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Phase loops in density-functional-theory calculations of adsorption in nanoscale pores

G. L. Aranovich and M. D. Donohue
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218

~Received 10 May 1999!

Phase loops with multiple solutions are observed in calculations of lattice density-functional theory. It is
shown that the standard numerical methods for solving such problems distort the solution. A technique is
proposed to obtain multiple solutions for phase equilibria in confined fluids. This method gives the entire phase
equilibrium curve, including hidden points which determine wetting transitions and capillary condensation. A
synergetic effect of walls on adsorption in nanoscale pores is analyzed.@S1063-651X~99!14711-1#

PACS number~s!: 68.10.Jy, 71.15.Mb
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INTRODUCTION

The physics of fluids in micropores has been studied
tensively @1–7#. The combination of intermolecular an
molecule-wall interactions results in differences between
ids in pores and bulk fluids@8#. These differences includ
wetting phase transitions@9#, capillary condensation@10#,
liquid-liquid phase separation@11#, adsorption hysteresi
@12#, and pore-pore correlation effects@13#.

Density-functional theory~DFT! @14,15# is one of the
most efficient tools to study the behavior of confined fluid
DFT considers the intrinsic Helmholtz free energyF as a
functional,F@r(r )#, of the density distribution,r(r ) @14#. At
equilibrium, the grand potentialV @15# is minimized to give
the equation for the equilibrium density profile@16#:

dV@r~r !#

dr~r !
50. ~1!

There are two difficulties in DFT: to define a model f
F@r(r )# and to solve the equation of equilibrium. Defining
model for F@r(r )# requires both assumptions and simpli
cations. These include idealized potential functions, pairw
additivity, mean-field assumptions, and assumptions ab
the equation of state for fluid in the bulk. However, ev
with these assumptions, minimization ofV results in a com-
plex integrodifferential equation@14,15# which is not solv-
able analytically. Finding a numerical solution for the eq
librium equation is straightforward if the equation does n
have multiple solutions. However, the most interesting p
nomena occur when there are multiple solutions. This
cludes wetting phase transitions, capillary condensation,
hysteresis. Since the standard numerical methods, suc
successive substitutions and the Newton-Raphson proce
@17#, fail when there are multiple solutions, this can result
a loss of important information or in distortion of the sol
tion. However, though the method of iterations is us
widely in DFT approaches@14,15,18#, this problem has
never been analyzed in detail. In this paper, we examine
problem using a simple example—DFT applied to a confin
lattice. We also demonstrate a numerical algorithm wh
can solve simultaneously multiple equations with multip
PRE 601063-651X/99/60~5!/5552~9!/$15.00
-

-

.

e
ut

-
t
-
-

nd
as

ure

d

is
d
h

solutions. Using this algorithm, we analyze the synergism
two walls on adsorption of a fluid in nanoscale pores. T
analysis shows both a wetting phase transition and capil
condensation.

Here, we present an analysis of adsorption behavio
slitlike pores using density-functional theory for a confin
lattice. This grid-based~or real space! DFT @18# has the free
energy as a functional of the density distribution,r( i , j ,k),
on lattice sites,~i,j,k!. For a slit pore between two planes, th
three-dimensional density distribution can be reduced t
one-dimensional density distribution,r( i ). To write the free-
energy functional, we follow the derivation of Ono an
Kondo @19#. This approach has been used to describe den
gradients at vapor-liquid@20#, liquid-solid @21#, and vapor-
solid @22# interfaces. Fluid-solid interfaces have been cons
ered for semi-infinite cases~adsorption in macropores! and
for adsorption in slit pores at temperatures above the va
liquid critical point. However, the effect of wall synergism
on confined fluids in nanoscale pores has not been analy

DENSITY-FUNCTIONAL THEORY FOR A CONFINED
LATTICE

Consider a binary mixture ofA and B molecules on a
lattice with two boundaries~walls!. Each site of the lattice
can contain anA molecule or aB molecule. There are inter
actions between nearest neighbors with«AA , «AB , «BB being
the energies for adsorbate-adsorbate interactions, and«AS,
«BS being the energies for adsorbate-surface interactio
One of the components~sayB! can be holes, and, therefore
a one-component system is a particular case with«AB , «BB ,
and«BS being zero.

