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Phase loops in density-functional-theory calculations of adsorption in nanoscale pores
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Phase loops with multiple solutions are observed in calculations of lattice density-functional theory. It is
shown that the standard numerical methods for solving such problems distort the solution. A technique is
proposed to obtain multiple solutions for phase equilibria in confined fluids. This method gives the entire phase
equilibrium curve, including hidden points which determine wetting transitions and capillary condensation. A
synergetic effect of walls on adsorption in nanoscale pores is analy@&063-651X%99)14711-]

PACS numbsgps): 68.10.Jy, 71.15.Mb

INTRODUCTION solutions. Using this algorithm, we analyze the synergism of
two walls on adsorption of a fluid in nanoscale pores. This
The physics of fluids in micropores has been studied exanalysis shows both a wetting phase transition and capillary
tensively [1-7]. The combination of intermolecular and condensation.
molecule-wall interactions results in differences between flu- Here, we present an analysis of adsorption behavior in
ids in pores and bulk fluidg8]. These differences include slitlike pores using density-functional theory for a confined
wetting phase transitionf9], capillary condensatiof10], lattice. This grid-base¢or real spaceDFT [18] has the free
liguid-liquid phase separatiofll], adsorption hysteresis energy as a functional of the density distributigij,j, k),
[12], and pore-pore correlation effedts3]. on lattice sites(i,j,k). For a slit pore between two planes, the
Density-functional theory(DFT) [14,15 is one of the three-dimensional density distribution can be reduced to a
most efficient tools to study the behavior of confined fluids.one-dimensional density distributiop(i). To write the free-
DFT considers the intrinsic Helmholtz free energyas a energy functional, we follow the derivation of Ono and
functional,F[ p(r)], of the density distributionp(r) [14]. At ~ Kondo[19]. This approach has been used to describe density
equilibrium, the grand potentid [15] is minimized to give gradients at vapor-liquif20], liquid-solid [21], and vapor-
the equation for the equilibrium density prof{Il&6]: solid[22] interfaces. Fluid-solid interfaces have been consid-
ered for semi-infinite case@dsorption in macroporgsand
for adsorption in slit pores at temperatures above the vapor-
Q[ p(r)] liquid critical point. However, the effect of wall synergism
W: : (1) on confined fluids in nanoscale pores has not been analyzed.

There are two difficulties in DFT: to define a model for DENSITY-FUNCTIONAL THEORY FOR A CONFINED
F[p(r)] and to solve the equation of equilibrium. Defining a LATTICE
model for F[ p(r)] requires both assumptions and simplifi-
cations. These include idealized potential functions, pairwis?
additivity, mean-field assumptions, and assumptions abo
the equation of state for fluid in the bulk. However, even
with these assumptions, minimization Qfresults in a com-
plex integrodifferential equatiofil4,15 which is not solv-

Consider a binary mixture oA and B molecules on a
ttice with two boundarie$walls). Each site of the lattice
an contain am molecule or @B molecule. There are inter-
actions between nearest neighbors withA, g, g being
the energies for adsorbate-adsorbate interactions,cagd
egs being the energies for adsorbate-surface interactions.

ablg analyncally. .F|nd|n.g a numerpal solution for the €AU" One of the componen{sayB) can be holes, and, therefore,
librium equation is straightforward if the equation does not : ; .
a one-component system is a particular case wii), egg,

have multiple solutions. However, the most interesting phe- !
. : .. “andegg being zero.
nomena occur when there are multiple solutions. This in- We assume the lattice fluid is in contact with a flat surface
cludes wetting phase transitions, capillary condensation, and the planes of=0 (the first layer of adsorbed molecules is
hysteresis. Since the standard numerical methods, such ?gth pl n i—_l) ndi—N+i/(th last laver of adsorbed
successive substitutions and the Newton-Raphson procedw% Ie pla €o Ih al _'f=N | teh as ayef.olda Sorbe
[17], fail when there are multiple solutions, this can result inmotgcu ?ﬁ ISinthe p a;qetm t)'. nt §+rr11eant; 'f appro>i|-
a loss of important information or in distortion of the solu- mation, the energy of interactiof(i,i +1), between mol-

tion. However, though the method of iterations is usedeCUIeS on two neighboring sites in neighboring layers, is
widely in DFT approacheg§14,15,18, this problem has o _ _ _ _

never been analyzed in detail. In this paper, we examine this E(i,i+1)=eaapa(i)pa(i +1)+eappp(i)pali+1)
problem using a simple example—DFT applied to a confined . . . .

