is assumed to be tem-
perature dependent,

a=a(T—Typ). (7)
Introducing the SA*-SmC* phase transition temperature
T., one can shoW8] thata can be rewritten as

a=a(T-T,)+Kg2+eC2, (8)
where K is a renormalized elastic constant agg is the
wave vector of the pitch af,. The equilibrium values of the
tilt and polarization in the presence of a static electric field
are denoteddeq and Py, respectively. These are calculated
by minimizing the free-energy density given by E§),

9_ CP=0 9
a9 _ ! P—-C6—E=0 10
FEPAR (10
Equation(9) implies
a
Peqza Oeq) (13)
which, when substituted into E¢L0), gives
eC
fer=a—sc?® 12
or, by using the relation given by E(),
eC
Oeq= E. (13)

a(T—Te) +Kg?
For convenience we introduce the shorthand notation

ap=a(T—To)+Kd?, (14)
allowing the equilibrium tilt in the presence of an electric
field to be written as

(15

For future use we also notice that E¢B)—(10) enable us to
rewrite gg/d# according to

99

a0 aoa—SCE.

(16)

91,9 1
0= gﬁy ( 7)
. Jg

P——Fpa—P. (18

The two constantd’™, and I'p are the kinetic coefficients
related to the relaxation of tilt fluctuations and polarization
fluctuations, respectively, and represent inverse viscosities,
i.e., by introducingys=1MT", andyp=1/T"p, One can instead
write

g=— 9 19

Yst0=" "4 (19
. g

veP==-5. (20

Here ys is the soft-mode rotational viscosifg] and yp is a
generalized viscosity related to polarization fluctuations.
From experiments one knows that there are two different
relaxation times involved in the relaxation éfand P, since
these represent rotations of the molecules around their short
and long axis, respective[@]. It is therefore a good approxi-
mation in the problem studied here to assume that the relax-
ation of polarization fluctuations is infinitely faster than re-
laxation of tilt fluctuations. Accordingly one can set=0
in Eqg. (20). Physically this means that for any value of the
tilt @ in the presence of an electric field the polarizatiorP
always adopts the equilibrium value corresponding to the
given values off and E. Thus, from Eq.(20) one easily
derives the corresponding equilibrium value of the polariza-
tion asdg/dP =0, implying
Peg=eCO+€E. (21
The relaxation of the tilt towards its equilibrium valég,
given by Eq.(13) or Eq.(15) is governed by Eq(19). Using
Eq. (16), the equation governing the dynamic behavior of the
electroclinic effect can thus be written as
ys0=—ay0+eCE. (22
Applying a static electric fieldE, over a Sm\* liquid crystal
at timet=0, the solution to Eq(22) is given by

eCE
Qo

0

o(t)= (1—e (/79 (23

From Eq.(23) one deduces the electroclinic response titne
of the system as

Vs

=l

Ys
a(T—-To)+Kqg?

(29)

Ty

Neglecting the renormalizatioﬁqé in the denominator of
Eq. (24), one can estimate, by inserting some typical val-
ues fora and ys. If these are chosen as~10* N/m?K
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[10,11] and ys~1 Pas[12], the estimated value of, at T fixed smectic layers, this relaxation process is described by
—T.=2K is 7,~5%x10 °s. The inverse of this time, 4/  the Landau-Khalatnikov equatiorit7) or (22). In contrast,
~10*Hz, should correspond to the soft-mode relaxation frethe angley does not enter the expression for the free-energy
quency fs [13] of the system. Indeed, this frequency hasdensity of the ideal SW* or SnC* phases. On the other
been experimentally determingti3,14] to be around 10-50 hand, the change of is obviously associated by some en-
kHz, a couple of degrees aboVg. As the frequencies of the ergy dissipation. In this sense the variatiés analogous to
electric fields considered in this work are at most a couple othe directorn in the homogeneous nematic phase. In the
hundred Hz, the response time of the system is always mudgtter case the free-energy density also does not depend on
faster than the rate of change of the electric field. Thus, fothe orientation of the director, but the change of the orienta-
each value of the electric field, we can always assume thdion is accompanied by a dissipation. In the Smphase,

the tilt adopts its corresponding equilibrium valég, given Wh_en the system is subject to an exte(nal eIectng f'eld, the
by Eq. (15). variables# and y are coupled, this coupling determining the
rotation of the smectic layers. The dynamics of such a com-
plex system can be described by the more general approach
based on the Rayleigh dissipation function. The application
of this approach to the study of the dynamics of nematic
liquid crystals is discussed in detail by Vertogen and deJeu

