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Towards a computational chemical potential for nonequilibrium steady-state systems
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We explore an approach to derive a computable chemical potential analog for thermostatted steady-state
systems arbitrarily far from equilibrium. Although our method is not rigorous, it is based on theoretical and
numerical evidence and exploits analogies with Widom’s method widely used in computer simulations of
equilibrium fluids. We obtain two formulas, one for steady states and one for the transient region. Despite
being analogous to the equilibrium expression, the steady-state formula can only be used for approximate
calculations. Possessing less obvious characteristics, we present representative calculations for the transient
approach and discuss its numerical feasibili§y1063-651X%99)04511-(

PACS numbds): 05.60—k, 45.05+x, 51.10+y

I. INTRODUCTION tems. The minimum of the entropy producticmr any other

There is an ongoing effort to establish statistical mechan.‘:malog of ) would require identical dissipation per particle

ics for nonequilibrium steady-statdlESS fluids similar to in the coexisting phases. If the dissipation of the two phases

. . L were different the extremum condition would act to decrease

the Gibbsian ensemble theory for equilibrium syst¢ns3]. S .
The need for such a theorv is especiallv areat in com utetrhe amount of the more dissipative phase. This would lead
Y P y9 P either to the annihilation of one of the phaseq(ibit were

simulations when a system is modeled in atomic or molecu- ossiblg to two phases with equal dissipation per partitfe
lar detail. These numerical models can provide insight intdD P d b berp '

| h h as the ph i t ol such extremum principles were applicable in a vapor-liquid
complex pnenomena such as the phase separation ot po ym(,e&existenc;efor instance, any dissipative field, no matter how
blends under the impact of shelat]. However, without a

) ) . small, would annihilate the gas phase entirely.
microscopic theory of thermodynamic character we are un-; appears that returning to the concepts of equilibrium

able to mimic and understand the essence of phase coexigkermodynamics might yield a solution. The task is to find a
ence in NESS. A mere extension of the rules of linear irregeneralized expression for the chemical potential which is
versible thermodynamics beyond the linear regime is noyalid under the usual circumstances of nonequilibrium mo-
sufficient. These rules, based on minimization of the dissipatecular dynamic$NEMD) simulations, i.e., in homogeneous,
tion, are local[5], thus, are irrelevant as global potential steady state systems with acting external field and a synthetic
functions indicating phase stability. thermostat{2]. Although these models are artificial due to
Simple arguments are sufficient to make it clear whythe presence of the numerical feedback removing the dissi-
minimal dissipationlike criteria cannot be candidates agative heat instantaneously, they are well-defined and well-
markers for nonequilibrium phase transitions. If one has twastudied systems. Any advance in the theory of these models
coexisting fluid phases in equilibrium andtatO turns on a helps the understanding of real systems.
weak, time-independent dissipative fielfor instance, The chemical potential, being a derivative of the entropy,
charged particles in homogeneous electric figlee proper- is expected to be less controversial than the entropy itself.
ties of the phase coexistence will not change considerdbly. (Even if the NESS entropy does not have a well-defined and
the coexistence properties were determined by the minimunmique value, its partial derivatives might have such proper-
of the entropy productignfor instance, there should be a ties[6].) Still, determination of such a quantity appears prob-
relationship between the zero field transport coefficients inematic because all the direct equilibrium methods, which
the two phases and the corresponding chemical potentialmight serve as analogies, directly sample the phase space of
since the dissipation of each phase is proportional to itshe system. Since the phase space distribution function of a
transport coefficient related to the dissipative field. TherefordNEMD model is a fractal quantity, one might face insur-
the weighted sum of the relevant transport coefficients irmountable barriers.
phase balance should be a minimum with respect to the same In Sec. Il we derive a formally simple expression of a
sum in other states of the system at the given macroscopichemical potential analo¢CPA). The derivation relies on
constraints. This condition should hold for all types of pos-the recently performed numerical experiments of Evans and
sible transports and all types of phase transitions. ClearlySearleq7]. Then in Sec. Il we discuss an alternative deri-
this cannot be the case. vation which, at first glance, might seem more attractive. The
Another objection against the application of exclusivelylatter approach is not entirely new. Several years ago we
dissipation-based extremum principles for phase coexistenqeerformed calculations based on similar id¢&k In those
applies also beyond the linear regime of one-component sysalculations, however, we used the equilibrium technique in
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a NESS system of hardcore particles knowing that the resutransition period but in the infinite time limit of the steady
can only be an approximation to the actual value. Here, wetate as well. We have essentially zero probability—
perform a systematic derivation but present no representativespecially for strong external fields typical in
calculations for the method, because we have no referenc@mulations—to observe entropy decreasing trajectory seg-
data to check the accuracy of the results. However, in Seenents[9]. If we want to estimate a microcanonical-type
IV, we present simulation results using the formula of Secprobability of finding our NESS system in a single point of
II. Interestingly, this formula does not require stochasticphase space, we can take the product of the starting equilib-
sampling of the system but does rely on having good statisrium distribution function and the rate of shrinkage of the
tics and numerical integration. In Sec. V we present our conphase space. Following E), the shrinkage rate can be
clusions. estimated as follows:

