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Two-particle dispersion by correlated random velocity fields
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We consider the two-particle dispersion in a velocity field, where the relative two-point velocity scales
according tov2(r)or¢ and the corresponding correlation time scales@3xr?. We show that fora/2+ 8
<1 the diffusion approximation holds, and the increase in the interparticle distances is governed by the
distance-dependent diffusion coefficiébtr)«cr “*£. The possible regimes outside of the validity of diffusion
approximation are discussed. The Kolmogorov scaling in turbulent flew3=2/3 corresponds to a border-
line situation. The experimental data for this case suggest that the separation regime is probably ballistic.
[S1063-651%99)05011-4

PACS numbes): 47.27.Qb, 05.40-a

The story of scaling concepts in turbulent flows startsr are mostly determined by the structures of the scako
from the seminal work of Richardsdi], who observed that that the typical Eulerian correlation time at this distance is of
the mean square relative separation between two particleth)e order of the correlation time of the corresponding struc-
initially in close vicinity, evolves in time according to ture. For example, to mimic thé-correlated field, one can
R?(t)=(r?(t))=t3. He moreover formulated a differential take all these correlation times equal and small. In this case,
equation for the evolution of the distribution function of the the differential form of the relative diffusion operator is ex-
two-particle distances, being of the form of diffusion equa-act [9,10], but the relative diffusion itself follows the law
tion with the distance-dependent diffusion coefficiérr) ~ R*(t)t?® [14], with the exponent twice smaller than the
«r#3 giving a heuristic picture of particles’ separation. The Richardson’s 3. The simulations of R13] reproducing the
problem of correct statistical description of Richardson’s dis-Richardson’s law take the correlation time to scaleréy
persion was continuously attacked during more than 70123,
years, but still did not found a satisfactory solution. It was In what follows we consider qualitatively the situation of
Batchelor[2] who first demonstrated that Richardson’s law the particles’ separation in a field whose two-time correlation
follows from the same scaling argument that leads to thdunction of relative velocities v(r,t)=[V(r+x,t)
Kolmogorov-Obukhov energy spectrum. Later on, he pro-—V(x,t)]r/r behaves as <v(r,t1)v(r,tz))ocvrz(r)G[tz
posed a different form of a diffusion operator, in which the —t,,7(r)]. The temporal correlation part will be assumed to
diffusion coefficient is not distance, but time dependéjt follow a universal scalingG(t,r)=g[t/7(r)], wherer(r) is
The mixed forms were proposed in Ref8,5] (see Ref[6]  the correlation time, which depends on the distance between
for the review of early work Referencef7,8] dispense from the points. Note that this correlation time is evaluated in a
the attempts to describe the dispersion by differential equareference frame attached to one of the particles, just as it is
tions and propose an essentially integral-equation descriptiodone in a Lagrangian approach of Ref3]. To be exact we
based on a Levy-walk picture. shall defineg(t) in such a way thag(0)=1 andf{g(s)ds

It is clear that the reasonable results, which can be com=1. We first proceed along the lines of the Taylor-type
pared to experiments, can be only obtained in computesnalysis of the situation. Thus we consider velocity field

simulations taking into account realistic properties of the turwwhose mean squared relative velocity at two points separated
bulent velocity fields. On the other hand, the interest in thepy the distance scales as

qualitative understanding of the mixing properties of random

flows put forward the models which do not closely follow 2 of T

the statistics of turbulence flowsuch as white-in time (va(r))=vg o @

Gaussian fields of Ref§9—11]), but which have advantages

of being easier treated analytically or numerically. Thus, inand the corresponding correlation time scales as

kinematic simulations the velocity field is typically built up

from the structuregplane waveg12], eddies[13], or com-

bination of plane-waves and waveldt$4], etc), each of

which is characterized by its own spatial scalend the

scale-dependent correlation time. The amplitudes of thé&or example, for Kolmogorov's scaling in a “normal” tur-

structures are chosen to mimic the known spectral propertigsulent flow we always have?(r)=e?3%2?® where € is the

of the velocity field. For typical spectra used the locality energy dissipation rate. Moreover, from the Kolmogorov

assumption holds: The values of relative velocity at distancecaling it also follows thatr(r)<e Y323 (i.e., the mean
lifetime of the eddy must be proportional to its revolution
time) [6,15] so thata=B=2/3. This is just the situation

*Permanent address. simulated in Ref[13]. In Ref.[14] another situation is con-

(B
7(r)< 7y o

@
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sidered. Here one takesto be a sweep timer(r)ocr/V,.

The physical picture here is that the particles are transportefj (v(r(t),Dv(r(t"),t"))dt’
together through the eddy region, by the mean flow velocity

V. The eddy velocity is only a small perturbation on the t

background of the overall flow, and the proper lifetime of the = L(V(f(t),t)V(r(t),t'»dt'
eddy is large. In this case one clearly hgss 1.