The system we study is depicted in Fig. 2. It consists of al7l _ L
SmA* liquid crystal in the bookshelf geometry over which a [N this approach the state of the syst@mhich is assumed
time-dependent electric field has been applied, the field beinfp e close to thermodynamic equilibridins specified by a
parallel to the smectic planes. Due to the electroclinic effectSet 0f macroscopic variables; and their time derivatives
the director will not stay parallel to the layer normal, and theX;. The properties of the system are described by using the
tilt @ is introduced as a dynamic variable of the system. Infree-energy density functiongl=g(X;) and the dissipation
contrast to all previous theoretical treatments of the electrognction D =D(X;). Then the dynamics of the system is de-
clinic effect, the smectic layers are not assumed to remai@cyiped by a set of Euler-Lagrange equations,
fixed, because from the symmetry considerations performed

IV. DYNAMIC EQUATIONS OF THE SYSTEM WHEN
THE SMECTIC LAYERS ARE NOT ASSUMED
TO BE FIXED

in Sec. | we expect that applying a time-dependent electric oD g
field over the system creates a torque tending to rotate the —_—=—— (25
smectic layers around the field. This means that the system is IX; axXi

expected to remain in the bookshelf geometry, however a

second dynamical variablgis needed in order to keep track Assuming the relaxation of the spontaneous polarization to
of the orientation of the smectic layer normal as depicted irbe infinitely faster than the relaxation of the tilt, the polar-
Fig. 2. To describe the system, we thus have to introduce twization will always follow the tilt according to Eq21). The
coordinates: v, which is the angle between the layer normal system studied is then characterized by the two dynamical
and they axis, andé, which is the tilt of the director with variablesy and 6, which are determined from the two equa-
respect to the layer normal. Both these coordinates are intrdions

duced in such a way that they are counted positive for a

rotation around the positive axis. JD_ g (264
Today, no dynamical theory capable of describing the ay  ady’

system studied in this work exists in the literature. The mac-

roscopic dynamic theory for chiral and nonchiral Sand D ag

SmC liquid crystals[ 7] shows clearly that there exists a cou- —_ = (26b)

pling between layer rotations and rotations of the director a6 90

around the smectic cone, and can be employed when study-

ing layer rotations in the S@* phase[16]. This theory, In the general case, the dissipation funct[@ﬁs written as a
however, concerns only systems of constant tilt and is thuguadratic form of the time derivativeg and 6,

not applicable when the electroclinic effect is present in the

switching as it must clearly be in the $xh phase. The ther- D=18,%%+ 18,02+ B1,¥0, (27)
modynamic approacf8] (discussed in Sec. llito the elec-

troclinic effect, based on a Landau expansion, provides ahere the last term describes the dynamical coupling be-
good description of the electroclinic effect, but assumes theéween the variables and 6. For the dissipatior{27) to be
smectic layers to remain fixed. Thus neither of the two apypositive definite one must demayy and 8, to be positive
proaches is sufficient to model the system studied in thiis well as the detefminaﬁlﬁz—ﬁiz- Thus the following

work. inequalities must be fulfilled by the dynamical coefficients
One notes that the two dynamical variables in the systeng. -

(i.e., the tilt angled and the layer rotation anglg) are not

equivalent from a thermodynamic point of view. The tilt B1>0, Bo>0, |B1d<VBiB>. (28
angled can be called a thermodynamic variable, because the

free energy of the S@* phase depends upon it. The dynam- The coefficient3;, can thus adopt both positive and negative
ics of @ is relaxational in nature, i.e., the tilt angle relaxes tovalues, however its magnitude is restricted according to the
its equilibrium value determined by the field. In the case oflast of the inequalitie$28).
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The elastic energyg in Egs.(26) is of course the Landau
energy given by Eq(6). As there is noy dependence in this
expression,dg/dy=0, while dg/d6 is given by Eq.(16). +E,
From Egs.(26) and(27) one obtains

TIME

Biy+ /3129:0: (29

B0+ B1yy=—a,0+eCE. (30)