Il. CPA EXPRESSION FROM THE TRANSIENTS t
fN(F(t))sz(F(O))exW’ —SNI a(s)ds] (5)
0

We adopt an approach similar to the thermostatted non-
linear response theory of Evans and Morriss developed for

NEMD models[2,7]. These theories start with the formal where the subscriptl refers to the number of particles in the
solution of the Liouville equation. Before=0 the system system e P

can be characterized by the canonical distribution function: The exponential shrinkage of the phase-space volume el-
This distribution is propagated forward in time taking into exp ; : 9 € phase-sp :
ment is a manifestation of the dimensional contraction of

account the impact of the steady external field turned on %he distribution function[10]. This fractal behavior raised

t_lgo[rzf;]b the equations of motion are concerns regarding thg nonanalytic nature _of the dis_tribution
function [11]. In addition to the nonanalitic behavior the
D; phase-space volume of the strange attractor in the infinite
gi=—+CiF, time limit is inaccurate because of the finite memory caused
m by Lyapunov instability. In addition to these difficulties, the
norm of Eq.(5) is a function of time. After a short initial
period this horm becomes essentially zero. However, in the
present derivation we are interested onlyréiative prob-
abilities. The compared functions possess very similar prop-
aqzrties which may eventually cancel out their problematic

pi=Fi+DiFe—ap;, (1)

whereq; , p; are the position and momentum of particle~;
is the Newtonian ané, is the external force, an@; ,D; are
phase functions that describe the coupling of the extern
field to the system. The dissipative fliXD') is defined in character.

terms of the unthermostatted time derivative of the internal USind EQ.(5) as a probability distribution function we can
energy obtain the NESS analog of the chemical potential by apply-

ing the so-called Widom test particle meth¢#i2] well-
H()=—J(T)F, (2 known in the computer simulation methodology of equilib-

rium systemg$15]. The idea of this derivation is to define the
where'=(0;,05,-..,0n,P1,P2,-...pn) iS @ point in phase position of particleN+1 as the origin of the system, then
space. If our thermostat is an ergostat, i.e., the feedback coiitegrate out the three position variables from the canonical
strains the internal energy to a constant, the instantaneoupgrtition function.

value of o is
9BA
_oF 3 —BM=<(7—N) = BANN+1V,B) = BANN,V, )
S(pf/m)’ V.
_3 _
It is well-established that in NESS the overwhelming ma- =_In h Jdln+1€Xp(~ BHy+ 1)

jority of the observed trajectory segments are entropy in- N+1/ [fdI'yexp(—BHy)
creasing9]. In such cases a phase-space volume element :BMid_|n<eXp(_lB¢)> (6)

shrinks exponentially7]:

