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Two-dimensional turbulence in the inverse cascade range
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Numerical and physical experiments on forced two-dimensional Navier-Stokes equations show that trans-
verse velocity differences are described by “normal” Kolmogorov scafifigv)?")=r2"3 and obey Gaussian
statistics. Since nontrivial scaling is a sign of the strong nonlinearity of the problem, these two results seem to
contradict each other. A theory explaining these observations is presented in this paper. The derived self-
consistent expression for the pressure gradient contributions leads to the conclusion that small-scale transverse
velocity differences are governed by a linear Langevin-like equation, stirred by a nonlocal, universal, solution-
dependent Gaussian random force. This explains the experimentally observed Gaussian statistics of transverse
velocity differences and their Kolmogorov scaling. The solution for the PDF of longitudinal velocity differ-
ences is based on the numerical smallness of the energy flux in two-dimensional turbulence. The theory makes
a few quantitative predictions that can be tested experimenf&y063-651X%99)13011-3

PACS numbes): 47.27—i

I. INTRODUCTION The equations of motion ar@ensityp=1)

Theoretical prediction of two inertial ranges, as a conse-
guence of both energy and enstrophy conservation laws by
the two-dimensional Euler equations, was and still is one of
the most remarkable achievements of statistical hydrodyzng
namics[1]. A direct, and the most important, outcome of
these conservation laws is the fact that if a fluid is stirred by
a random (or nonrandom forcing, acting on a scalé; dv;=0, (4)
=1/k;, the energy produced is spent on creation of a large-

scale (>1y) flow which cannot be dissipated in the limit of wheref is a forcing function mimicking the large-scale tur-

a large Reynolds number as-0. This means that the dissi- : . ; o

pation terms are irrelevant in the inverse cascade rangg.UIence production mgchamsm_and, n a_stat|st|ca||y steady
Since the dissipation contributions are one of the most diffiState, the mean pumping ra?e=f~v. In_ the INverse cascade
cult obstacles on the road toward turbulence thdeee be- range the _d|SS|pat|on_ter|_”ns in E@) will be |rrelev_ant. NFT"
low), one can hope that in two dimensions the situation i!€Cting this and multiplying Eq(3) by v;, we readily obtain
greatly simplified. This hope is supported by recent numeri-

cal and physical experiments showing that as long as the E
integral scalel;«t%? is much smaller than the size of the

system, the velocity field at scalés>1>1; is a stationary

close-to-Gaussian process characterized by the structumhus in this case the energy grows linearly with time.

ﬁtVi'f‘VjﬂjVi:_ﬁip‘f‘ VVZVi+fi. (3)

vZ=Pt. (5)

NI

functions In this paper we define the force correlation function as
Sn=(U(x+1)—u(x))"=(Au)"=(P)", (1)

) kikj\ o(k—ks) , )
where the pumping rate is defined below2-4]. Moreover, (fitkofj(k"))<P| &~ 3 Kk o(k+k)a(t—t"),
both numerical and physical experiments were not accurate (6)
enough to measure

Sont1 so that
52n+1:S(22++1)/2<1’ 2
(f(x+1)—f(r))?<P(1—cogkr)). 7

which were too small. This means that the observed prob-

ability density P(Au) was very close to being symmetric.

This experimental fact differs from the outcome of the mea-t will be clear below that the forcing term enters the equa-
surements in three dimensions, whexgs are very large tions for the probability density of velocity differences ex-
when n is not small. Thus the absence of strofifyany) clusively through expressiof¥), and in the limitk;r <1 its
intermittency in two-dimensional turbulence, and the prox-contribution isO((k;r)?) which is a well-known fact. In the
imity of the statistics of the velocity field to Gaussian, makesenergy cascading inertial range we are interested in this
the problem seem tractable. work, kr>1, and the oscillating contribution can be ne-
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glected leading to the disappearence of the forcing scale  Il. EQUATION FOR GENERATING FUNCTION
from equation for the pair distribution functidi?PDF). Thus