ELECTRIC FIELD

Comparing with a system for which the smectic layers are
assumed to be fixefEq. (22)], one can conclude thag,
represents the soft-mode rotational viscosity, i®&= ys.
Instead, assuming the tilt to be identically zero one notices -E
that the coefficienB; corresponds to the rotational viscosity S>>
of the smectic layer$18]. The coefficient3; can thus be 1 2
identified to correspond to one of the viscosity coefficients
(\4) in the above-mentioned dynamic thedr§] for SmA
and Sn€ liquid crystals, i.e.;8:=2\,, wherep, is the dy-
namic coefficient introduced by E(R7) and\ , is one of the
viscosity coefficients defined by the stress tensor given in
Ref. [7]. e P12
One notes that the Landau-Khalatnikov equatid ap- B1
pears to be a particular case of E¢&6b) and (30). Indeed,
in the case of fixed smectic layers the dissipation funcibon

can be written a® =133, 62 and then Eq(26b) is reduced to
Eq. (17). Thus Eqgs.(26b) and(30) describe a relaxation of

the tilt angle @ in a rotating layer. On the other hand, E_q. This equation, together with E431), is the equation being
(263 represents a counterbalance of the two generalizeflsed in the next section to study the rotation of the smectic
torques acting on the smectic layer normal. layers induced by the electroclinic switching when an asym-

At this stage one should notice that there are three differmetric sawtooth electric field is applied over the system.
ent time scales involved in Eq9) and(30). The response

time of the electroclinic effect, given by Eq.(24) falls
within the submillisecond regime as discussed at the end of
Sec. lll. The period of the electric fields considered in this
work is typically a few tens of a millisecond, while the ro-
tation of the smectic layers has been found experimentally In this section, the dynamical behavior of the smectic lay-
[1,2,19 to correspond to a time scale of several secondsers when the system is subject to an asymmetric sawtooth
When solving Eqs(29) and(30) one can thus proceed in two electric field is studied. The field under consideration is as-
steps. The angle defining the smectic layer normal can be sumed to be oscillating between the valueg, and is de-
assumed to be constant in a time interval corresponding tpicted in Fig. 3. The rise time; is assumed to be shorter
one period of the electric field. Thus the tegq,y in Eq.  than the decay time,, and an asymmetry ratig of the field

(30) can be neglected and this equation can be approximated introduced according to

as

FIG. 3. Asymmetric sawtooth electric field. The field oscillates
betweent E, and the rise timer; is assumed to be shorter than the
decay timer,.

0, (34)

allowing Eq.(32) to be rewritten as

y=«0. (35)

V. ROTATION OF THE SMECTIC LAYERS
DUE TO THE APPLICATION
OF AN ASYMMETRIC ELECTRIC FIELD

) 2
B,0=—ay0+sCE. (31) n=-b (36)

This is the equation governing the dynamical behavior of therhe frequencyf of the field is related ta; and , as
electroclinic effect(22), recalling that we have already iden-

tified the dynamical coefficien8, with the soft-mode rota- 1
tional viscosityys. Once Eq.(31) is solved foré(t), this f= T+ T (37)
solution is substituted into E29) to obtain vy,

and is assumed to be much less than the soft-mode relaxation

y=— :3_12 (32 frequency of the system. This condition can be expressed as
B1
T+ o> T, (38
It is an experimental fadtl,2,15 thaty and # have the same ) . . .
sign, implying the condition wherer, is the electroclinic response time given by E2@).
This condition is well fulfilled as long as we consider fields
B1,<0. (33)  with frequencies of 1 kHz or less. Studying one period of the

electric field, the time dependenégt) of the electric field
For convenience we introduce the constargccording to can be expressed as
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2t the rotation of the layers. Before adding this torque to the
E(t)=Eo(T—— 1) when te[0,74], (39  dynamical equation$45) and (46), some caution must be
! taken regarding the physical dimensions of the quantities
27, 2t studied. The coefficiens,; represents a viscosity and has the
E=Eo(—+1— —) when te[ 7,7+ 7], (400  unit Pas[7] while the unit of y is s 1. Rewriting Eq.(45)
2 2 slightly as

while the rate of change of the electric field can be written as

. 2|/312|8CE0
Bry=———, (48)
. 2Eg 7180
E=— whente[0,7], (42
n one notices that the unit of this equation is
_ 2 Pa=N/m?=N m/m® and thus the dimension of this equation
E=—2-"9 Wwhente [y, 71+ 7o) (42) is torque per unit volume. As the stabilizing torglig only
72 acts via the substrates, this quantity represents a torque per

Due to the fact that the rate of change of the electric field isunlt area, i.e., N/m. Writing down the dynamical equation for