We assume the lattice fluid is in contact with a flat surfa
at the planes ofi 50 ~the first layer of adsorbed molecules
in the plane ofi 51! andi 5N11 ~the last layer of adsorbed
molecules is in the plane ofi 5N!. In the mean-field approxi-
mation, the energy of interaction,E( i ,i 11), between mol-
ecules on two neighboring sites in neighboring layers, is

E~ i ,i 11!5«AArA~ i !rA~ i 11!1«ABrB~ i !rA~ i 11!

1«ABrA~ i !rB~ i 11!1«BBrB~ i !rB~ i 11!.

~2!
5552 © 1999 The American Physical Society
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For neighboring sites in the same layer

E~ i ,i !5«AArA
2~ i !12«ABrB~ i !rA~ i !1«BBrB

2~ i !, ~3!

whererA( i ) is the mole fraction ofA molecules in thei th
layer; the mole fraction ofB molecules in thei th layer,
m
u

rB( i ), is 12rA( i ). Therefore, the HamiltonianH for the

lattice fluid between two walls can be written in the follow
ing form:
s in
the
H5~1/2! (
i 52

N21

@z1rA~ i !rA~ i 11!«AA1z1rA~ i !rA~ i 21!«AA1z1rB~ i !rB~ i 11!«BB1z1rB~ i !rB~ i 21!«BB

1z1rA~ i !rB~ i 11!«AB1z1rA~ i 11!rB~ i !«AB1z1rA~ i !rB~ i 21!«AB1z1rA~ i 21!rB~ i !«AB1z2rA~ i !2«AA

1z2rB~ i !2«BB12z2rA~ i !rB~ i !«AB#1rA~1!«AS1rB~1!«BS1rA~N!«AS1rB~N!«BS1~1/2!@z1rA~1!rA~2!«AA

1z1rB~1!rB~2!«BB1z1rA~1!rB~2!«AB1z1rA~2!rB~1!«AB1z1rA~N21!rA~N!«AA1z1rB~N21!rB~N!«BB

1z1rA~N21!rB~N!«AB1z1rA~N!rB~N21!«AB#. ~4!

Herez2 is the monolayer coordination number, andz1 is the number of bonds for a molecule in some layer with molecule
a neighboring layer;z15(z02z2)/2, wherez0 is the coordination number of the three-dimensional lattice. Note that
assumption given by Eqs.~2! and ~3! is equivalent to the mean-field approximation in Ono and Kondo theory@19,20#.

The entropy of the system in the mean-field approximation can be written in the form@19,20#:

S52kB(
i 51

N

$rA~ i !ln@rA~ i !#1rB~ i !ln@rB~ i !#%, ~5!

wherekB is Boltzmann’s constant. From Eqs.~4! and ~5!, it follows that the free energyF is

F5~1/2! (
i 52

N21

@zlrA~ i !rA~ i 11!«AA1z1rA~ i !rA~ i 21!«AA1z1rB~ i !rB~ i 11!«BB1z1rB~ i !rB~ i 21!«BB1z1rA~ i !rB~ i

11!«AB1z1rA~ i 11!rB~ i !«AB1z1rA~ i !rB~ i 21!«AB1z1rA~ i 21!rB~ i !«AB1z2rA~ i !2«AA1z2rB~ i !2«BB

12z2rA~ i !rB~ i !«AB#1rA~1!«AS1rB~1!«BS1rA~N!«AS1rB~N!«BS1~1/2!@z1rA~1!rA~2!«AA1z1rB~1!rB~2!«BB

1z1rA~1!rB~2!«AB1z1rA~2!rB~1!«AB1z1rA~N21!rA~N!«AA1z1rB~N21!rB~N!«BB1z1rA~N21!rB~N!«AB

1z1rA~N!rB~N21!«AB#1kBT(
i 51

N

$rA~ i !ln@rA~ i !#1rB~ i !ln@rB~ i !#%, ~6!
ul-

m

whereT is the absolute temperature.
Values ofrA( i ) must be found that minimizeF under the

constraint

Ns(
i 51

N

rA~ i !5NA , ~7!

whereNs is the total number of sites in the lattice, andNA is
the total number ofA molecules in the system. This proble
can be solved using the standard method of Lagrange’s m
tipliers @23# by considering a function:

V8@rA~1!,rA~2!¯rA~N!#

5F@rA~1!,rA~2!¯rA~N!#

2m* H (
i 51

N

@rA~ i !2NA /Ns#J , ~8!
l-

which gives the following equations for the Lagrange’s m
tiplier m* :

]V8/]rA~ i !50. ~9!