the general expression for the structure functions is We consider thé\-point generating function

ro\ Z=(eh), (14
n/3
S(r)e(Pr) Li(t)) ' (8) where the vectox; define the positions of the points denoted
1<i=<N, and summation over the positions of the poixts
is assumed. Using the incompressibility condition, the equa-
elion for Z can be written

where the exponents, denote possible deviations from the
Kolmogorov scaling. If a statistically steady state exist in th
limit L;>1>1;, then all5,=0 sinceL;>t*2 This would be )
proof of “normal” (Kolmogoroy scaling in the inverse cas- %_{_ Iz
cade range, provided one can show that the PDEu) in gt 9N L%,
the inertial range is independent of its counterpart in the

intervall ~1; . This is the subject of the present paper, whichWith

is organized as follows. In Sec. Il the equations for the gen-

erating functions are introduced. Section Ill is devoted to a _ E (v ) @il

short analysis of the Polyakov theory of Burgers turbulence, & ; (N Tx)e z (16
some aspects of which are used in this paper. Some physical

considerationsf which are basic for the developing _theory, >\~u(x~)ap(xj)

are presented in Sec. IV. In Secs. V and VI the equations for lp=— 2 \j{ ehiutx | (17)
the transverse and longitudinal probability density functions : J

are derived and solved. A summary and discussion are pr
sented in Sec. VII.

Now we would like to recall some well-known properties
of velocity correlation functions in incompressible fluids,
needed below. Consider two pointsand x’, and definer
=x—x". Assuming that the axis is parallel to the displace-
ment vectorr, one can find that, in the two-dimensional flow

=1+, (15)

She dissipation contributions have been neglected here as
irrelevant.

In what follows we will be mainly interested in the prob-
ability density function of the two-point velocity differences
which is obtained from Eqs(14)—(17), setting\;+\,=0
(see Ref[8], and the theory developed belpvgo that

d=2 for the separation in the inertial rangg¢5-7], Z=(exp(\-U)) (18)
1 12 where
FH—l(?rYCHJ'Sg:EP, 9
U=u(x')—u(x)=Au. (19

where the pumping powdP=0(1) is a constant. In what
follows we will often setP=1 and restore correct dimen-
sionality at the end of calculations. Integrating E®). gives

It is easy to see that in the incompressible case the equation
for generating the function of velocity differenc€s) is

oz 9’7 -
_ e _ 12 ot Tanor, e
S;=(Au)3=(u(x’) u(x))3—d(d+2)Pr (10 ol
with
and
1= (X-AferAm)
Si=(Av)’=(v(x") —v(x))*=0, 1)

whereu andv are the components of velocity field parallel AU
and perpendicular to theaxis (vectorr). Relations(9)—(11) l,=—\{e .
resulting from equations of motiof8) are dynamic proper-

ties of the velocity field. The kinematics also gives some-—rpe most interesting feature of these equations is the fact

Ip(Xy) B ap(Xq)
%, X,

thing interesting: that the advective contributions are represented there in a
closed form. To completely close the problem the expression
1 d for 1, is needed. The moments of the two-point velocity

rd-2 ard 'S,=(d-1)S=(d-1)(Av)%, (12 differences which in homogeneous and isotropic turbulence
can depend only on the absolute values of two vedtees
locity differencev(x’)—v(x) and displacement=x’—x] and

the angled between them with9==/2 and #=0 correspond

to transverse and longitudinal structure functions, respec-
tively. It is easy to show5,6] that the general form of the
second-order structure function in the inertial range is

and in two dimensions we have

[ d
Su=AUAV)?= 5 ;. 13
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§

— Du(n|1 e

s cos(6) |,

Sy(r.0)= (20

with Dy (r)=((u(x)—u(x+r))?). A more involved rela-
tion can be written for the fourth-order moment:

Su(r,0)=DyL(r)cog(8) — 3D yn(r)sir(26)