L . ne smectic layer, the driving tor in E¢ in
much slower than the electroclinic response time, one cap C Smectic ‘ayer, he d g torque @8), being a

Porque per unit volume, must be multiplied ad, x« andd
safely assume that during the switching the tilt will always,_ . . ' - i
adopt its equilibrium valug15) for the given electric field. being the layer thickness and the sample thickness, respec

o > . tively. The stabilizing friction torquel’s, representing a
The rate of change of the tilt is then simply given by toque per unit area %ust howevgr besmultﬁ)lied [aytge

. sC. factor 2 stemming from the fact that the sample is sur-
0=— (43 rounded by two glass plates. By addifig with the proper

do sign to Egs.(45) and (46), and multiplying each term with
the relevant geometrical factor, one obtains the final dynami-

From Eqs.(35) and(43) the equation governing the dynami-
45439 “3 d g g y cal equations of the layer normal,

cal behavior of the layers is now derived,
Fo’Tlao . 2K8CEO ZFO
=y= -—,
BdeC Y ra,  dB;
(499

;y: KSC-E, (44) tE[O,Tl], E0d>
aog

which, by using Eqs(41) and(42) can be written as

Fomap .
2keCE, te[0,7], E0d<—|ﬁ |8C=>y:o, (490
y=—— whente[0,7], (45 12
Tlao
t [ " ] E d> Fo’Tzao . 2K8CEO " ZFO
___ 2xeCEq slrmtrel RO 1ee YT ey By
'y:_W When tE[Tl,Tl+ 7'2]. (46) |IBlZ| 290 (é}éa)
The net rotationAy, of the smectic layers during one period Igmay . B
of the electric field is now calculated as te[rm,m+ 7], E0d<|ﬁ12|scz>7_0- (50b)
Ay f7'1+7'2:ydt 47 Substituting Eqs(49) and (50) into Eg. (47), the net ro-
0 ' tation Ay during one period of the electric field can be cal-

culated. The average angular veloaity=( y) of the layers is
The value ofAvy calculated from Eq945)—(47) is obviously  then obtained as
zero. This is easily understood because the larger positive

value of y during the shorter time; is exactly compensated o=fAvy, (51
by the smaller negative value of during the longer time ) o ) )
interval 7. f being the frequency of the applied field. It is easily seen

However, to achieve a system in the bookshelf geometryffom Eqs.(49) and(50) that, for a sample of given thickness
some kind of surface treatment must be imposed on the glagh there exist two threshold field&, andE,, for which the
plates surrounding the sample. Due to this there must exist @ehavior of the system changes qualitatively. These thresh-
stabilizing torquel's, which is responsible for keeping the olds are given by
preferred orientation of the layers. In order to rotate the lay-

ers, the driving torque must exceed some threshold, corre- :M (529
sponding to the maximum possible value of the stabilizing Y d[ByleC’

torque, denoted by'y. The stabilizing torqud’g has the

nature of a friction torque and adopts the value needed to _ Tomap

balance the driving torque as long as this is not large, imply- 27d|BJeC 71, (52b)

ing that in this casey=0. However, if the driving torque
exceeds a critical value, the stabilizing torque can no longew being the asymmetry ratio of the field defined by E2f).
increase, but adopts its maximum valug, always opposing The assumptiorr,> 7, implies E;<E, and the general be-
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havior of the system is as follows. H,<E,, the stabilizing ag
torque is large enough to overcome the driving torque and E*= = (549
the layers remain fixed during the switching. H;<E,

<Ey, the layers rotate in a positive sense in the time intervairhese three constants represent a characteristic time, length,
te[0,7,], butremain fixed in the intervale [ 7,7+ 7,]. I and electric-field strength, respectively, the physical signifi-
Eo>E;, the layers rotate both in a positive and a negativecance of which is discussed below. We also introduce four
sense, however there is a net positive rotation during ongiimensionless quantities for time, frequency, length, and

periOd of the electric field. Employlng Eq@?), (49), (50), electric-field Strength according to
and (51), the average angular velocity of the smectic layers

can be calculated, ~ t
t= tT, (559
E0< E]_:}(l):o, (53@
2f|B1deCEy 2flg7y T=ft*, (55b)
Ei<Ey<E,=mw=
Lo Biag dp, q
dg, \E; 7/
~ E
21T, Eo==" (55d
E0>E2=>w:_(7'2_7'1). (53(:) 0
dB1
o ) as well as the notations
In the next section is shown how the solutid®8) can be
made more tractable by rewriting them into dimensionless b= 0, (563
form.
=7 (56b)
VI. DIMENSIONLESS FORM OF THE EQUATIONS
Th_e key results of thg previous se_ctio_ns are th_e _dynamic Ty:dy/dT: i*dy/dt, (560)
equationg29) and (30), giving a quantitative description of t