Note that Eq.~9! is the lattice analog of Eq.~1!.
Substituting Eq.~6! into Eq.~8! and then into Eq.~9!, and

taking into account thatrB( i )512rA( i ), we obtain for 2
< i<N21:

m* 52z1rA~ i 11!D2z1rA~ i 21!D2z2rA~ i !D

1z0~«AB2«BB!1kT ln$rA~ i !/@12rA~ i !#%, ~10!

whereD52«AB2«AA2«BB .
Since the layers between the two walls are in equilibriu

with the bulk, Eq.~10! has to be valid for the bulk with
rA( i 11)5rA( i 21)5rA( i )5rA whererA is the mole frac-
tion of A molecules in the bulk. This gives from Eq.~10!:
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FIG. 1. Composition of fluid in a slitlike pore
as a function ofrA for N52, «AA /kT521.4,
«AS/kT521.0, and«AB /kT5«BB /kT5«BS/kT
50.
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m* 52z0rAD1z0~«AB2«BB!1kT ln@rA /~12rA!#.
~11!

Combining Eqs.~10! and ~11!, we obtain for 2< i<N21:

ln
rA~ i !~12rA!

@12rA~ i !#rA
2$z1@rA~ i 11!2rA#1z2@rA~ i !2rA#

1z1@rA~ i 21!2rA#%D/kT50. ~12!

For i 51, instead of Eq.~12!, Eqs.~8! and ~9! give

ln
rA~1!~12rA!

@12rA~ i !#rA
2$z2@rA~1!2rA#

1z1@rA~2!2rA#2z1rA%D/kT2z1~«AB2«BB!/kT

1~«AS2«BS!/kT50. ~13!

Since we consider the walls to be identical, there is a con
tion of symmetry:

rA~1!5rA~N!. ~14!

Equation~12! is a set of nonlinear finite difference equ
tions of second order. They relate the composition in e
layer to the compositions in the neighboring layers. Eq

FIG. 2. Composition of the first and second layers in a slitl
pore as a function ofrA for N54, «AA /kT521.1, «AS/kT5
23.0, and«AB /kT5«BB /kT5«BS/kT50.
i-

h
-

tions ~13! and ~14! are boundary conditions for Eq.~12!.
Together, they determine a self-sufficient set ofN equations
with respect toN unknowns,rA(1),rA(2)¯rA(N). Equa-
tion ~12! has been considered in the Ono-Kondo theory
semi-infinite adsorbate@19–21#. However, it has not been
analyzed for a fluid in a slitlike pore at temperatures bel
the vapor-liquid critical point. For low temperatures, there
a synergetic effect between the walls, and the system
haves differently from a semi-infinite system. In particula
while a semi-infinite system can have steps in the adsorp
isotherm@22#, it cannot exhibit the nanoscale ‘‘capillary con
densation’’ discussed here.

NEW TECHNIQUE FOR EQUATIONS WITH MULTIPLE
SOLUTIONS

In the set of Eqs.~12!–~14!, each equation can have mu
tiple roots, and this complicates finding the global free e
ergy minimum. However, these multiple roots determine
behavior in the pore and cannot be ignored. There ar
number of standard methods to solve nonlinear equations
particular, the Newton-Raphson procedure, the method
successive substitutions, the method of Wegstein, and ot
are used widely in practice@17#. However, these standar
methods do not work when a nonlinear equation has mult

FIG. 3. Isotherm of the Gibbs adsorption in a slitlike pore
N54, «AA /kT521.1, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50.
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roots. In @24#, we proposed a new numerical algorithm f
such problems. This algorithm is based on taking the der
tive of the density distribution with respect to one of t
parameters and then integrating the differential equation
merically. We have demonstrated that this algorithm is ac
rate for calculating compositions in adsorption monolay
for multiphase systems. However, in Ref.@24#, we consid-
ered only one nonlinear equation with one unknown. In or
to analyze Eqs.~12!–~14!, it is necessary to generalize th
method for sets of nonlinear equations. Since this gene
zation is not trivial, it is discussed here.