Let us concentrate on the behavior of the second moment t ) ) )
of the particles’ separation. Following the standard approach - f()(V(f(t),t)VrV(f(t)-t V(r (t),t)(t—t"))dt’- - -
we start from the equation of motion for the interparticle
distance 8
dr Estimating the second term by the order of magnitude, we

— =v(r) (3)  getit to be(lv¥(r)|)r%/r. This term is typically small com-
dt pared with the first one if the particle displaceméfit)

=v(r)7(r) during the correlation timémean free pathis
wherev(r,t) is the fluctuating velocity and(t) is the actual small compared to. The mean free path scales as
particle’s position. Putting down an equation for the separa-

tion distance squaredir?(t)/dt=2v(r,t)r(t), and averag- 1(r)oc(v3)Y2ro(r/rg) /2 9
ing it over realizations of the proce@many different particle ) )
pair9 we get and grows parametrically slower thanf f<1—a/2. The
shifting of the lower integration boundary te« can be
d(r(t)) verifigd by the fact that the correlation timér), typicgl for
T =2(v(r,t)r(t)). (4)  the distances of the order of mean square separation, grows

asRPxtP2=(ath] je  for B<1—al2 slower thart.
In a short-correlation-time approximation one can obtain
The valuesv(r,t) andr(t) are correlated, sincg(t) is gov-  a closed differential equation for the probability density
erned by Eq(3), whose formal solution is given by the in- function (PDP of relative displacementp(r,t). Let us re-
tegral of the relative velocity of the particles along their La-turn to Eq.(3) and consider different realizations of the flow.
grangian trajectory,(t) = fv(r(t'),t")dt’. Equation(4) thus  According to Eq.(3), the relative distance at time>t, for
reads each realization of the flow is fully determined by its posi-
tion atty. In different flow realizationg(r,t) depends on
d(rz(t)) ) r(ty) only, so that the dispersion problem corresponds to a
at J (v(r(t),tv(r(t"),t"))dt". (5  Markovian random process. The PDF of this process is gov-
erned by an integral Chapman-Kolmogorov equation, see
Ref. [16]. Since the trajectories of the process are continu-

ous, in a short-correlation-time limit the integral Chapman-

f@eld Is so short that the relative displacemgnts during thlq(olmogorov equation can be reduced to a differential one,
time are to some extent small. The changes @an then be i.e., to a Fokker-Planck equation

neglected, so that both velocities are evaluated in the same

Imagine now that théocal correlation timeof the velocity

space point. Moreover, the lower boundary of time integra- ap(r,t)
tion can be shifted to-o. One thus has e —2 —[A (r,t)p(r,t)]
d<r2(t)> 1 9?
=2(v? )>f ——|dt" =2(v3(r))=(r) +t5 EJ % ax Bj(r.p(r,]. (10
oy ryere The assumptions are the existence of the transition moments,
Vol — ® -
r i.e., of the limits

This corresponds to diffusive behavior with position- g (r )= — (Ix.(t+At)—x (D)X (t+ At) = x: (t
dependent diffusion coefficieri(r)o=r**#. Taking, as a iry At<[ i )] 730D
scaling assumptiom,=(r2(t))¥2=R, one gets that the mean 11
square separatioR grows as
and
R2mt2l[2—(0{+,8)]. (7) 1
A= (xit+AD =x (D)) (12)
The reduction of a Lagrangian mean value
(v(r(t),t)v(r(t’),t")) to a one-point quantity is based on a independent olt, for At small compared to the observation
Taylor expansion for(t’) backwards in time starting from time t, see Ref[16] for the in-detail discussion of math-
r(t): for t—t’ small r(t")=r(t)—v(r(t),t")(t—t")+---. ematical requirements and their physical interpretation. The
The corresponding expansion for the correlation functiomonvanishing contribution in Eq11) stems from the first-
then reads order term; thus, fully parallel to Eq6) one has
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t+At [t+At dimensional2D) flows these flow lines are typically closed,

Bij(r,t)~ mj f (vi(r(t’),t")v;(r(t"),t"))dt’dt”  showing a “cat’s eye in a cat's eye” structure as depicted in
! ! Ref.[12]. Since the larger eddies are persistent during long
~2(v;(r)v;(r))=(r) (13)  time, the particles gets trapped within those, and the separa-

tion distance at timé cannot exceed the characteristic radius

for all At>7(r). The nonvanishing contribution t& stems  of such eddies. The particles thus perform a spiraling motion
from the second-order term, since the first-order termand slowly increase the area visited. We shall term this re-
t+At(v[r(t) t])dt vanishes. Thus, gime as inflatory separation. The typical separation distance

q R can be then estimated by reverting E2). and is
t+At
Ai(r,t)= f dt’

dAt
R2oct?/8, (19
t’ J
xft <2 xv i[r(0),t"1vi[r(t),t"] ) dt'dt”.
which is now« independent. The transition from diffusion
(14) regime to the inflatory one again takes place exactly3 at
=1-a/2; the inflatory and the ballistic regimes assume dif-