the coupling between the electroclinic effeét#0) and the

r_otati(_)n of the s_mectic layersy(0). Solving_ these equa- 5=d6/d~t= éda/dt. (560)

tions in the specific case when as asymmetric sawtooth elec- t

tric field is applied over the system, the result is summarized }

in Egs. (52) and (53). The result of these equations is gov- Substituting theAnsazes(55 and (56) into the previously
erned by six control parameters: the temperafyrthe elec- derived equations, these are transformed into dimensionless
tric field strengthE,, the frequency of the electric field, the ~form. By this procedure, the thresholds given by EGe)

rise and decay times, and 7, of the electric field, and the are transformed into

sample thicknesd. It should, however, be observed that by

the relation(37) only two of the three parametefsr;, and ~E1=7-1 /a, (57a
T, are independent. Furthermore, six material parameters en-
ter the calculations. These are the three viscosfiigs 3., E,= 7E,=%,/d, (57b)

and B4, and the Landau coefficients, ¢, andC. Also the

constantl’y, which is a measure of the interaction betweenwhere7, =7, /t* and7,=7,/t* are the dimensionless rise
the substrates and the liquid-crystalline layers, enters the caind decay times of the electric field, respectively, and
culations. Thus, before any numerical results can be pro=r,/r, is the previously defined asymmetry ratio of the

duced from Eqgs(53), one needs to assign values to five electric field. In the same way, Eq&3) are rewritten as
independent control parameters and seven material constants.

However, by rewriting the equations. iljto dimgnsionless for.m EO<NE1:H)= 0, (583
it can be shown that the system exhibits a universal behavior,
only depending on three independent control parameters and

one combination of the material constants. Ei<Eo<E;=0=2kf(Ey—7,/d), (58b)
We now introduce three constarits, d*, andE* with o ~ _
the dimensions of time, length, and electric field, respec- Eo>E,=w0=2«f(7,—71)/d. (580
tively,
One notices that the results of E¢57) and(58) depend on
t* = & (543 the three control parametefs 7,, and7,, which are not
ap’ independent of each other. From E¢36) and(37), the fol-
lowing relations can be derived:
Bl

*

(54b)

" aglBd’ F=1UF(1+ )], (599
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~ of the system has vanished. This is, however, not the case
= + 1. o !
2= /11 7] (59 because the temperature dependence is hidden in the choice

Substituting Eq(59) into Egs.(57) and (58), we finally ar- ~ of the temperature scaling parameter[Eq. (54a]. Thus,
rive at the expressions that will be employed for the numerichanging the temperature of the system, everything else be-

cal calculations below, ing unchanged, the temperature dependence of the quantities
calculated can implicitly be deduced by keeping track of the
E,f=1[d(1+%)], (608  temperature dependence off =ft*=fg,/[a(T—T,)
-~ ~ +Kq?l.
Exf=»/[d(1+7)], (60b) Before plotting the results given by Eq$0) and(61), we
. must estimate between which values the control parameters
Eo<E1=@=0, (618 FE, andd are expected to vary. The assumpti@8) guar-

o . ~ antees that the tilt always follows the electric field. This as-
E <Eo<E,=w=2«[fEy—1/d(1+%)], (61lb sumption is fulfilled if the frequency of the applied field is
much smaller than the relaxation frequency of the soft mode

EO>~E2:>Z):2K(7,—1)/[H(77+ 1] (619  and can be formulated as
From Egs.(60) and (61) one observes that the number of et = a 1 65
independent control parameters has been reduced to three, S 27B, 2mt*’

i.e., the product of the frequency and the strength of the

Ce TR . wheret* is given by Eq.(549 and the expression for the
electric field,fEy, the asymmetry ratiay, and the sample soft-mode relaxation frequency is given bg]. Thus the

thicknessd. Itis also seen that only one combination of the resent calculation is valid only for frequencies for which the
material constants enters the calculations. This is the katio g|ation
which is defined by Eq(34).