+Dynnn(r)Si?(6), (21
where D | yv=((v(X) —v(x+r))2(u(x) —u(x+r))?), and
v andu are the components of the velocity field perpendicu-
lar and parallel to thex axis, respectively. In general, in the
limit cos(f)=s—=*1, corresponding to moments of the lon-
gitudinal velocity differencesS,(r,s)— S,(r)cos(6). This
means that in this imiZ(\,r,s)—Z(As,r)=2Z(\y,r). The
generating function can depend only on three variables:

A-r
m=r, mp=——=\ cog6), 7mz=\?—75.
In these variables,
d— 73
Zit| 0,0yt Oyt 00,
(2—d) 7, 72 ,
+T&”3_T&ﬂ3 Z—|f+|p, (22)
where
Ip=Ni((92ip(2) = d1;p(1))eMY) (23
and
L= (n3+ n3) P(1—codkr))Z, (24)

where, to simplify notation we set ,=d/dx,a and v(i)

=v(x;). In two dimensions, the equation for the generating

function becomes

72 7
r (977

773 9

1
d, d, +— 8
r dnadng

7172 2

—P(n5+n3)|Z

=1,. (25)

The generating function can be written as

Z:<e7]2AU+ 7]3AV>, (26)
so that any correlation function
n m

((ANAV)T) = —— ——x Z(n2=73=0).  (27)

any Iz

Neglecting the pressure tertg and differentiating Eq(25)
once overy, we immediately obtaind=2)

d
ar rS,=S,. (28)

A second differentiatiorfagain neglectind,,) gives
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1d 2 2P= 2
T arSsT 7S 2P=0. (29
Combined with Eq(13), this expression gives
r3s;—6P=0, (30)

o dr'

which is nothing but the Kolmogorov relation, derived in
two dimensions without contributions from the pressure
terms. It follows from Eq.(25) that it is reasonable to look

for a scallng solutionZ(n,,n3,r)=2(X,,X3), where X;

=il

Ill. POLYAKOV'S THEORY OF BURGERS TURBULENCE

The dissipation-generated contributions Q(evvzuiuj)
#0 in the limit v—0. This is a consequence of the ultravio-
let singularitszui(x)uj(err)—>oo whenr —0, making the
theory(the closure probleirextremely difficult. The expres-
sion for this “dissipation anomaly,” part of the equation for
the generating function, was developed by Polyakov for the
problem of the one-dimensional Burgers equation stirred by
a random forcg8]. The theory of two-dimensional turbu-
lence is free from the troubles coming from the ultraviolet
(dissipation singularities. Still, here we review some of the
aspects of Polyakov’s theory which we believe are of general
interest and which will be most helpful below. Polyakov
considered a one-dimensional problési

Ui+ Ul = f+ vuyy,, (32

where the random force is defined by the correlation function

f(X,O)f(X+r,t")y=«(r)o(t—t"). (32
The equation for a generating function, analogous to Eg.
(14), is written readily:

zt+§: Ni— = k(rj)\iNjZ+D, (33

'ax )\ ax
where

D= v\ (U" (X ,t)eM Dy, (34

In the limit r;;—0 the force correlation functione(r;;)
=0(1- IJ) which imposes scaling properties on the veloc-
ity correlation functions. In general, the generating function
depends on both velocity differenced _=Au=u(x;)
—u(x;) and sumsU ; =u(x;) +u(x;) making the problem
very difficult. Defining Galilean invariance as independence
of the correlation functions on “non-universal” single-point
ufms— u®, Polyakov assumed that if iU _|<u,ms thenU _
andU , are statistically independent ald\ ;= 0. In this case
(see Ref.[8]), introducing u=\,—\; and the two-point
generating function