Taking the derivative from the left side terms of Eq.~12!
with respect torA gives

2
z1D

kT

]rA~ i 11!

]rA
1H 1

rA~ i !@12rA~ i !#
2

z2D

kT J ]rA~ i !

]rA

2
z1D

kT

]rA~ i 21!

]rA
5

1

rA~12rA!
2

z0D

kT
. ~15!

The same manipulation with Eq.~13! results in the following
equation:

2
z1D

kT

]rA~2!

]rA
1H 1

rA~1!@12rA~1!#
2

z2D

kT J ]rA~1!

]rA

5
1

rA~12rA!
2

z0D

kT
. ~16!
-

a-

u-
-

s

r

li-

Equations~15! and~16! are linear with respect to deriva
tives ]rA( i )/]rA . They can be represented in the followin
matrix form:

M0D05B0 , ~17!

whereB0 andD0 areN-component vectors:

B055
1

rA~12rA!
2

z0D

kT

1

rA~12rA!
2

z0D

kT

¯

1

rA~12rA!
2

z0D

kT

6 , ~18!

D05H ]rA~1!/]rA

]rA~2!/]rA

¯

]rA~N!/]rA

J , ~19!

andM0 is N3N matrix:
M05

¨

a1 2
z1D

kT
0 ¯ 0 0 0

2
z1D

kT
a2 2

z1D

kT
¯ 0 0 0

0 2
z1D

kT
a3 ¯ 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 0 ¯ aN22 2
z1D

kT
0

0 0 0 ¯ 2
z1D

kT
aN21 2

z1D

kT

0 0 0 ¯ 0 2
z1D

kT
aN

©
, ~20!
sis
whereai51/rA( i )@12rA( i )#2z2D/kT for 1< i<N.
The solution of Eq.~17! can be represented in the follow

ing form:

]rA~ i !/]rA5det@M i #/det@M0#. ~21!

HereM i is the matrix defined by Eq.~20! wherei th column
is substituted by vectorB0 , 1< i<N, and ‘‘det’’ is the de-
terminant symbol.
Since the problem is symmetric, in the numerical analy
we consider only the firstn layers wheren5N/2 for evenN
andn5(N11)/2 for oddN. For i 51, in the limit of small
concentrations, Eq.~13! gives

rA~1!5rA exp@~«BS2«AS!/kT1z1~«AB2«BB!/kT#.
~22!

From Eq.~12!, in the limit of small concentrations, we get

rA~ i !5rA ~23!
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for 2< i<n.
Calculation of the unknown values o

rA(1),rA(2)...rA(n) as functions ofrA was performed from
rA50 to rA51 with a small stepsize,d ~typically 0.001–
0.0005!. For rA50, all rA( i ) are zeros. ForrA5d, we have

rA~1!5d exp@~«BS2«AS!/kT1z1~«AB2«BB!/kT#
~24!

and

rA~ i !5d ~25!

for 2< i<n.
Equations~24! and ~25! give the first step of calculation

All further calculations are based on Eq.~21!. If the absolute
values of derivatives]rA( i )/]rA are not large~say, each of
them less than some valuea!, then each next step is calcu
lated from the previous step using the following equation

rA
k115rA

k 1d, ~26!

rA
k11~ i !5rA

k ~ i !1
]rA

k ~ i !

]rA
d, ~27!

FIG. 4. Gibbs integral as a function ofrA for a slitlike pore at
N54, «AA /kT521.1, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50. There are two points of self-intersection whererA

'0.006 andrA'0.026. These points are indicated in Fig. 3
dashed lines.

FIG. 5. Isotherm of the Gibbs adsorption in a slitlike pore
N56, «AA /kT521.1, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50.
wherek11 is the next step, andk characterizes the previou
step. Having rA

k11( i ) from Eq. ~27!, one can calculate
]rA

k11( i )/]rA from Eq.~21!, etc. So, Eqs.~26! and~27! give
rA( i ) as functions ofrA by numerical integration of the de
rivatives,]rA( i )/]rA , given by Eq.~21!.

