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Monte Carlo approach to the gas-liquid transition in porous materials
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The gas-liquid transition of a “quenched-annealé@A) system is studied by grand-canonical Monte Carlo
simulation. The “quenched” particles are hard spheres within configurations chosen randomly from those of
an equilibrium hard-sphere system at given density. The fluid particles interact with the matrix particles by a
hard-core potential and with each other by a hard-core potential and an additional potential of a Lennard-Jones
type. Our results are in good qualitative agreement with various theoretical approaches. With increasing matrix
density the critical temperature is lowered compared to that of the bulk system and the gap between the gas and
liquid densities narrowed. Our simulations confirm, for this QA system, the possibility of two fluid-fluid
transitions substituting for the unique gas-liquid transition of the bulk system. They demonstrate the necessity
to average over a significant number of matrix realizations in order to obtain a quantitative location of the
phase coexistence linds$1063-651X99)03311-5

PACS numbefs): 05.70.Fh, 64.70.Fx, 02.70.Lq

I. INTRODUCTION 0.84 K for N, [5]). The critical point is displaced towards the
phase that is preferentially attracted by the silica strdligls
The effect of a disordered porous medium on the phaseid phasg A thermodynamic study of phase separation of
diagrams of fluids and fluid mixtures has been the subject osobutyric acid and water in silica g8] shows that similar
intensive experimental and theoretical investigations duringhehavior is also expected in binary mixtures. Light- and
the last decade. One major goal of these studies is the undafeutron-scattering experiments, performed at constant com-
standing of the role played by the diverse underlying mechaposition, are less conclusive as far as a true phase separation
nisms inducing transitions between fluid phases in such mas concerned, since a metastable state may have been entered
terials. This knowledge should help us to make predictionsvhen varying temperature towards phase separation. On the
about the properties of materials of technological interest, irbther hand, fluid mixture behavior in low-porosity systems,
which the random structure of the adsorbent is of cruciakuch as Vycor glass, is generally characterized by metasta-
importance (catalysis, adsorption separation, filtration andbility and slow kinetics. In these systems no macroscopic
purification, enhanced oil recovery, gel-exclusion chromaphase separation is observed, but rather formation of small
tography, gel-permeation electrophoresis,)e€xperiments  microdomains rich in either of the two components.
performed both on high-porosity materials such as silica It is clear that the understanding of phase transitions in
aerogeld 1-8] or low-porosity materials such as Vycor glass porous and disordered materials requires simultaneous con-
[9-16] have shown quite persuasively that the phase behawideration of confinement, connectivity of the network, ran-
ior of fluids or fluid mixtures in porous material is markedly domness, as well as wetting phenomena. Available theoreti-
different from that of their bulk systems under the same concal approaches have generally privileged only some but not
ditions, even if the porous medium occupies only a smalkll of these aspects. Thus the random-field Ising model
fraction of the total volume. A striking example is the phase(RFIM) [19] puts the accent on randomness. Although it may
diagram of the®He-*He mixture: in the bulk mixture the explain some of the features observed in high-porosity gels,
superfluid transition line terminates at a tricritical point at thein particular the decay of the critical density fluctuations, its
top of the coexistence curve; inside highly por¢@8% po-  application to low-porosity Vycor glass has been questioned
rosity) silica gel[6,17] or porous gold[18] the tricritical ~ [20]. The latter system, in which wetting of the pore surfaces
point is suppressed and the superfluid transition extends tg likely to play a major role in preventing macroscopic
zero temperature. Phase separation into a supeffiédrich  phase separation, seems more satisfactorily described by the
phase and a superfluiHe-rich phase occurs now entirely single-pore mode[21-23, which completely ignores ran-
inside the superfluid region with a regular critical point at thedomness.
top of the coexistence curjé7]. A third theoretical approach devised to get an insight into
In single-component fluids such &sle [2] and N, [5] in the equilibrium properties of fluids in porous solids and that,
high-porosity aerogel, a drastic narrowing of the near-criticain principle, can include all specific physical effects of dis-
liguid-vapor curve is observetf the order of 14 times in ordered media, is based on a modetferred to as a
“He, and 3 times in ) relative to the bulk systeand the  quenched-annealed systeimwhich fluid particles evolve in
latter is shifted below that of the bultno aerogel system a disordered matrix resulting from the quench of an equilib-
(the shift in critical temperature is 31 mK fdtHe [2] and  rium configuration of(matrix) particles generated in the ab-
sence of the fluid particle24]. Recent works have shown
[25-29 that the thermodynamic and structural properties of
*Permanent address: Instituto de @ioa Fsica “Rocasolano,” such a model can be obtained from a set of integral equa-
CSIC, Serrano 119, 28006 Madrid, Spain. tions, the so-called replica Ornstein-ZernikROZ) equa-
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tions, an extension of the familiar OZ formalism of equilib- similar for the bulk system, get qualitatively different as the
rium liquid-state theory30]. matrix density increases. In effect, whereas the MSA predicts
A further advantage of the quenched-anneal€h) one phase transition over the range of matrix densities con-
model is that it is well suited for study by computer simula- sidered, the ORPAB, predicts two, one on the high-
tion [31-35. Several simulation studies dealing with the density side of the phase diagram occurring at a lower tem-
phase equilibrium of one- and two-component LennardPerature. Whereas the extreme phases were identified.as
Jones(LJ) 12-6 fluids in a matrix modeled by a frozen equi- Vapor and homogeneous liquid phases, the nature of the in-
librium hard-sphere configuration have appeared recentlyl€rmediate phase could not be characterized with certainty.
Those of Page and MonsdB3] based on grand-canonical Fro_m analysis of the fluid-fluid corre_lat|0n funct|(_)ns it was
Monte Carlo (GCMC) simulation[36], were meant to be _mamly_concludgd that th? chal packmg Of. the fluid particles
representative of methane in a silica xerogel, and therefor! th_e |n.terme.d|ate and liquid phases is S'mﬂa?]' .
the size of the matrix particles was chosen much larger than Dlscrlmlnatl_on 'between these two approximations was
that of the fluid particlegsize ratio 7.055:L Evidence is one of the motivations of the present computations. A second