_ t where A is the Helmholtz function, Hy,,=Hyn+ ¢
o(F(t))—a(F(O))exp{ B fﬁNa[F(S)]dS]‘ ) +3/(2B). The first term on the right-hand side of E@) is
the ideal gas part of the chemical potentj@l'®=In(pA3),
It has been shown recently that the shrinkage of a phasevhere p=N/V is the number density andA
space volume element is correctly described by the dissipa=[(278%2)/m]*? is the de Broglie wavelength.
tion integral in Eq.(4) at least for times shorter than the At this stage there are several ways to exploit the analogy
characteristic time-correlation length of the dissipative pro-with Eqg. (6). One can estimate the CPA from sampling a
cess[7]. NESS system represented by a NEMD simulatidie will
NEMD models are well-defined NESS systems with well-turn to this in the following sectionHowever, from a theo-
defined means and fluctuations. Our present model obeysgtical point of view the most straightforward is the picture
strict energy conservation. Due to the definition of the er-described in Eq91)—(5). In the latter case the result for the
gostat in Eq(3) this condition is maintained not only in the chemical potential analog* can be given as follows:
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: t Wi+ 1(E+AE,
B;L*(t)=,8u'd(0)—|n<exp{—,8¢(0)—3J0[(N+1)aN+1 Bp=—In Nvi/(N(E,B) i
—NaN]dS}>- (@) xexf (—B(Hn+1—Hn))] : (10
E,AE

The average in the logarithm should be taken for diffeEent
and AE values. We can obtain exactly the same expression
for NESS systems

The only difference between Eq®) and(7) is the extra
integral in the exponent of Eq7). At equilibrium the ran-
dom insertions sample states of thé+ 1)-particle system
from the N-particle system. In the case of simple fluids this
estimate is accurate enough to exploit for numerical calcula- . WS, (E+AE,B)
tions.[Unfortunately, the reverse of this approach, sampling Bu*==In W (E, B)
the N-particle phase space from th { 1)-particle one, al- NE
though correct in principle and more easily achieved compu-
tationally, is extremely inaccurate in practiteRecently, xexd —B(Hn+1— HN)]> : (11)
based on results of very accurate numerical calculations, E.AE
Evans and Searles demostrated that for finite times the Ka-
wasaki distribution preserves its noifi]. This means that where the stars indicate that these quantities were measured
the difference in the phase-space contractions of the two sy$ar from equilibrium. The reason why Eql1) is formally
tems is correctly represented by the integral in &9. identical with Eq.(10) follows from the energy-constrained

The simplest way of performing the calculations is todynamics of Egs.(1)—(3). The Boltzmann-factor for the
separate the equilibrium and the switched-on nonequilibriunsame energy difference remains the same but the equilibrium
part of the calculations. The random insertion process prophase-space volumes and volume ratios of the corresponding
vides a correct representation of tHé+ 1)-particle system. energies or energy differences will change under the impact
Therefore we can assume that determiningdiseof the two ~ of the external field.
systems separately, starting from their equilibrium state, is Equation(10) can be simplified by the factorization of
correct because this is the way we move to their representd¥y(E, 8)
tive NESS states.

In NESS the system is on a strange attractor in phase ~3\N N

. . > ; (Vh™?)
space without a further loss of dimensionality. Our_ cglcul_a— Wy(E,B)= TWN(CD)BH wi(B)pN, (12
tion must be able to separate that part of the dissipation : i=1
which characterizes the phase-space contraction for transient
times from the permanent artepart from fluctuationscon-  where® is the potential energy of the system amds the
stant dissipation of the steady state. This task is more thaginit of the momentum. Sinc@/,(B8)=1 for all i, we get
mere technicality(see Sec. IV.