lattice. We also demonstrate a numerical algorithm which T2aspali)pa(i 1)+ egepe(i)pp(i+1).
can solve simultaneously multiple equations with multiple 2
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For neighboring sites in the same layer pa(i), is 1—pa(i). Therefore, the Hamiltoniam for the
E(i,i)=eanp2(i)+2eappp(i)pali) +£agp3(i), (3 !ﬁttuf:s”le]wd between two walls can be written in the follow-
ing ;

wherep,(i) is the mole fraction ofA molecules in thdth
layer; the mole fraction oB molecules in theith layer,

N-1
H=(1/2) ;2 [Z1pa(1)pali + 1) eantZ1pa(i)pali —L)eaat Z1pg(i)pp(i+1)eggtZ1pp(i)pg(i—1)egs

+21pa(1)pp(i + 1)eapt 21pai + Dpeli)eapt 21pa(i)peli—1)eapt Z1pali—1)pg(i)east Zopali)*ean
+2,pp(1)%egg T 222pa(1) pe(i)as] + pa(1)east pe(1)epst pa(N)east pa(N)epst (1/2)[21pa(1) pa(2) & an
+21p8(1)pa(2)espt21pa(1)pa(2)east21pA(2) pe(1) eagT Z1pA(N—1) pa(N)eaa+Z1p(N—1)pp(N)eps
+21pA(N=1)pg(N)eap+z1pa(N) pa(N—1)epp]. 4

Herez, is the monolayer coordination number, ands the number of bonds for a molecule in some layer with molecules in
a neighboring layerz,=(zo—2,)/2, wherez, is the coordination number of the three-dimensional lattice. Note that the
assumption given by Eg$2) and(3) is equivalent to the mean-field approximation in Ono and Kondo thgi#y20.

The entropy of the system in the mean-field approximation can be written in the[ 1&20:

N
S=—kBi§1 {pa(DIn[pa() 1+ pa(i)In[pp(i)]1}, ®)

wherekg is Boltzmann’s constant. From Eqgl) and(5), it follows that the free energk is
N—1
F=(1/2) |:22 [Zpa(i)pali+1)eant Z1pa(i)pali—1)eant Z1pg(i)pe(i+1)eggt z1pp(i)pe(i —1)eggt Z1pali) pa(i
+1)epp+zpa(i+1)pp(i)eapt 21pali)pe(i—1)eap+zipa(i — 1) pp(i)eapt Zopali)®ean+ Zops(i)’eps
+22,pp(1) pg(i)eapl+pa(l)east pe(l)egst pa(N)east pa(N)egst (1/2)[21pa(1) pa(2) eant 21pe(1) p(2)epp

+21pa(1) pe(2)epgt21pa(2) pe(L)epgt Z1pA(N—=1)pa(N)eant Z1p8(N—1) pg(N)eggtZ1pa(N—1)pg(N)eag
N

+23pa(N)pg(N— 1)3AB]+kBTi§1 {pa(DIN[pa(i)]+ pg(i)In[pg(i)]}, (6)
|
whereT is the absolute temperature. which gives the following equations for the Lagrange’s mul-
Values ofp,(i) must be found that minimizE under the tiplier u*:
constraint
Q" dpp(i)=0. 9
N
Ns_El pa(i)=Ny, (7) Note that Eq.(9) is the lattice analog of Eq1).
=

Substituting Eq(6) into Eq.(8) and then into Eq(9), and

. o ) . taking into account thapg(i)=1—pa(i), we obtain for 2
whereNjs is the total number of sites in the lattice, aNgd is  <j<N—1:

the total number oA molecules in the system. This problem

can be solved using the_ standard _me.thod of Lagrange’s mul- pw*=—2pa(+1)A—21pai — 1)A—2,pa(1)A

tipliers [23] by considering a function: _ _
+2o(eag—egp) TKTIN{pa(i)/[1—pa(i)]}, (10