Before proceeding, we shall identify the physical meaning ~
of the scaling parameters, showing that these are measurable ftr=f< on (66)
by straightforward experiments. Equatidid5) gives the
static electroclinic tilt angle as a function of the applied eIec-In accordance with Eq66) we limit the choice off in the
tric field. Comparing this equation with the definition Bt ,

given by Eq.(540), it is clear that by measuring the static calculations to bd €[0,0.03. If the_ frequency is allowed to
electroclinic respons@,, as a function of applied electric adopt larger values, the assumpti@®) gradually ceases to
field E, the scaling parametd* is given as the inverse of be valid, and thus the basic assumption that the electroclinic

the slope of the corresponding graph. From E@S) and  '€SPonse always follows the field is also violated. Keeping

(24) it is seen that the characteristic time scale defined by Eq‘.)nly the terms of lowest order in the Landau expansin

(544 is related to the relaxation of the system back to equi_demands that the tilt is not too large. The dimensionless form

librium in the presence of an electric field. Indeed it can be®f E- (13) can be written
shown[8] thatt* is related to the soft-mode relaxation fre-

guencyfg, easily obtained in a dielectric experiment, by o=E. (67
1 Limiting the study to systems for which<30°, the maxi-
= 2mfy 62 mum value ofE is 0.5 and thus we limit the choice & to

be Ee[0,0.5].
The characteristic length scal® can be determined by us- . ~ .
ing Eq.(58b). From this equation one notices that for a fixed - For the sample thickneshthere exist a lower threshold,

value of the electric-field strength there exists a thresholdln. below which the influence of the substrates dominates
valuedy, for the sample thickness, over the driving torque and no rotation of the smectic layers

occurs. This threshold is calculated from E6lb) as

dn="1/Eo, 63 ~
n=T/Eo (69 = U TEG(1+ )], )

below which the smectic layers cease rotating. Such a thresh- - . ~ ~

old has indeed been observed experimenti@ly By mea- and gives the Iower_ limit ofl for given values oif,_ Eqy, and

suring the thresholdl, for given values ofr; andE,, the 7 In the next section are shown some numeric results ob-

scaling parameted* is obtained as tained from the dimensionless model presented above.
t*E VII. NUMERICAL RESULTS
- =de*—TO- (64) '
1

We are now in the position to calculate numerical results

Thusd* is easily obtained it* andE* have already been from Eqgs.(60) and (61). According to the discussion at the

determined. end of the preceding section, it is only meaningful to perform
In the dimensionless version of the theory presented herealculations for which the produ€g, is of the order of 0.01

it appears as if the temperature dependence of the behavior less. In Fig. 4 is plotted the average angular velocity of the
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FIG. 4. Average angular velocity of the smectic layers divided _ _ [
by  [Eq. (34)] as a function of the product between the frequency 4© ™%
and the amplitude of the electric field. All quantities are expressed 'r B
in dimensionless form according to Eq54) and (55) and the cal- [ [SATURATED VALUE OF AVERAGE ANGULAR VELOCITY
culations are performed for four different values of the asymmetry os | AS FUNCTION OF ASYMMETRY RATIO
ratio = 7, /7, of the field[Eq. (36)]. The value of the dimension- L :
less sample thicknessin the calculations isl=100. _
0 L P L - R B .
0 10 20 30 40 50

smectic layer normal divided by as a function of the prod- n

uct fE, for four different values OT the asymmetry ratbp' FIG. 5. In the upper part of the figure are depicted the two
(7=2,4,8%). Th~e reduced layer thickness in this CaICUIatlonthresholds defined by Eq&0) as functions of the asymmetry ratio

is chosen to bel=100. One observes that there exists an=r,/7, of the field[Eq. (36)]. The lower part of the figure dis-
lower value of?EO below which the layer normal ceases plays the average angular v.ellocity of the layer normal multiplied by
rotating, corresponding to the threshold given by E&a. the sample thickness and d|_V|ded bYEQ. (34)] as a_f_unctlon ofy

It is clear from the figure that the threshold decreases witt{’Nen the second threshold is exceeded. All quantities are expressed
increasingz, approaching zero when approaches infinity. in dimensionless form according to EqS4) and (55).