. Wi, 1(P+ )
Bu=pBu"~In —NWIN@)B(/) ‘*exu—ﬂ¢>>

Ill. CPA EXPRESSION FOR STEADY STATES )

The expression of Eq7) exploits the information present (13

in the transition region. Considering a numerical realization o i )

of the Widom or test-particle method sampling of the steady! NiS expression is the same as E6) with the difference
state seems a more attractive alternative. We expect to avolgat here the averages are formed over the energy; therefore,
the explicit time dependence because macroscopic propertidd® corresponding weight functioriphase-space volumes

of NESS systems are independent of time. In order to mak@'€ Shown explicitly. During an equilibrium simulation

the derivation clearer we change the variable in the equatioflonte Carlo or molecular dynamicshe frequency with
of the partition function. Then which the system visits different regions of the phase space

correctly represents thé/y(®) ; values, while simultaneous
random insertions of the test-particle estimate the phase-
* space volume oWy, (P + ¢)z.
QN:LDOWN(E’IB)GXF(_IBHN)O'E ® The simplification of Eq.(10) utilized the implicit as-

sumption that particle velocities are mutually uncorrelated

and there is no correlation with the positions either. This is
whereWy(E, 8) is a phase-space volume defined as not true for NESS systems. If we still want to obtain an
analogous excess-chemical-potential-type expression we
cannot get substantially further in simplicity from Ed.1).
Although the denominator values in the logarithm are repro-
duced during an NEMD run, velocity-velocity and position-
velocity correlations prohibit the previous factorization. It is
well-known that there are multiple collision patterns in non-
Then the expression for the equilibrium chemical potential isequilibrium liquids at higher densitigd 3].

Wy (E, B) SE= S[H(T)—E]dT. (9)

|
N3N oy se
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We performed some exploratory calculations on a Sllod 07
system thermostatted by a Nesleover integral feedback
[2]. Distribution of the random kinetic energy is no longer
isotropic 066 1

0.68

0.64

<oft)>

Ei piZX?fZ pizyqtzi p|22 and <pixpiy>¢0

0.62

08
in these systems. In addition to this, the total energy of a

particle is correlated with its random kinetic energy. Unfor- 058

tunately, one cannot tel priori how much of the phase-

space contraction is represented by the easily calculable one-  °® " o, os  os o8 & 12 14 1o 1o 2

particle correlations. This restricts the calculations to an time

approximate value, in fact, to an upper bound for the CPA.
To do such an approximate calculations for hard particle§OI

reduces the complications somewhat by removing the Poteng 256. The temperature is 0.9 in each system. The density,

tial energy.(This was utilized in our previous study].) N/V=0.758, for the larger members of the pairs ahd+1)/V for
However, the problem of higher-order correlations applies tGne smaller members. Every quantity is given in reduced units.
hard particles as well; therefore we will not discuss the nu-
merical details of this method here. They have the same characteristics for the members of each
pair and are related to the non-autonomous property of the
IV. CPA CALCULATIONS FROM THE TRANSIENTS Sliod algorithm[16].
In Fig. 2 we show the dissipation differences for the three
We tested Eq(7) using a model liquid of WCA particles systems. Despite the >210° individual trajectories, these
at a state point on the Lennard-Jones liquid-vapor coexisteurves contain considerable fluctuations. There may also be
ence curve with the number density of 0.758 and the temeertain amount of systematic behavior, especially in the case
perature of 0.914]. (Here we apply the usual reduced units of the two smaller system paif¢08-107, 32-3L Neverthe-
of computer simulation§15].) less, after the reduced time of 0.7—0.8 the running integral of
Particles of the WCA model are defined as a short-rangéhese curves provides a linear function which indicates that
version of the Lennard-Jones interaction. The pair-potentiaransient effects became asymptotically weak, in practice, we
¢(r) is also spherically symmetric, pairwise additive and isreach the platea(see Fig. 3 We can fit of a straight line to
given in terms of the distance between two partialeas  the long-time part of this curve. Theintercept will repre-