Q'[pa(1),pa(2) -pa(N)]
WhereA = 28AB_ EAAT €BB-

=F[pa(1),pa(2) --pa(N)] Since the layers between the two walls are in equilibrium
N with the bulk, Eq.(10) has to be valid for the bulk with
—p* 2 [pa(i)—Na/Ng] |, (8) pali+1)=pa(i—1)=pa(i)=pa wherep, is the mole frac-
=

tion of A molecules in the bulk. This gives from EGLO):
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FIG. 1. Composition of fluid in a slitlike pore
as a function ofp, for N=2, gpa/kT=—1.4,
SAslkT: - 10, andSAB/kTZSBB/kTZSlekT
=0.

a TN
/1
/ \\
1

ZopaA+2Zo(eag—epp) +KT |n[PA/(1_PA)]-(
1

Combining Eqs(10) and(11), we obtain for 2<i<N-—1:

(1)(1— pa) | |
In D A 2 pa1+1) = pal+ el () =]

+ 21 [ pa(i—1) = pal}A/KT=0. (12
Fori=1, instead of Eq(12), Egs.(8) and(9) give

pa(1)(1—pp)
In = pa()1pa {Zo[ pa(1)— pal

+21[pa(2) = pal —Z1pa}ATKT—21(epg— £gR) KT
+(8A5_855)/k-r:o. (13)

Since we consider the walls to be identical, there is a cond
tion of symmetry:

pa(1)=pa(N). (14

Pa

tions (13) and (14) are boundary conditions for Eq12).
Together, they determine a self-sufficient setNoéquations
with respect toN unknowns,pa(1),pa(2) --pa(N). Equa-
tion (12) has been considered in the Ono-Kondo theory for
semi-infinite adsorbat§19—-21. However, it has not been
analyzed for a fluid in a slitlike pore at temperatures below
the vapor-liquid critical point. For low temperatures, there is
a synergetic effect between the walls, and the system be-
haves differently from a semi-infinite system. In particular,
while a semi-infinite system can have steps in the adsorption
isotherm[22], it cannot exhibit the nanoscale “capillary con-
densation” discussed here.

NEW TECHNIQUE FOR EQUATIONS WITH MULTIPLE
SOLUTIONS

In the set of Eqs(12)—(14), each equation can have mul-

i;iple roots, and this complicates finding the global free en-

ergy minimum. However, these multiple roots determine the
behavior in the pore and cannot be ignored. There are a
number of standard methods to solve nonlinear equations. In
particular, the Newton-Raphson procedure, the method of

Equation(12) is a set of nonlinear finite difference equa- successive substitutions, the method of Wegstein, and others
tions of second order. They relate the composition in eacfre used widely in practicfl7]. However, these standard
layer to the compositions in the neighboring layers. EquamethOdS do not work when a nonlinear equation has multlple

s (1), oa(2) GibbsAdsorption
»
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FIG. 2. Composition of the first and second layers in a slitlike
pore as a function ofpy for N=4, gpa/kT=—1.1, g55/kT=
_30, andSAB/kT:8BB/kT:SBS/kTZO.

FIG. 3. Isotherm of the Gibbs adsorption in a slitike pore at
N:4, 8AA/kT:71.1, 8AslkT:73.o, and SAB/kTZGBB/kT
:SlekTZO.
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roots. In[24], we proposed a new numerical algorithm for  Equations(15) and(16) are linear with respect to deriva-
such problems. This algorithm is based on taking the derivatives dpa(i)/dpa. They can be represented in the following
tive of the density distribution with respect to one of the matrix form:
parameters and then integrating the differential equation nu-

merically. We have demonstrated that this algorithm is accu-

rate for calculating compositions in adsorption monolayers

for multiphase systems. However, in RE24], we consid-

ered only one nonlinear equation with one unknown. In ordegyhereB, and D, are N-component vectors:
to analyze Eqs(12)—(14), it is necessary to generalize this

method for sets of nonlinear equations. Since this generali-

MoDOZBo, (17)