It should be emphasized that the basic assumption that the

electroclinic response always follows the electric field doesvesugated. The average angular velocity of the layers di-

o ' vided byk is plotted as a function of the sample thickness for
not allow the limit »— to be taken, because for a fixed o o~
frequency this would imply, —0. However, already a value the same values of as were used in Fig. 4, choosiri§,
of =50, which is not too large to violate this assumption in =0-005. One notices that for each valuempfthere exists a
most cases, corresponds to a saturated valué afhich  thresholdd,,, below which the rotation vanishes. The thresh-
differs by only 4% from the calculated value fgr=o. Thus  old decreases towards zero wherincreases towards infin-
the graphs corresponding tp= can be used as a guideline ity. The features of the graph can be interpreted in the fol-

for how the system behaves for large Increasing?Eo
above the thresholdp increases linearly until the second
threshold[Eq. (60b)] is reached and the averagebecomes

saturated, independent 6E,. For large values ofy, this [ -
saturated value has an upper limitgd1/ 0,008 N=8-N

To investigate more thoroughly how the behavior of the o7 ? //:4 \

system depends on the asymmetry ragiostudy Fig. 5. In o0 [ /

n . 1

\ \

the upper part of this figure is shown the two thresholds 0.004 L //\\ ]
given by Eqs(60), fE;d and fE,d, plotted as functions of / / / ! ~——

0,012 : N —

fE =0.005
Q

0,01 F

N=oo

7. Without loss of generality it is assumed thagt>,, and 0.002 |
thus the two thresholds are studied by varyingoetween 3 l / /
50

O o b e e b e by e e
unity and infinity. In the limity— 1, the asymmetry of the 0 100 150 200 250 300 350 400

field vanishes and the two thresholds coalesce at the value d
fEqd=0.5. Increasingy, the lower threshold decreases to- ) ) o
wards zero while the upper one is saturated at the value FIG. 6. Average angular velocity of the smectic layers divided

~~ o~ . . . by « [Eq. (34)] as a function of sample thickness. All quantities are
fE,d=1. In the lower part of Fig. 5 is depicted the saturatedexpressed in dimensionless form according to Egé) and (55)

value of the average angular velociiyenoted bywma) of  and the calculations are performed for four different values of the
the layer normali.e., the value when the second threshold isasymmetry ratiop= r, /7, of the field[Eq. (36)]. The value of the

exceedepdivided by «/d as a function ofy. product between the dimensionless frequency and the amplitude of
In Fig. 6 the thickness dependence of the rotation is inthe field in the calculations iEEy=0.005.
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lowing way. Once the threshoiﬂr is exceeded, the average erage angular velocity of the layers on the amplitude of an
asymmetric sawtooth electric fieldf. Fig. 3 is depicted in

angular velocity of the layer normal increases with increas<" . )
ing sample thickness. This is due to the fact that the drivind 9 4- FOrE<E, there is no layer rotation because the rate

torque is a bulk effect, thus increasing with increasingOf change of the electric field is too small to overcome the
sample thickness. On the other hand, the countertofgye ~friction at the substrates. In the intervel <Eo<E,, the
acting only at the surfaces of the substrates, is independent &#yers rotate only during the rise of the electric fi¢fto-
the sample thickness. As long as the second thrediijd ~ vided 7,<7,). Finally, for large fields Eo>E,) the layers
(60b)] is not exceeded, the layers rotate only during the fastotates in opposite directions during the rise and decay of the
changing part of the electric fieldhe 7, pard. At a certain  field, respectively. The resulting average angular velocity of
value of the sample thickness, however, the second threshottie layers in this case does not depend on the amplitude of
is exceeded and the layers rotate in opposite directions duthe field and is proportional to the frictional torqlig. In
ing the fast changing and the slow changing parts of thehis regime the average angular velocity is also proportional
field. In this regime it is the difference between the drivingto the differencer, — 7,, which is obviously nonzero only
torque and countertorque that is responsible for the net rotgor asymmetric fields. It might appear contradictory that the
tion of the layers. Increasingd, the relative difference be- rotation of the layers is proportional to the friction torque
tween these torques during the fast and slow changing of thE,, but in accordance with the discussion at the end of Sec.
field decreases. Thus, for an infinitely thick sample the layer¥/Il it is the asymmetry in the regime abov&, which is
just oscillate back and forth, and the average rotation of theesponsible for the rotation. This asymmetry is related to the
layers approaches zero. parameterT'y/d and decreases when this parameter in-
creases. It should also be observed from &gb) that by
increasing this parameter for a fixed amplitude of the electric
field the thresholcE, increases, thus taking the system into
According to the present model, the rotation of the layerghe regimeE; <E,<E,, where Eq(53b) clearly shows that
in the SA\* phase is driven by the electroclinic effect. If the  decreases with increasirig,/d, until ultimately the rota-
frequency of the external electric field is sufficiently low, the tion completely vanishes for a large enough valud’gtd.
tilt angle @ always follows the field and the time derivative of ~ The main results of the application of the theory devel-
the tilt is proportional to that of the field. As it is an experi- oped in Sec. IV are contained in Eq&2) and (53). By
mental fact, supported by the symmetry consideration perrewriting these equations into dimensionless form, using the
formed in the Introduction, that the axis of rotation coincidesscaling parameters defined by E@S4), the result can be
with that of the electric field, we do not consider the possi-reformulated according to Eq&0) and(61). Only one com-
bility that the layers rotate in such a way that the bookshelbination of the material constants=|31,|/3;, enters these
arrangement of the layers is destroyed. Thus the orientatiogquations. From Ed61b) one notices that by plotting as a