FIG. 1. Dissipation as function of time for three system pairs
ashed lines: 31 and 32; triangles: 107 and 108; solid lines: 255

follows: sent the loss of the transient dissipation relative to a fictive
steady state dissipation having the plateau value freit (a
A[r 12— 6)4+1, r<26 Newtonian fluid without time dependence
P(r)= 0 PSTE A trivial way to separate the transients from the steady

state contribution is to identify the first crossing point of the
dissipation difference curve and its long-time average. The

The calculations were performed using the Sllod algo-value of the running integral at this point can be viewed as
rithm of planar Couette flo2] at the reduced shear rate of the extra contraction of the phase-space volume caused by
1.0. We started nonequilibrium trajectories from the equilib-

rium systems containin®l or N+ 1 particles at regular in- 10
tervals (50 time-steps The length of each trajectory was o
2000 time steps. We used a fourth order Runge-Kutta inte- 8
grator for this purpose with 0.001 reduced time step. To save ;

computer time, after five steps we fitted a polynomial to the
positions and momenta and switched to a fifth order Gear
integrator by determining the higher order derivatives of the
predictor steps. The dissipation function recorded at each I
time step was averaged for both systems. Then we deter- 311
mined the average dissipation difference according to Eq. 2
(7). We had three different systems containing 32, 108, and 1
256 particles in order to see the systematic behavior and the 0

‘ACt
@

size-dependence of the method. The averaged values were 0 0s ! 15 2
calculated from X 10° or 1X 10° individual trajectories for time
the 32-, 108-, and 256-particle systems, respectively. FIG. 2. Dissipation differences for the three system pairs

In Fig. 1 we show enlarged curves for the thermostattingdashed line, 32-31; triangles, 108-107; solid line, 256)235¢
multipliers for the three different system pairs. Systems with=3[(N+1)(a(t))n.1— N(a(t))y]. Waves on the curves of the
N+ 1 particles were at the target density of 0.758. The largemaller systems seem more systematic, while, in the case of the
waves apparent in the curves are not random fluctuationgarge system, they are merely noise.
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FIG. 3. The running integral of the exponent in Ed) for the
(107-108 pair and the linear fitted to the second half of the curve.  FIG. 4. Separation of the transient from the steady-state contri-
Despite the seemingly noisy character of the curves shown in theution using Eq(14) with o and — X\ ;. The long-time dissipa-
previous figure, with the exception of the short initial part, the fit is tion difference value of 6.49shown as a line parallel with the
hardly distinguishable from the running integral. axi9 has been calculated from the fit of a straight line to the
previous figure (108-107 particles Functions for the linear
the presence of the extra particle. However, this method failgerms, 3(N+1){a)n.1— N{(a)yI[1—exp(-Anat)] and J(N
to explain what to do with the so-called “overshoot” region +1){(a)n+1—N(a)nI[1—expdmist)], respectively, are also
where the dissipation has higher values than its long timghown.
average. A more reasonable but computationally simple way
is to identify the linear viscoelastic behavior of the fluid. our earlier calculations for the smallest system we obtained
Linear effects make no contributions to changes in thermothe A n5,=4.3 value. From the conjugate pairing rule,fx
dynamic potential functions. The simplest model for this is+Amin=—(a)) we can determin@ y, [17].
the Maxwell fluid in which the constitutive relation is non-  In Table | we present the results of the calculations using
Markovian but lineaf2]. The transient dissipation response the data shown in the figures. Values of the simple separation
of the Maxvell fluid to a step-function strain rate can bescheme are also shown for comparison. We also calculated
written as the integral between the overshoot curves and the long-time
averages to correct for the obvious failure of this crude ap-
(a(t))=(a)(1—exd —t/my]), (14  proximation. Results using Eq14) take into account the
. . effect of the overshoot automatically. Because of its large
where(a) is thet—oo expectation value of the thermostat- first maximum, the smallest system provided a large chemi-
ting multiplier andy is the Maxwell relaxation time. Our 5| notential by this method. The rest of the data indicates an

choice of 7y iS 1A max Where o is the largest Lyapunov jncrease of a little more than unity over the equilibrium
exponent of the steady state system. This exponent reprenemical potential.