zation is not trivial, it is discussed here. ( 1 _ @ )
Taking the derivative from the left side terms of E2) pa(l—pp) KT
with respect tgp, gives 1 ZoA
_ 228 apali+1) ( 1 @] Ipali) Bo={ Pa(l=pa) KT 3 (19
KT dpa pa(D[1=pa(i)] KT ] dpa
;A dpa(i—1) 1 ZoA 1 ZoA
e = T (15) ol—pr) KT
The same manipulation with E¢L3) results in the following
equation: dpa(1)dpa
apa(2)1d
21 dpa(2) { 1 @] 7pa(L) I 19
KT dpa PA(D[1-pa(1)] KT dpa dpa(N)/dpa
1 ZoA
= (16 . .
pa(l—pp) KT andMg is NXN matrix:
zld 0 0 0
TkT
Z;A 2YAN
- - 0 0 0
kT 2 kT
zd 0 0 0
kT
0 0 0 a zld
2T
;A 2YAN
0 0 0 S . ==
kT ONOTRT
0 0 0 0 zd
Thr M
|
wherea;=1pa(i)[1—pa(i)]—2z,A/KT for 1<i<N. Since the problem is symmetric, in the numerical analysis
The solution of Eq(17) can be represented in the follow- we consider only the first layers wheren=N/2 for evenN
ing form: andn=(N+1)/2 for oddN. Fori=1, in the limit of small
concentrations, Eq13) gives
dpa(i) dpp=de{M;]/defMy]. (21) pa(l)=paexd(egs—eas)/KT+2z1(epg—epp)/KT].
(22)

HereM; is the matrix defined by Eq20) whereith column  From Eq.(12), in the limit of small concentrations, we get
is substituted by vectoB,, 1<i<N, and “det” is the de- _
terminant symbol. pa(i)=pa (23)
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FIG. 4. Gibbs integral as a function pf, for a slitlike pore at
N=4, eaa/kT=—1.1, ea5/kT=—3.0, and eag/kT=ggg/kT
=¢egg/kT=0. There are two points of self-intersection where
~0.006 andp,~0.026. These points are indicated in Fig. 3 by
dashed lines.

for 2<i=n.

Calculation of the unknown values of
pa(1),pa(2)...pa(n) as functions op, was performed from
pa=0 to pa=1 with a small stepsize§ (typically 0.001—
0.0008. Forpa=0, all pa(i) are zeros. Fop,= &, we have

pa(l)=0oexd (egs—eas)/KT+21(eag—£gp)/KT]
(24

and

pali)=0 (25)
for 2<i=n.

Equations(24) and (25) give the first step of calculation.
All further calculations are based on EQ1). If the absolute
values of derivativegpa(i)/dp, are not larggsay, each of
them less than some valug, then each next step is calcu-
lated from the previous step using the following equations:

A =pAt S, (26)

&piﬁ)ﬁ

Ipa @)

P (i) =pk(i)+

GibbsAdsorption
6

5

0 05

0.04

0.01 0.02 .03 0. I

FIG. 5. Isotherm of the Gibbs adsorption in a slitlike pore at
N:6, SAA/szfl.l, SAS/kT=*3.0, and SAB/kTZSBB/kT
:SlekT:O.
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FIG. 6. Gibbs integral as a function pf, for a slitlike pore at
N=6, ean/kT=—1.1, ea5/kT=-3.0, and epg/kT=egg/kT
=¢egs/kT=0. There are three points of self-intersection whege
~0.006,p,~0.036, anth,~0.042. The last one is almost invisible
at this scale—therefore, the fragment of this graph is given in Fig. 7
at smaller scale.

wherek+ 1 is the next step, ankicharacterizes the previous
step. Having p'j\”(i) from Eq. (27), one can calculate
apkt(i)/ap, from Eq.(21), etc. So, Eqs(26) and(27) give
pa(i) as functions ofp, by numerical integration of the de-
rivatives, dpa(i)/dpa, given by Eq.(21).

If any of the derivativesgpa(i)/dpa, becomes greater
than a at some step of calculatiofsay, greater than unity
the variable of integration is switched. This requires two pro-
cedures. The firstis a search for the derivative with the maxi-
mum absolute value: say?,p‘;(m)/&pA is greater or equal
than all other values pr};(i)/&pA. The second is using the
following equations:

pitH(m)=pK(m)+ 4, (28)
_ - 9pA(i)]dpa
k+1 k
)= 1)+ , 29
pa (1)=pali) oK (M) 3pn (29
K =pht ———0. 30
PA PR oK (M) dpa 30

instead of Eqs(26) and (27).

The procedure given by Eq&4)—(30) allows one to de-
termine all values op (i) as functions op, . These values
can be used for calculation of the Gibbs adsorptiongde-
fined as

GibbsIntegral

0.042 ©0.044 0.046 0.048 0.05

0.036 0.038

Pa

FIG. 7. Fragment of the graph shown in Fig. 6 near the point
wherep,~0.042 ando/kT~4.8.