For incompressible flowss;(dv;/dx;)=0, one has o
P S1(9vi19%;) ferent flow structures but can coexist in flows of complex

1 9 geometries. This is probably the situation in the numerical
A(rY=5 > o Bil (15  simulation of Ref.[14], with B=1, where the particles’
! ! separation relies on the rare ballistic events and not on the
so Eq.(10) reduces to a diffusion equation typical behavior. The same situation is observed in the par-

ticles’ dispersion in two-dimensional flows generated by in-
verse cascadgl7], see Ref[18].

IEJ % ( Bij(r.t) -~ p(r t)) (16) The values ofv= 8= 2/3, as following from the Kolmog-
orov scaling, correspond just to the borderline cate,1

which, for statistically isotropic systems, takes Richardson’s™ @/2. This applies when any superscalifzascading as-

o7p(r t)

form sumption holds. If one, e.g., supposes, that there exists a
unique kinematic paramet& of dimension L/ T®], which
gp(r,t) 1(d 4, determine_s the floyv’s behavi_or in some range of scales, then
p 1l K(r)—p(r t)) (17)  from scaling considerations it follows immediately that any

velocity (if only scaling and coordinate-dependebehaves
asv?(r)«(Er”~?)?P [so thata=2(1—a/b)] and that any
characteristic time, as a function of behaves asr(r)

« (2~ 1r?)™ (so thatB=al/b). From this an equality3=1

— a/2 follows. For the borderline case of the Richardson’s
dispersion the functional asymptotic smallness of the mean-
free path does not hold anymore; it can be small only by
some numerical parameter. From E®). it follows then that
[(r)=(vg7o/ro)r and is small compared to if a number

whereK(r) is the radial part ofyB and is proportional to
(V3ro/r& P)re*£. The original Richardson equation corre-
sponds to the values= = 2/3 following from the Kolmog-
orov scaling.

The existence of the domain of applicability of HG.7)
relies on the time hierarchy(r)<At<t which must asymp-
totically hold for the separation distances typical for the ob-

servation time, which, as already mentioned, is the case for arameterPs=v,7o/r, (the persistence parameter of the
B<1-al2. Note that Eq(17) does not depend on the pre- Elow) is small 0rorto P P

cise structure of the flow lines and on the higher moments o We stress that in the borderline case all three dispersion

g]ne]}evﬁlgﬁ'ti/h(i?;belfggnéiggrzgl‘;? dox:i’xlg dafgmrst'g]?:jri?fljgi%?]'mechanisms, the diffusivéRichardson’s one, the ballistic
’ p one and the area inflation lead to te@mefunctional time-

O S i s a1, dependence of the mean squared separaon. Th smal val-
ues of Ps lead to a diffusive behavior for WhICh the Rich-

fusive regime. The mean square separation cannot grow d diff for | luePaf
faster than is allowed by E@3), when takingv(r) to be of ardson’s diffusion equation is exact; for large value .
the other regimes are possible. The situations can be distin-

the order of the particles rms velocitthis supposes the par- _ hed onl h 4 of cal pref d th
ticles to undergo ballistic separation, without ever changin uished only on the ground of numerical prefactors and the
! ehavior of the trajectories of the relative particles’ motions.

the d'reCt'O.n of their outwards motiganThis ballistic as- We note that the transition from a Richardson’s to, e.g., bal-
sumption gives listi : :
istic regime when changings can be abrupt, as suggested
R20ct4(2-a) (18) by a simple heuristic model considered in the Appendix.
Let us make some estimates for the valueR¥ in a
which is independent og. Comparison of Eqg7) and(18)  typical Richardson’s regime, starting from the values of the
shows that the transition takes placeBat 1— a/2, i.e., im-  Richardson’s constant and the prefactor of the longitudinal
mediately after the breakdown of the diffusive apprOX|ma—Ve|0CIty in a three-dimensional case. Thus, in tree dimen-
tion. Ballistic separation is the typical mechanism of disper-sions one ha¢v?(r))=C,_e?* %3 whereC, is a numerical
sions in flows, where the flow lines of the relative motion arefactor connected with the Kolmogorov constant. The gener-
open. On the other hand, in isotropic and homogeneous twally adopted numerical value of this factor @& ~2.0. On
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the other hand, the typical value of the numerical faGan changing the velocity during the instant of tirdé depends
the Richardson’s law(R?(t))=Get®, is G=0.2. Starting on the particle’s position and is given byp=dt/7(r)
from the diffusion approximation we get for the diffusion =7, (r/ry)#dt. Different scattering events are considered
coefficient K(r) =v3ro(r/ro)*3~Ps C'%Y%*3 From this to be independentas they stem, so-to-say, from different
(R?(t))=(2Ps\/C,/3)%¢t® follows, i.e., G=(2Ps\/C,/3)°.  eddie3. From this expression the probability of being scat-
This gives us the numerical value of the persistence paraniered while crossing a distance follows:
eter of approximately 0.6, which is to no extent small. The
strongly ballistic nature of the “normal” Richardson’s dis- _ o dr i —(B+al2)