If any of the derivatives,]rA( i )/]rA , becomes greate
thana at some step of calculation~say, greater than unity!,
the variable of integration is switched. This requires two p
cedures. The first is a search for the derivative with the ma
mum absolute value: say,]rA

k (m)/]rA is greater or equa
than all other values of]rA

k ( i )/]rA . The second is using the
following equations:

rA
k11~m!5rA

k ~m!1d, ~28!

rA
k11~ i !5rA

k ~ i !1
]rA

k ~ i !/]rA

]rA
k ~m!/]rA

d, ~29!

rA
k115rA

k 1
1

]rA
k ~m!/]rA

d, ~30!

instead of Eqs.~26! and ~27!.
The procedure given by Eqs.~24!–~30! allows one to de-

termine all values ofrA( i ) as functions ofrA . These values
can be used for calculation of the Gibbs adsorption,G, de-
fined as

t

FIG. 6. Gibbs integral as a function ofrA for a slitlike pore at
N56, «AA /kT521.1, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50. There are three points of self-intersection whererA

'0.006,rA'0.036, andrA'0.042. The last one is almost invisibl
at this scale—therefore, the fragment of this graph is given in Fig
at smaller scale.

FIG. 7. Fragment of the graph shown in Fig. 6 near the po
whererA'0.042 ands/kT'4.8.
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G5(
i 51

N

@rA~ i !2rA#. ~31!

ANALYSIS OF FLUID BETWEEN WALLS

Figure 1 shows the composition of fluid as a function
rA for the cubic lattice andN52 ~two symmetric layers!.
Here, «AA /kT521.1, «AS/kT520.9, «AB /kT5«BB /kT
5«BS/kT50, andd50.0005. As shown in Fig. 1,rA(1) is
multivalued for ranges ofrA and rA is multivalued for
ranges ofrA(1). There is no standard way to find solution
to a mathematical problem whenrA(1) is not a function~i.e.
is not single valued! of rA andrA is not a function ofrA(1).
Recently, an algorithm was presented@24# for one equation
having a solution like that illustrated in Fig. 1 and this h
been used to analyze monolayer adsorption. Here, we ex
this algorithm to study multilayer adsorption in slit pores.

Figure 2 shows equilibria for a fluid in a four-layer po
(N54). These calculations are for a cubic lattice w
«AA /kT521.1, «AS/kT523.0, «AB /kT5«BB /kT
5«BS/kT50, and d50.0005. Assuming symmetry in th
pore, rA(1)5rA(4), and rA(2)5rA(3). Therefore, only
two equations must be solved. Shown in Fig. 2 arerA(1)
~left curve! and rA(2) ~right curve! as functions ofrA . As
seen in Fig. 2,rA(1) has two ranges whererA(1) is multi-
valued with respect torA ; one of these ranges coincide
with the range of multivaluedness forrA(2). Figure 3 gives

FIG. 8. Isotherm of the Gibbs adsorption in a slitlike pore
N512, «AA /kT521.1, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50.

FIG. 9. Gibbs integral as a function ofrA for a slitlike pore at
N512, «AA /kT521.1, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50. There are three points of self-intersection. Howev
only two of them are points of binodals.
f

nd

the isotherm of the Gibbs adsorption for the case shown in
Fig. 2. As can be seen from Fig. 3, there are two steps in the
isotherm. These are two-dimensional phase transitions; the
first step is due to a two-dimensional condensation in the first
layer; the second, at a higher concentration, is due to a 2D
phase transition in the second layer.

Mathematically,G is a multivalued function ofrA for the
two-dimensional condensations. However, spreading pres
suress in both phases must be equal at equilibrium to main-
tain mechanical equilibrium. The value ofs can be ex-
pressed through the Gibbs integral which for Ono-Kondo
model is@19#

s

kT
52E

0

rA G@11rA~12rA!z0#D

rA~12rA!
drA . ~32!

Figure 4 gives the Gibbs integrals/kT as a function of
the bulk densityrA for N54, «AA /kT521.1, «AS/kT5
23.0, and«AB /kT5«BB /kT5«BS/kT50. As shown in Fig.
4, there are two points of self-intersection which represent
the binodal. These points are indicated in Fig. 3 by dashed
lines. At these points, we have two-dimensional condensa
tion.

The point where the three-dimensional condensation oc-
curs can be calculated from the binodal for regular solutions
@25#:

t

,

FIG. 10. Isotherm of the Gibbs adsorption in a slitlike pore at
N520, «AA /kT521.0, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50.