PRE 60 PHASE LOOPS IN DENSITY-FUNCTIONAL-THEOKR . . . 5557

GibbsAdsorption GibbsAdsorption
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FIG. 8. Isotherm of the Gibbs adsorption in a slitlike pore at 002 008 v.06 . o0 0.1 o,
N:12, SAA/kT:_l.l, SAS/kT:_3.0, and SAB/kTZSBB/kT
=eps/kT=0. FIG. 10. Isotherm of the Gibbs adsorption in a slitlike pore at
N:20, EAA/kT:_l.O, SAslkT:_B.O, and EAB/kTZEBB/kT
N :GlekTZO.
I'=2, [pali)=pal (3D
<

the isotherm of the Gibbs adsorption for the case shown in
Fig. 2. As can be seen from Fig. 3, there are two steps in the
ANALYSIS OF FLUID BETWEEN WALLS isotherm. These are two-dimensional phase transitions; the
. . . ) first step is due to a two-dimensional condensation in the first
Figure 1 shows the composition of fluid as a function of |yer: the second, at a higher concentration, is due to a 2D
pa for the cubic lattice andN=2 (two symmetric layens phase transition in the second layer.
Here, eaa/kT=—11, eas/kT==-0.9, erg/kT=egp/KT Mathematically,I is a multivalued function op, for the
=eps/kT=0, and5=0.0005. As shown in Fig. 19a(1) IS two-dimensional condensations. However, spreading pres-
multivalued for ranges ofpa and p, is multivalued for  gyresy in both phases must be equal at equilibrium to main-
ranges Ofpa(1). There is no standard way to find solutions t53in mechanical equilibrium. The value of can be ex-
to a mathematical problem when (1) is not a functioni.e.  pressed through the Gibbs integral which for Ono-Kondo
is not single valuetof ps andp, is not a function opa(1).  model is[19]
Recently, an algorithm was presen{édl] for one equation
having a solution like that illustrated in F_ig. 1 and this has o paT[1+ pa(1—pa)Zo]A
been used to analyze monolayer adsorption. Here, we extend —=— f
this algorithm to study multilayer adsorption in slit pores.
Figure 2 shows equilibria for a fluid in a four-layer pore
(N=4). These calculations are for a cubic lattice with Figure 4 gives the Gibbs integral/kT as a function of
SAA/kT: - 11, 8A5/kT: _30, SAB/kTZSBB/kT the bulk denSitypA for N:4i SAA/kT: - 11’ SAS/kT:
=gps/kT=0, and §=0.0005. Assuming symmetry in the —3.0, andeag/kT=epg/kT=egs/kT=0. As shown in Fig.
pore, pa(1)=pa(4), and pa(2)=pa(3). Therefore, only 4, there are two points of self-intersection which represent
two equations must be solved. Shown in Fig. 2 axél) the binodal. These points are indicated in Fig. 3 by dashed
(left curve and pA(2) (right curve as functions ofp,. As Iines. At these points, we have two-dimensional condensa-
seen in Fig. 2p,(1) has two ranges wheyg,(1) is multi-  tion.
valued with respect tg,; one of these ranges coincides  The point where the three-dim_ensional condensation_ oc-
with the range of multivaluedness fpi(2). Figure 3 gives CUrs can be calculated from the binodal for regular solutions

0 pPa(1=pa) dpa- (32

25]:
GibbsIntegral
8 . GibbsIntegral
6
32
4
2
1 0.01 0.0z 0.03 0.04 O. 0.06 0.07 0.08
A
0.01 0.02 0403 0.04 0.05 0.06 -2
Pa
-2 -4
-6
-4
FIG. 9. Gibbs integral as a function pf, for a slitlike pore at FIG. 11. Gibbs integral as a function pf, for a slitlike pore at

N:12, SAA/kT:_l.l, SAslkT:_S.o, al"ld SAB/kTZSBB/kT N:20, EAA/kT:_l.O, SAslkT:_B.O, and SAB/kTZEBB/kT
=¢gg/kT=0. There are three points of self-intersection. However,=egs/kT=0. There are four points of self-intersectiéh, 2, 3,
only two of them are points of binodals. and 4.
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0.062 0.064 0.066 0.068 ©0.07 0.072 0.074 0.2 0.4 0.6 0.8 1