Z(p)=(ertY)

the equation foiZ reads, in a steady state,

(39
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g 2 - tions to the equation for the generating function do not lead
(@_ ;)3722 —r°u“Z+D, (36 to positive solutions for the PDF is a general phenomenon
(see below. The importance of Polyakov’s theory is, among
where other things, in realization that the dynamic closures for the
remaining terms must remove this problem. This dramati-
D= pur((U"(x+r)—u"(x))e*AY), (37 cally narrows the allowed classes of closures. Thus, the ex-

pressions foD or the pressure termsee below, combined
It is clear that theO(r?) forcing term imposes the scaling with advective contributions to equation &y can be correct
variableé= ur andZ=F(ur), whereF is a solution of the  if and only if they lead to positive solutions for the PDF’s in
following equation: the entire range where\u|<u,ms andr<L;.

n_pr 2F —
¢F'=F'+¢F=D (38) IV. PHYSICAL CONSIDERATIONS

The problem is in evaluation of the dissipation contribution

D. , by the fact that the dissipation contributions are irrelevant on
At first glance one can attempt to negl&and solve the scaled>1|; we are interested in. Moreover, Sinoge

resulting equation. This is not so simple, however. Theyqys with time, the statistically steady small-scale velocity
La_pllace trar_13form of Eq38) gives an equation for the prob- jitferencesU = Au with r<L(t) must be decoupled from
ability densityP=(1/r)®(U/r)=(1/r)®(X): U. in Eq. (25). This means that the terms

The problem of two-dimensional turbulence is simplified

D"+ X2D' +3XP=0.

(Au)"(Aw)™ (42)
Introducing can enter the equation f&(Au,r), while the ones involving
x3 -
<I>=exp( - ?)\P (39 (Au)"(Av)MUR (43
gives cannot. In principle, it can happen that tle U | correlation
functions can sum up into something time independent.
X4 However, at present we discard this bizarre possibility.
Y= (7_ 2X>‘I’, (40) Next, the pressure gradients
Vp(x+r1)—Vp(x) (44

which is the stationary Schdinger equation for a particle in

a potential (X) = X*/4—2X, not having any positive every-

where solutionsP(X). This difficulty can be understood

readily since Eq(40) corresponds to a particle having the
ground-state energlf,=0. It can be shown that only when
the linear inX contribution to potential (X) is modified, so

appearing in Eqs(22)—(24) for Z involve integrals over en-
tire space. It is clear that, if a steady state exists, the large
scale contribution to the pressure integrals, depending on
=L(t), cannot contribute to the small-scale steady-state dy-
namics described by E@R5). That is why the pressure con-

that tributions tol , Eq. (23) must depend exclusively on the local
X4 3 scaler. This leads us to an assumption that the pressure
U(X)= a EX’ gradients in Eq(23) are local in the sense that they can be
expressed in terms of the velocity field at the poirtand
the equation )t;;(r)\.NThe application of these considerations are presented
O (X)=U(X)D(X) The theory of Burgers turbulence dealt with the “univer-
sal” part of the dynamics, i.e., with the moments of velocity
does give an everywhere positive solutiBX). differenceS, with n<1. The theory of two-dimensional tur-

The positivity of the probability density is a severe con-bulence that we are interested in must produce the moments
straint on a possible solution of the equation of motion. Thaiith n<o, and that is why the algebtaic expressions for the
is where the dissipation contributidd comes to the rescue. PDF's, characteristic of Burgers dynamics, are irrelevant. In
Polyakov proposed a self-consistent conjecture about thaddition, we expect the small-scale dynamics in two dimen-
structure of the dissipation term sional to be independent of the forcing function. This makes
b this problem very different.