of the layers needs to be described by one anglenly,  function of fE, in the regimeE;<E,<E,, the expected
specifying the orientation of the smectic layer normal as deresylt is a straight line, the slope of which ig,2and thusk
picted in Fig. 2'. Qne important result of th'e present theory ian easily be determined from experiments. Concerging
Eq. (29), describing a balance of generalized torques acting js possible to conclude from the experimentally observed
on the smectic layers. According to this equatign; 6, and  [1,2,19 sense of rotation of the smectic layers théy,
as a result the rate of change pfs proportional to the rate should be expected to be negative. In Figs. 4—6 the behavior
of change of the electric field as is shown by E4¢). This  of the system as a function of the various control parameters
explains, in principle, why a time-dependent external electrids demonstrated. These results can be used for an experimen-
field can rotate the smectic layers. One notes that the coeffial check of the theory. Today, systematic investigations of
cient of proportionality in Eq(44) contains the pseudoscalar the behavior of the system are very scarce in the literature.
C, which is nonzero only if the smectic material is chi¢el. However, the features of the thresholds demonstrated in
Sec. I, where the theory of the electroclinic effect is dis-Figs. 4 and 6, as well as the general trends of the average
cussedl The coefficientC also determines the polarization angular velocity as a function of field strength, frequency,
induced by the tilt in the S@* phase. Thus the phenomenon and sample thickness, seem to be confirmed by the few ex-
of layer rotation is possible only in chiral smectic phases.periments being reportdd—4,15.
This conclusion also follows from general symmetry argu- As mentioned above, the layer rotation has been system-
ments, discussed in the Introduction, and is supported bgtically experimentally investigated mainly in the S
existing experimental dafa,15]. phase[2—4,19 and there exists practically no quantitative
We note, however, that E¢44) alone cannot explain the experimental information about the characteristics of the ro-
net rotation of the smectic layers under the action of artation in the SPA* phase. Experimental studies of the effect
asymmetric, periodic electric field, because the field rotategh the SnC* phase are often performed using asymmetric
the layers in opposite directions during different parts of thesquare-well electric fields, which also rotate the layers in this
period, these rotations exactly canceling each other. As digghase. At the same time, the present theory indicates that
cussed in Sec. lll, also the interaction between the smectithere should be no rotation of the layers in the/Snphase
layers and the substrates has to be taken into account. Thimder the action of an asymmetric square-well field, in con-
interaction results in an additional frictional torque acting ontrast to a sawtooth one. This conclusion can easily be
the smectic layers, and due to this torque the net layer rotachecked experimentally and, indeed, preliminary results con-
tion becomes nonzero. The resulting dependence of the afirm this prediction[15].

VIIl. DISCUSSION
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The present theoretical model explains the mechanism gflex. The generalization of the present theory to theC3m
layer rotations in the SAT phase. Most of the experimental phase is currently in progress.
studies of this effect, however, have been performed in the
SmC* phase. One notes that although the qualitative origin
of the rotation in the S@* phase should, at least partly, be
the same, the particular mechanism is expected here to be
more complicated. In the S@t phase, the tilt angle is non- Financial support by the Swedish Foundation for Strategic
zero and as a result there exists one additional degree &esearch and the Swedish Research Council for Engineering
freedom, corresponding to the rotation of the director aroundciences is gratefully acknowledged. The authors are grate-
the smectic cone. Also the electroclinic effect is present irful to G. Andersson, I. Dierking, and S. T. Lagerwall for
the SnC* phase and as a result the dynamics of theC8m useful discussions regarding unpublished experimental re-
phase(including layer rotationsappears to be more com- sults.
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