FIG. 11. Gibbs integral as a function ofrA for a slitlike pore at
N520, «AA /kT521.0, «AS/kT523.0, and «AB /kT5«BB /kT
5«BS/kT50. There are four points of self-intersection~1, 2, 3,
and 4!.
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rA exp@~12rA!2z0D/2kT#5~12rA!exp~rA
2z0D/2kT!.

~33!

For the case shown in Fig. 3, the three-dimensional cond
sation occurs atrA'0.0485. As can be seen from Fig.
both two-dimensional phase transitions occur at lower c
centrations, i.e., at a density where the bulk is a single ph
It is possible@26# for the 2D transition to lie inside the 3D
phase envelope; in such cases, the 2D behavior canno
observed experimentally.

Figure 5 shows the Gibbs adsorption isotherm in a s
layer slit pore (N56) with the same energies as in Fig.
One might expect three steps in this isotherm due to suc
sive condensation in the first, second, and third layers a
observed in isotherms for macroporous adsorbents@22#.
However, this does not happen in the case shown in Fig
Rather, one sees that it is ‘‘easier’’ to fill both the second a
third layers simultaneously than it is to fill the second lay
alone. Figure 6 gives the Gibbs integral as a function ofrA
for this case. Analysis of Fig. 6 shows that there are th
self-intersections indicated by numbers of 1, 2, and 3. S
intersection 2 is not seen well in Fig. 6, therefore in Fig. 7
is shown with an expanded scale. As shown in Fig. 7, s
intersection 2 occurs in the range of instability around s
intersection 3. Therefore, there are only two binodal point
one for self-intersection 1 and the other for self-intersect

FIG. 12. Fragment of the graph shown in Fig. 11 at sma
scale, with details of self-intersections 2, 3, and 4.

FIG. 13. Isotherm of the Gibbs adsorption for«/kT521.4 and
«s /kT524.0 in eight layer pore calculated by iteration usin
method of successive substitutions. The calculations indicate
the pore fills atrA'0.025.
n-

-
e.

be

-

s-
is

5.
d
r

e
f-
t
f-
-

n

3. Hence, we have only two steps in the adsorption isothe
these are shown by the two dashed lines. In other wo
condensation in the second and in the third layers occ
simultaneously.

Figure 8 shows the isotherm of the Gibbs adsorption i
slitlike, 12-layer pore for«AA /kT521.1, «AS/kT523.0,
and «AB /kT5«BB /kT5«BS/kT50. The Gibbs integral for
this case is shown in Fig. 9. As can be seen from Fig. 9, th
are three points of self-intersection~1, 2, and 3!. However,
point 3 is in the region of instability; therefore, there are on
two steps in the adsorption isotherm shown in Fig. 8. Th
two steps translate into self-intersections 1 and 2 in Fig
Therefore, in 12-layer pore, at these conditions, an incre
of rA results in the two-dimensional condensation in the t
surface layers, and further increase ofrA leads to the con-
densation in all other layers simultaneously. This analy
sheds new light on the concept of volume filling of m
cropores as described by Polanyi@27# and Dubinin and co-
workers@28,29#.

Figure 10 shows the Gibbs adsorption isotherm in a s
like pore atN520, for «AA /kT521.0,«AS/kT523.0, and
«AB /kT5«BB /kT5«BS/kT50. The Gibbs integral as a
function of rA is given in Fig. 11 with four points of self-
intersection. A more detailed picture of self-intersections
3, and 4 is shown in Fig. 12. So, step 1 in Fig. 10 cor
sponds to self-intersection 1 in Figs. 11 and 12. This ste
the two-dimensional phase transition in the first~surface!
layer. Step 2 in Fig. 10 translates into self-intersection 2
Figs. 11 and 12. This is a two-dimensional phase transi

r

at

FIG. 14. Isotherm of the Gibbs adsorption for«/kT521.4 and
«s /kT524.0 in eight layer pore calculated by new procedure. T
method shows that the pore virtually fills atrA'0.014.