La

A

o FIG. 14. Isotherm of the Gibbs adsorption fotkkT=—1.4 and
FIG. 12. Fragment of the graph shown in Fig. 11 at smallerg_/kT=—4.0 in eight layer pore calculated by new procedure. This
scale, with details of self-intersections 2,3, and 4. method shows that the pore Virtua”y fills mao_()]_zl_

2 _ 2
pa XA (1= pa)“ZoAI2KT]= (1= pa)eXP(pZoA/2KT) 33  3-Hence, we have only two steps in the adsorption isotherm;
(33 these are shown by the two dashed lines. In other words,

For the case shown in Fig. 3, the three-dimensional conder¢ondensation in the second and in the third layers occurs
sation occurs ap,~0.0485. As can be seen from Fig. 3, simultaneously.
both two-dimensional phase transitions occur at lower con- Figure 8 shows the isotherm of the Gibbs adsorption in a
centrations, i.e., at a density where the bulk is a single phassilitlike, 12-layer pore foreaa/kT=—1.1, eas/kT=—3.0,
It is possible[26] for the 2D transition to lie inside the 3D and eag/kT=egg/kT=egs/kT=0. The Gibbs integral for
phase envelope; in such cases, the 2D behavior cannot ligis case is shown in Fig. 9. As can be seen from Fig. 9, there
observed experimentally. are three points of self-intersectiéh, 2, and 3. However,

Figure 5 shows the Gibbs adsorption isotherm in a sixpoint 3 is in the region of instability; therefore, there are only
layer slit pore N\=6) with the same energies as in Fig. 3. two steps in the adsorption isotherm shown in Fig. 8. These
One might expect three steps in this isotherm due to succegyg steps translate into self-intersections 1 and 2 in Fig. 9.
sive condensation in the first, second, and third layers as ignerefore, in 12-layer pore, at these conditions, an increase
observed in isotherms for macroporous adsorbd@®.  of . results in the two-dimensional condensation in the two
However, this does not happen in the case shown in Fig. S face layers, and further increasesgf leads to the con-
Rather, one sees that it is “easier” to fill both the second andjensation in all other layers simultaneously. This analysis
third layers simultaneously than it is to fill the second layergneds new light on the concept of volume filling of mi-

alone. Figure 6 gives the Gibbs integral as a functiop of cropores as described by Polafigi7] and Dubinin and co-
for this case. Analysis of Fig. 6 shows that there are thre%vorkers[28,29].

self-intersections indicated by numbers of 1, 2, and 3. Self- Figure 10 shows the Gibbs adsorption isotherm in a slit-
intersection 2 is not seen well in Fig. 6, therefore in Fig. 7 it}jxe pore atN= 20, for s /kT=— 1.0, 8 4s/kT=—3.0, and

is shown with an expanded scale. As shown in Fig. 7, Self'sAB/kT=sBB/kT=sBS/sz 0. The Gibbs integral as a
intersection 2 occurs in the range of instability around self+,ction of pa is given in Fig. 11 with four points of self-
intersection 3. Therefore, there are only two binodal pointS—nersection. A more detailed picture of self-intersections 2,
one for self-intersection 1 and the other for self-lntersectlorg, and 4 is shown in Fig. 12. So, step 1 in Fig. 10 corre-

sponds to self-intersection 1 in Figs. 11 and 12. This step is

GipbsAdsorption the two-dimensional phase transition in the fifstrface
ur layer. Step 2 in Fig. 10 translates into self-intersection 2 in
N Figs. 11 and 12. This is a two-dimensional phase transition
1 GibbsAdsorption
Br
sl b
6 6
1 M
4t
2
3F
0.2 0.4 0.6 0.8 1 0, 2r
FIG. 13. Isotherm of the Gibbs adsorption fokT=—1.4 and

e,/kT=—4.0 in eight layer pore calculated by iteration using
method of successive substitutions. The calculations indicate that
the pore fills atp,~0.025. FIG. 15. Fragment of Fig. 13 in a smaller scale.

0.01 0.02 0.03 0.04 0.05 Op
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GibbsAdsorption GibbsIntegral
8 10
I
7 | 7.5
6 1 5 2
1
5 2.5
I 1
4 7
i 0.005 201 0.015 0.02 0.025 0.03 p
3 ] -2.4 4
2]
2 -5
1 ! -1.9
1 3
0.01 0.02 0.03 0.04 0.05 04 FIG. 17. Gibbs integral for the case shown in Fig. 16.