—+a
72

D= z (42

V. TRANSVERSE STRUCTURE FUNCTIONS

modifying the potential in the Schdinger equation with the Unlike the probability density function for the longitudi-
coefficientsb and a chosen to produce the zero-energy nal velocity difference®(Au,r), the transverse velocity dif-
ground state corresponding to a positive PDF. According tderence probability density is symmetric, i.€?(Av,r)=

Ref. [8] this expression is the only one satisfying the Gal-P(—Av,r). We are interested in Eq25) in the limit 7,
ilean invariance of the small-scale dynamics. The fact that-0. Let us first discuss some of the general properties of
the one-dimensional or multidimensional advection contribuincompressible turbulence. Consider the forcing function
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f(x,y)=(fx(x,y),0). 923 m3dZz  YP
a—r+7(9—773—w77323—0, (50)

In this case Eq(25) is

1 P 2 where Z;=27(7n,=0,73). This equation is invariant under
,9771(9”2+_,97]2+ﬁ _E_Z_Pﬂg Z=1,. 13— — n3 transformation. It is important that th@(ng)
r r ’9722‘9773 ra contribution to Eq(50) corresponds to the pressure term but
(45 not from the forcing present in the original equati®b).

. _ . _ Seeking a solution to this equation in a scaling famwe set
Then settingn,=0 removes all information about the forc- p_1 o, now) Zs(75,1) =Z(7sr Y3 =2(X) gives

ing function from the equation of motion. Based on our gen-

eral intuition and numerical data, we know that two flows

stirred by a one or two-componefstatistically isotropit ?ZX:«yXZZ (51
forcing function are identical at the scales|;, provided

the total fluxes generated by these forcing functions arg g

equal. This happens due to pressure terms

3
Ap=—-V;Vjvjv; Z=exy{g 77:2;,r2/3>. (52

effectively mixing various components of the velocity field. . ) ) ) )
This universality, i.e., independence of the small-scale turbu- This generating function corresponds to the Gaussian dis-
lence on the symmetries of the forcing, enables us to write aHibution of transverse velocity differencé¥Av) with the

expression for thé,, contribution to Eq(25). second-order structure function
According to considerations presented in a previous sec-
tion, the pressure gradients in E@5) are local and their {0\ A2 ﬂ 2/3
@ pressure gradients ir . Sy(r)=(Av)?= 1 (53
dynamic role is in mixing various components of velocity 4

field. Thus the only contribution tb,, not vanishing in the . . . )
limit 5,—0, can be estimated as Equation (50) corresponds to a one-dimensional linear
Langevin equation for “velocity field"V=v/(Pr)%3

Jd
b (BuAveTsA ) =p T T (At sy, V()= —V(X)+ b(X,7), (54
2
(46) whereroctr ~23p13 and the nonlocal Gaussian “universal”
Using a theoren(see Frisch7], for example that for the  forcing ¢(x,7), generated by the nonlinearity of the original
random Gaussian proceggsee below equation, is defined by the correlation function
— [ IF (&) oK, 7) (K", 7" ) S(k+K")o(7—7"). (55
<§F(§)>:§2<&—§>, (47
The generating function for the fieM is
we derive, in the limity,—0,
72 z=(e"Y).
LBV 2,

. (48)  Sincerxtr 2P andVevr ~ 13, this equation is strongly non-
ram local. It becomes local, however in the wave-number space.
This will be discussed later.

Now we can attempt to justify relatioi@6). According to
Eq. (23), and taking into account that theaxis is parallel to

Ip%b773

Substituting this into Eq(25) and integrating over, gives,
in the limit »,—0,

dZ3 Z3 m3dZz  yP B the displacement in the limit 7,—0,
T T T ape (P st (ne) =T (713)
" (49) I~ 13((dyp(0) — dy,p(r))exp( nsAv + 7,AU)),

wherey is undetermined parameter and an arbitrary 1‘unctionWhere

k2
2 u(@u(k—q)