FIG. 15. Fragment of Fig. 13 in a smaller scale.
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in the second layer. Step 3 in Fig. 10 is condensation of
other layers; this step corresponds to self-intersection 3
Figs. 11 and 12. Finally, the dotted line 4 in Fig. 10 corre
sponds to the bunch of self-intersections denoted by No. 4
Figs. 11 and 12. At this point, the value ofrA'0.0705 is the
binodal point of three-dimensional phase transition f
«AA /kT521.0, and «AB /kT5«BB /kT5«BS/kT50. This
value ofrA is the solution of Eq.~33!. So, the dotted line 4
in Fig. 10 indicates the three-dimensional condensation
nonconfined space.

As shown in Fig. 10, condensation of adsorbate in t
pore occurs at the density lower than that in nonconfin
space. This difference is about 5% for 20 layer pore. F
lower N, this difference becomes greater; forN512, the dif-
ference inrA between points 2 and 3 in Fig. 9 is about 10%
Our calculations show that this difference vanishes as
distance between walls increases.

COMPARISON WITH THE METHOD OF ITERATIONS
AND NEW INFORMATION ON PHYSICAL

MECHANISM OF CAPILLARY CONDENSATION

Figure 13 and 14 compare the isotherm of the Gibbs a
sorption for an eight-layer pore at«/kT521.4 and«s /kT
524.0 calculated in two different ways. In Fig. 13, the ad
sorption isotherm is calculated by iteration using the meth
of successive substitutions. In Fig. 14, the adsorption is
therm is calculated by the new method described in this p
per. In Figs. 15 and 16 the ranges of phase transitions
shown with an expanded scale. As shown in Fig. 15, the fi
step occurs atrA'0.002, and the second step~seen in Fig.
15 as a double step! occurs atrA'0.024. Figure 17 gives the
Gibbs integral where self-intersections indicate points in bi
odal and steps in the isotherm. As shown in Figs. 16 and
there are two steps, atrA'0.0035 and atrA'0.0145.
Hence, the method of successive substitutions gives dram
cally different results. It predicts the first step in the isother
occurs at a density that is too low~by 50%! and the second
step in the isotherm at a density that is too high~by 70%!. It
also incorrectly predicts three steps where there are only tw
Hence, it gives incorrect predictions for both wetting pha
transitions and capillary condensation.

FIG. 16. Fragment of Fig. 14 in a smaller scale.
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Of course, it is possible to adjust the method of iteration
and multiple initial guesses to map the regions where ther
are multiple solutions. Lastoskie, Gubbins, and Quirke@30#
recognized that there may be multiple solutions, but did no
focus on the details of the numerical calculations. They also
performed Gibbs ensemble simulations@31# and demon-
strated agreement with DFT results. The results presente
here show that the method of solution greatly affects the
predicted behavior of confined fluids. Hence, it is important
to have a numerical algorithm that gives multiple solutions in
the range of phase transitions. The method proposed in th
paper enables such calculations for lattice DFT. It also
should be applicable to off-lattice DFT.

The advantage of this algorithm is that it gives the entire
curve where the grand potential~or free energy! is minimum,
including all binodal and spinodal points; we are not aware
of other numerical method that can give these details. How
ever, such information is important because it shows the
physical mechanisms responsible for capillary condensation
In particular, simultaneous condensation in the second an
third layers shown in Fig. 5 is possible because point 2 in
Figs. 6 and 7~the binodal point for condensation in the sec-
ond layer! is at a higher concentration than self-intersection 3
~the binodal point for condensation in the third layer!. This
occurs because there is a synergism between the walls tha
in effect, makes it easier to fill the third layer than to fill the
second layer. In this example, point 2 is ‘‘hidden’’ but im-
portant. Analysis of this hidden point 2 can predict when
condensation in the second layer and condensation in th
third layer become independent and give separate steps in t
isotherm.

In the example given in Figs. 10–12, point 3 is indepen-
dent of point 2, and they translate into separate steps in th
isotherm. However, point 4, which is the binodal point of the
three-dimensional condensation, is in the range of instability
around point 3, the binodal point of condensation in the third
layer. Therefore, capillary condensation occurs before th
condensation in the bulk. However, by changing energie
and the pore width, point 4 can split and give rise to anothe
independent step, and so on. This new method is able to giv
new insights in the problem of capillary condensation, and
more generally, in the physics of confined fluids.

FIG. 17. Gibbs integral for the case shown in Fig. 16.
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