FIG. 16. Fragment of Fig. 14 in a smaller scale. Of course, it is possible to adjust the method of iteration

in the second layer. Step 3 in Fig. 10 is condensation of aliind multiple initial guesses to map the regions where there

other layers; this step corresponds to self-intersection 3 i e multiple solutions. Lastoskie, Gubbins, and Quiige]

Figs. 11 and 12. Finally, the dotted line 4 in Fig. 10 Corre_recognlzed that there may be multiple solutions, but did not

sponds to the bunch of self-intersections denoted by No. 4 i;locus on the (_jetails of the num_erical _calculations. They also
Figs. 11 and 12. At this point, the value pf~0.0705 is the Performed Gibbs ensemble simulatiofi81] and demon-
binodal point of three-dimensional phase transition forstrated agreement with DFT results. The results presented

ean/KT=—1.0, and e,g/KT=eps/KT=£5s/kT=0. This here. show that.the methgd of splution grea‘ltly. affects the
value of p, is the solution of Eq(33). So, the dotted line 4 Predicted behavior of confined fluids. Hence, it is important
in Fig. 10 indicates the three-dimensional condensation if0 have & numerical algorithm that gives multiple solutions in
nonconfined space. the range of phase transitions. The method proposed in this
As shown in Fig. 10, condensation of adsorbate in the®@per enables such calculations for lattice DFT. It also
pore occurs at the density lower than that in nonconfineghould be applicable to off-lattice DFT.
space. This difference is about 5% for 20 layer pore. For The advantage of this algorithm is that it gives the entire
lower N, this difference becomes greater; fér=12, the dif-  curve where the grand potenti@r free energyis minimum,
ference inp, between points 2 and 3 in Fig. 9 is about 10%. including all binodal and spinodal points; we are not aware
Our calculations show that this difference vanishes as thef other numerical method that can give these details. How-

distance between walls increases. ever, such information is important because it shows the

physical mechanisms responsible for capillary condensation.

COMPARISON WITH THE METHOD OF ITERATIONS In particular, simultaneous condensation in the second and
AND NEW INFORMATION ON PHYSICAL third layers shown in Fig. 5 is possible because point 2 in
MECHANISM OF CAPILLARY CONDENSATION Figs. 6 and 7Athe binodal point for condensation in the sec-

Figure 13 and 14 compare the isotherm of the Gibbs ad9nd layey is at a higher concentration than self-intersection 3

sorption for an eight-layer pore atkT=—1.4 ande/kT (the binodal point for gondensatlo_n in the third laye€Fhis
— — 4.0 calculated in two different ways. In Fig. 13, the ad- °CCUrS because there is a synergism between the walls that,

sorption isotherm is calculated by iteration using the method €fféct, makes it easier to fill the third layer than to fill the
of successive substitutions. In Fig. 14, the adsorption isoS€cond layer. In this example, point 2 is “hidden” but im-
therm is calculated by the new method described in this paPOrtant. Analysis of this hidden point 2 can predict when
per. In Figs. 15 and 16 the ranges of phase transitions agondensation in the second layer and condensation in the
shown with an expanded scale. As shown in Fig. 15, the firsthird layer become independent and give separate steps in the
step occurs ap,~0.002, and the second stépeen in Fig. isotherm.

15 as a double st@pccurs ap,~0.024. Figure 17 gives the  In the example given in Figs. 10-12, point 3 is indepen-
Gibbs integral where self-intersections indicate points in bindent of point 2, and they translate into separate steps in the
odal and steps in the isotherm. As shown in Figs. 16 and 174sotherm. However, point 4, which is the binodal point of the
there are two steps, ab,~0.0035 and atp,~0.0145. three-dimensional condensation, is in the range of instability
Hence, the method of successive substitutions gives dramatround point 3, the binodal point of condensation in the third
cally different results. It predicts the first step in the isothermlayer. Therefore, capillary condensation occurs before the
occurs at a density that is too loflly 50% and the second condensation in the bulk. However, by changing energies
step in the isotherm at a density that is too high 70%. It  and the pore width, point 4 can split and give rise to another
also incorrectly predicts three steps where there are only twandependent step, and so on. This new method is able to give
Hence, it gives incorrect predictions for both wetting phasenew insights in the problem of capillary condensation, and,
transitions and capillary condensation. more generally, in the physics of confined fluids.
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