U'(n93)=2Z3/r +Q(n3), 0yp(0)—t9yfp(f):f ky(l—eier)
with )
Ky kyky
. , +ieviavk=a)+ 47 u(q)
_Q(ﬂs)zhmnz—»oﬂsf Z(m2,m3,7)d7,
d2kd?q,

is chosen to satisfy a trivial constraidt(z;=0,r)=1 and xv(k=a)

the above mentioned universality.
This gives and the exponent is expressed simply as
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The role of pressure in the dynamics of transverse com-
AVt A= E‘XF{ f (1-€'%v(Q)d*Q ponents of velocity field is mainly restricted to control of the
“energy redistribution” necessary for generation of an iso-
- tropic and incompressible velocity field. The longitudinal
+ 772f (1-eHu(Q)d*Q|. fiel% dynamics a?e much more }i/nvolved. The e?dvection
(pressure excludingpart of the nonlinearity tends to produce
It will be come clear below that transverse velocity differ- Jarge gradients of velocity fiel@“shock generation” using
encesAv obey Gaussian statistics, and the longitudinal oneshe Burgers equation phenomenolagmanifesting itself in
Au are very close to Gaussian. Then, substituting the abovereation of a constant energy flux in the wave-number space.
expressions intd, and expanding the exponent we generatePressure is the only factor preventing shock formation.
an infinite series involving various products vfqg)’s and Since we are interested in the Iongitudinal correlation
v(q)’s. In the case of the incompressible, statistically iso-functions, we set#;=0. Then, definin982 ((Av)?)

tropic Gaussian velocity field we are dealing with, these~At(pr)2/3, and settingP=1 the term in Eq(25) can be
products are split into pairs: rewritten as

Qiq; 927
—8(q+Q). 72
7 (q+Q) A <(A )272AU) ~

<Vi(CI)Vj(Q)>°<q_8/3( Sij— Tzz+o(7lz "5 1573)-

The k, integration is carried over the intervals<k<cs, (56)

and in the isotropic case we are dealing with the only non-
zero terms are those involving even powerskof These
terms are generated by the expansion of

The last relation is accurate since, substituting this into Eq.
(25), differentiating once overy,, and setting bothy;= 7,

=0, gives
e728Y,
19 A, d1,(0,0
However, beingO(7,), they disappear in the limij,—O0. T oS e Tom, (57

Thus
SinceS,(r)=A,r?? this equation gives

_ J 2 ikyr k
lp= 73| d’kd?qk,(1—¢ ) u(q)v(k 15915(0,0
1 1

5A AI_
R a7,

; , (59

—q)exp(n f(l—e‘QXWv(Q)sz
: which, according to Eq(12) is exact sincedl ,(0,0)/d7,

=0 (see below.
> Let us consider some general properties of the pressure
terml, in the limit 73—0. We have

+ 7/2J (1-e'%u(Q)d?Q

where theO(7,) contribution to the exponent is temporarily

; Jp(2) ap(l
kept to make the transformation o~ 772<< p(2)  ap( ))exp( AU+ 773Av)>. 59
X X,
n2Au
Aue’lZAu: . . . .
an, Expanding the exponent and recalling that for isotropic and

incompressible turbulencAu=Av=0 andp(x)v;(x")=0,
to Eq. (46) possible. Only after that do we set=0. This  we conclude that
proves that the only contribution to the equation for the prob-
ability density function comes from th@(AuAv) mixing ap(2) ap(1)
components, involved in the pressure gradients. This relation ~ 72 ( 9%, - Xy
justifies estimate46).

)(ﬂzAu+ 7]3AV)2+' >

=O0(an3+Bnsnst ). (60)
VI. LONGITUDINAL VELOCITY DIFFERENCES
It is clear that relation48), derived above for the case of
The remarkable fact that in the limif,—0 all contribu-  Gaussian statistics, satisfied this general property of the flow.
tions to Eq.(25 containd/d,, enables a separation of the Thus whenz,;— 0, we approximate
variables: integrating the resulting equation oygrgives the
closed equation foiZs(73). The corresponding dynamic Ipmcr1’3ngz+ G, (62
equation is linear, meaning that transverse velocity fluctua-
tions do not directly contribute to the energy transfer be-wherec is an as yet undetermined constant, &denotes
tween different scales. This effect is possible for an arbitraryhe contributions td ,, properly modifying numerical coef-
value of 7, only in two dimensions, where th®((d ficients in Eq.(25). The presence of th@(r;z) distinguishes
—2)(dldns3)) enstrophy production term in Eq22), not  this equation from the one for the transverse PDF considered
containingd/ dn,, is equal to zero. This simplification, com- in Sec. V. There the assumed role of pressure was limited to
bined with the locality of the pressure-gradient effects, al-the mixing of various components of velocity field. That is
lowed us to derive a closed-form expression Zar. why all we accounted for wa®(AvAu) contributions to
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pressure. Here, in addition, we also considl{rng) contri-
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tested in numerical experiments. The one-loop renormalized