sents the most unstable mode of collective motions, i.e., the
fastest relaxation in the system. In the case of weak fields,
Eq. (14) is a reasonable approximation of the time- V. CONCLUSIONS

dependence of the average multiplier. We assume that this e nave investigated a possible approach to derive com-
behavior can be extended to strong fields and must be subytationally feasible chemical potential analogs for NEMD
tracted from the total response. . model liquids in order to be able to simulate phase coexist-
An alternative argument can be given for H44) by  ence in NESS systems. We argued that minimum
turning to dynamical systems theory. The ostensible phasgjissipation-type criteria are unsuitable as markers for this

space-volume contraction contains a contribution which igyyrpose. In the derivation we exploited the analogy with the
the result of the increasingly fractal character of the phase

space of NEMD models. In addition to the real contraction of  tag|E I. Change in the chemical potential relative to the same

the phase space volume, this virtual contribution is alwaygystem(WCA, N/V=0.758,T=0.9) in equilibrium. The first col-
there; in fact, in steady state this is the only effect left. Un-umn (a) refers to the value determined from the simple separation
fortunately, we cannot provide a quantitative theory orscheme. The second colunin) shows the value when the integral
present convincing numerical results of exploratory calculaunder the excess contribution of the overshoot curve was also
tions performed in the short transient region which couldadded. The thirdc) and the fourth(d) columns show results using
refine Eqg.(14). We accept the form of Eq14) as the sim-  Eq. (14) with N, @and — X\, respectively.

plest approximation. One may argue that the minimal value
of the coarse-graining length scalevhich provides accurate Apness
enough results for the fractal dimension of the systems,

should vary as the smalle@argest negativeLyapunov ex- N a b ¢ d

ponent. In this case we can replacg,, by — \pin- In Fig. 4 31-32 0.48 0.96 1.80 1.60
we show the simulated and the calculated dissipation differ- 107-108 0.78 0.95 1.22 1.02
ence curves for one of the systems. The latter curves were 255.256 0.58 0.68 1.21 1.00

determined using Eq14) with both \ 5 @and — X\ i, - From
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Widom or test-particle method of equilibrium simulations. an intuitive method of separation based on the Maxwell
Following this approach, we found two different ways of model of linear viscoelasticity.
prescribing the numerical recipe. The first approach is related The results seem sensible but cross-checks might be nec-
to the Kawasaki formalism of Evans and Morriss and reliesessary to test the accuracy of the method. Unfortunately, we
on the norm-preserving property of this function. The infor-know of no simpler models as replacements of our many
mation is collected from the transient region of the switch-onpartide NEMD systems. At present there is no simple map
experiment. The other possibility is to consider the model inyhich could be used for such a purpddss]. Having only
NESS and determine the relative phase-space volumes gfo or three particles in the NEMD model in order to allow
insertion attempts. We showed that in the latter method ong thorough numerical study might be a way for determining
cannot get an exact answer without computing many-particlgther partial derivatives of the entropy such as temperature
correlations. However, it can be used for approximate calcupr pressure. However, in the case of the chemical potential,

lations. In this respect, the lack of NESS data prevents Ughe derivation does not permit such extremely small system
from estimating the accuracy of the method. sizes.

We performed representative calculations for the chemi-
cal potential analog determined from the transients of the
SW|_tch-on experiment. The essence of thls_ technique is to ACKNOWLEDGMENTS
estimate the relative phase-space contraction of\thand
(N+1)-particle NESS systems. To be sufficiently accurate The authors gratefully acknowledge the support of OTKA
the calculation requires numerous transient trajectories. StilliGrant No. 724042 and the support of the NSF-MTA Col-
the real problem is the separation of the transient contribulaborative Research Program through Grant No. INT-
tion (which indicates the difference in dimensional contrac-9603005. A. B. wishes to thank Professor Bill Hoover and
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