. . p= = (rlrg) dr.
persion can be seen also from the comparison of the par- v(r)r(r) vg7g
ticles’ separation velocity and the rms Eulerian velocity dif-

ference at the distanae Such a comparison gives The probability of not being scattered on the way frofrto
r, follows then as a Hertz distribution,

(A1)

1/3
Veed 1) _ (3612 _ 20

= r
V() cl? P(r2|r1)=ex;{—f 2i(r/ro)("“”"z)dr)
r; VoTo
which meangtaking into account the possible curvature of )
the relative trajectorigghat the particles’ separation velocity - exp( —Ps L {pren-1 f 2 (B*“’Z)dr) _
has a strong ballistic component. Note that the closure ap- ry
proximation giving G=2 leads tovg(r)/v.(r)~1, ie., (A2)

corresponds to a purely ballistic behavior. The particles’ dis-
persion in two-dimensional flows generated by inverse casPerforming the integration, we get
cade[17], is not fully ballistic, but still possesses a consid-

erable ballistic componer.g]. P(r|r ) —exg — Ps? r2 1-(Brai2)
In conclusion, we considered the two-particle dispersion 20 1—-(B+al2)\r,
in a velocity field, where the relative two-point velocity B B
. 2 @ . Ps 1 r 1-(B+al2)
scales according te“(r)or“ and the corresponding correla- X ex (_1) (A3)
tion time scales ast(r)xrf. We show that for 1-(B+al2)\rg

al2+ B<1 the dispersion can be described within a diffu-
sion approximation. The time evolution of interparticle dis- for 8<1-a/2 and

tances is then governed by distance-dependent diffusion co- _1Ps

efficient K(r)=r**#, The Kolmogorov scalling ir_1 turpulent p(r2|r1)=<_2) (A4)
flow a=pB=2/3 corresponds to a borderline situatian? r

+ B=1, where the type of stochastic process responsible fotr

the dispersion depends on the numerical coefficients, for ex p=1—al2. Note that this mode{as long as only the

ample, on the persistence parameter of the fldwg Spatial aspects of the motion are considgtedds to a Mar-

—vore/ro. The experimental data suggest that in three_kowan process of asymmetric walks, where the step direc-

dimensional flows the particle separation is dominated b fion is chosen at random and a step length follows from Egs.
ballistic events P P %AB) or (A4). The conditional step length distribution

P(r,|r4) in this model is strongly asymmetric, and we shall
The hospitality of LMHD at the University Paris VI and be interested mostly in the behavior of the outward steps,

the financial support by CNRS are gratefully acknowledged!2>r1. For <1—a/2 the distribution possesses the first

The author is indebted to Professor P. Tabeling, Professor @nd the second moments, both depending grand can be

Klafter, and Dr. R. Reigada for helpful discussions. mapped on a diffusion process.
For the cascading cagg=1— «/2 the existence of mo-
APPENDIX ments depends on the value ®$: The nth conditional mo-

ment of the outwards step length,>r4) in this case is
In order to elucidate the nature of the transition from dif-

fusive to ballistic motion and the possible regimes of the _ rFe1 n—1/Ps|%
Richardson’s dispersion, let us consider a heuristic disper- Mn(ry)= Ps n_1/|:>sr |r1'

sion model that for smalr, behaves diffusively and for,

large changes abruptly to a ballistic regime. Parallel to ouOne readily infers that foPs=1/2 the second moment dis-
Levy-walk model of Ref.[8], we consider a motion of a appears, thus indicating that the process gets to be of a non-
particle on a line with a coordinate-dependent velocity. Wediffusive nature, and starts to depend on long stépdlistic

take the magnitude of the velocity to be a functiorainly  event$. For Ps=1 disappears the first moment, so that the
and to be equal to(r) =vq(r/ro)*2. Moreover, we account process islominatedby the ballistic events. We note that the
for the temporal changes of the flow by letting the particletransitions between the regimes are sharp and not gradual,
from time to time change the velocity’s direction, keeping itswhich could possibly be the case also for a genuine problem
magnitude constant. Distinct from R¢8], the probability of  of transport in flows.
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