butions, responsible for prevention of the shock formationperturbation expansions givi&,~ 10, while numerical simu-

The resulting equation is

1 P, 1, )
Pre (9772r7rr Zy— 5(Pr)1/3A277222_377222

—c(Pr)¥*,3z,=0. (62)

Differentiating Eq.(62) once overz,, and settingzn,=0,
givesA,=5/3A,, in accord with the general relatigh?2) for
d=2. The Laplace transform of E¢62) gives equation for
the probability densityP(Au,r):
1 >
c(Pr)1’3PUUU—3PUU+ W (?—rr3U P+ WPU:O.
(63

Seeking a solution in a scaling for(the parametec will be
determined beloyy

1 U
P(U.F)Zr—mF(W/ﬁ), (64)
we obtain, again for simplicity setting=1,
NG 8
CF iy 3Ft | b— 3 Fyt §xF:0, (65)

where b=11/5At2=11/30\2. All but one term in Eq.(65)
changes sign whex— —x. The O(F,,) symmetry-breaking

lations are consistent with,~ 12. Keeping these numbers in
mind, it follows from Eq.(68) that accurate measurements of
the odd-order moments are the only way to verify predictions
of the present theory. The deviations of the even-order mo-
ments from the Gaussian ones are too small to be detected by
both physical and numerical experiments. It can be checked
that the ratios

S2n-¢—1

Son+1~ —S-éZM T)/2n
n

vary in the interval 0.04-0.1 forn<10 andA,~10. With
A,~12, these numbers are even smaller.

VIl. SUMMARY AND CONCLUSIONS

The experimentally observed Gaussian or very nearly
Gaussian statistics of transverse velocity differences was ex-
tremely puzzling since, at first glance, this is incompatible
with the nontrivial Kolmogorov scaling resulting from the
strong nonlinearity of the problem. The most surprising and
interesting result, derived in this paper, is that due to the
symmetries of the problem the equation, governing the prob-
ability density function of transverse velocity differences,
has one derivative less than the one corresponding to the
longitudinal differences. This means, in turn, that transverse
components of the velocity field are governed by a nonlocal
linear equation, driven by a universal, nonlocal, solution-
dependent Gaussian force. This reduction, resembling the su-

contribution is necessary for tht_a existe'znce'of the nonzergersymmetry effects in field theory, is surprising if not mi-
energy flux. Assuming for the time being, in accord with yacylous. The nonlocal equation in physical space, obtained
numerical and physical experiments, that the flux is smalbpoye corresponds to the Langevin equation in the Fourier

[see relation2)], we first neglect theéD(F,,) contribution.
The equation is

x? 8
b— > Fo+ —xF°=0,

FO ot
¢ 3

XXX

(66)

with solution

FO— X*/2A;

(67)
wherec=A3/3. If A,>1, then the neglecteBl,,=O(1/A;)

term is numerically small. This means that the odd-order

space:

vi(k)+ ¢, PV = fo(k,t), (69)
wherec, is an amplitude of “effective”(turbulen} viscos-
ity, and

fr(k,t)fr(k’ t")ock 18(k+ k') S(t—1") (70
is the force covariance used in Ref9], [10] in the renor-
malization group treatments of fluid turbulence.

The irrelevance of the dissipation terms in two-

moments, computed with the PDF, which is a solution of Eqdimensional turbulence makes the problem much more trac-

(65), must be small in a sense defined by relaiidn At the

table than its three-dimensional counterpart. Still, in order to

same time the even-order moments must be close to thelose equations for the probability density of the velocity

gaussian ones.

An analytic solution of Eq(65) is difficult. However, one
can evaluate all momen®,/r"3=A, in terms of only one
parameteA,:

2

3 A5
- ?n(n— 1)(n—2)S,_3—3n(n

ST 0

11
—1)Sn_2—§A2nSq_1). (68)

This relation givesA; =0, Az=3, A,=3, Ag=12.43A,,

field, one needs an expression for the pressure contributions.
The situation is even more simplified by the fact that the
large-scale-dominated single-point variables are time depen-
dent and must decouple from the steady-state small-scale dy-
namics. That is why one can use an assumption about the
locality of the pressure gradient effects, leaving only the
mixing O(AuAv) contributions to the two-point pressure
difference. It can be tested by a mere accounting that all
other contributions to the expression flgy involve one or
moreU ,’s and lead to a time-dependent result. This means
that they must disappear from the steady-state equat®ms

and (45). The range of possible models for pressure is nar-

Ag=15A3+36, A,=37.71A,, etc. These numbers can be rowed by a few dynamic and kinematic constraints, and by
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the fact that the resulting equation must give a non-negativevave turbulencg¢11] and in a one-dimensional model of a
solution everywhere. A simple calculation shows that thepassive scalar advected by a compressible velocity [fieglt
model for the pressure gradient terms, introduced in this pafhese observations support our understanding of intermit-
per, is consistent with the derived Gaussian statistics. tency as a phenomenon originating from the interaction of
The equations for PDF is of longitudinal velocity differ- large- and small-scale velocity fluctuations. In a developing
ences do not correspond to linear dynamics. Still, the derivedtatistically steady inertial range, where the integral scale is
solution only slightly deviates from Gaussian. This is pos-strongly time dependent, these interactions must be small for
sible due to the relative smallness of the energy flux in twahe small-scale steady state to exist. At later stages finite size
dimensions. effects, destroying the time independence of the small-scale
The results presented here seem to agree with both phygilynamics, lead to formation of coherent structures and new
cal and numerical experiments. The nearly Gaussian statisynamic phenomena which are beyond the scope of the
tics obtained above justifies various one-loop renormalizegresent theory.
perturbation expansions givil,~10—12. Using this num- Note added in proofin a recent paper Bofetta, Celatti,
ber we realize that it is extremely difficult to detect devia-and Vergassold13] reported the results of very accurate
tions from Gaussian statistics experimentally. Still, some finenumerical simulations of two-dimensional turbulence gener-
details of the present theory, related to the pressure gradiersted by the random force. The computed odd-order moments
velocity correlation functions can be tested numerically. InSg andS; were very close to the ones obtained in the present
addition, measurements of a few odd-order moments castudy from relation(68). No deviations from the Gaussian
shed some light on the validity of the present theory. statistics of transverse velocity differences were detected.
The equations and solution presented here leave one quddgoreover, the measured PDF of the longitudinal differences
tion unanswered: are these the solutions or not? Our expercould be represented as a suR(Au)=P¢(Au)+P,(Au)
ence with the Burgers and two-dimensional Navier-Stokesvhere P4(x) =Pg(—x) and P4(x) = —P,(—x) with Pg(x)
equations teach us that it is very difficult to find a self- indistinguishable from the Gaussian. The same feature can
consistent closure leading to the positive solution for thebe derived from Eq(68).
PDF’s. Stretching this statement a bit, we feel that a closure,
safusfymg dynamic constraints and leading to a plausable so- ACKNOWLEDGMENTS
lution, has a good chance to be correct.
The absence of intermittency in a steady-state developing | am grateful to A. Polyakov, M. Vergassola, M. Chert-
inertial range, discovered in two-dimensional turbulencekov, B. Shraiman, Y. Sinai, and |. Kolokolov for many in-
[2—4] seems to be a general phenomenon observed in drifteresting and illuminating discussions.
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