given for two transitions: one is analogous to the bulk quuid-alrn was 1o gain |n5|ght_ into the _effect on the location Of.
vapor transition, but the coexistence curve is narrower an ha_se coexistence entailed by using a limited set Of_ mairix
éeahzatlons(generally only ongfor the average over disor-

other, occurring at lower temperatures, has less obvious i€ @S was the case in most simulation studies reported so

terpretation and is tentatively related to the wetting proper-ar [33-33. ) ) .

ties of the fluid in the more confined regions of the matrix 1 N€ remainder of the paper is organized as follows. Sec-
[33]. For a purely repulsive matrix-fluid interaction the sec-tion 1l describes Fhe Q’A_‘ madel, th? Interactions between
ond transition occurs on the high-density side of the liquid-duenched and fluid particles, and gives details on the MC

vapor transition. Snapshots of configurations in the gas an nd numerical methods used in the simulations. In Sec. Il

liquid states close to the liquid-vapor coexistence line reveaﬁ e results of the simulations are discussed; in particular, the

a fairly inhomogeneous spatial distribution of the fluid par_lr;]flulence_of the (rjnatrix conficgur:atic(lsizle ar.'éj realizatigron q

ticles, the concentration of fluid particles being highestt e location and nature of the gas-liquid transition Is ad-

where the matrix density is loweE33]. dressgd. Finally in Sec. IV the main conclusions and per-
The influence of disorder on the structure of the liquid-SPectives of the paper are summarized.

vapor interface has been investigated by Trokhymchuk and
Sokotowski[ 34] using canonical Monte CarlMC) simula- Il. MOLECULAR MODEL AND SIMULATION DETAILS

tions and integral equation theory for the case where fluid The QA model that is considered in this work consists of
and matrix particles have equal size. A reliable coexistencgpherical fluid particles in a disordered matrix obtained from
curve, derived from_ the density proflle, could be ot_)tal_nedthe quench of an equilibrium hard-sphérs) configuration.

only at a low density of the matrix. Although the liquid- Fyid particles interact with each other by means of a repul-

vapor transition presents similar trends to those observed byjye HS potential and an attractive Lennard-Jones tail trun-
Page and Monson, no evidence is found for a second phaggeq ar .= 2.50

transition.

Of considerable interest in view of technological applica- 0, r<o
tions is the phase behavior of liquid mixtures in microporous e o=<r<2Y6,
materials. Gordon and Glan@i85] examined the effect of " ' 6
confinement on phase separation of a symmetric immiscible ~ U(r)= ad () _(C by cr<oiy D
Lennard-Joned_J) mixture in a disordered solid matrix. The I\ T r) | T

symmetric nature of the model allowed use of the Gibbs
ensemble Monte Carlo techniqii@6] to locate the liquid-
liquid coexistence curve. and with the matrix particles by a purely repulsive interac-
In this paper extensive GCMC simulations were carriedjon
out on the phase separation of a single-component fluid
within a disordered matrix where fluid and matrix particles ®, r<o
have hard cores of equal size. For a given temperature, phase Utm=Umn(r)= [ 0 =0 @)
equilibrium is obtained for a value of the chemical potential ’
at which the density distribution has bimodal structure withMatrix and fluid particles have the same size Matrix and
equal peak heights. The coexistence densities will then coffluid-particle configurations were generated independently
respond to the peak positions. Fluid particles interact byby standard GCMC sampling6] in a cubic box of volume
means of an additional attractive LJ téilefined precisely in  V with periodic boundary conditions. Trial MC moves, trans-
Sec. I). With this choice of potential, direct comparison can lation, deletion, or insertion of particles, were performed in a
be made with integral equation theory predictions by Kierlikrandom way with equal probability. For each thermodynamic
et al.[37]. These authors have solved the ROZ equations fostate characterized by a reduced temperatire kT/e and
various closure relations, including the mean spherical apehemical potentiajw and a given matrix configuration be-
proximation(MSA) and an optimized random phase approxi-tween 2<x10° and 2x10° trial fluid configurations were
mation corrected to obtain the exact second virial coefficientienerated. To locate the liquid-vapor coexistence curve in
(ORPA+B,). They arrive at the puzzling result that phasethis given matrix configuration the chemical potential was
diagrams derived from these approximations, though veryaried, at fixed temperature, until a bimodal shape of the

0, r>2.50
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number distribution of fluid particle®(N) was obtained.

MONTE CARLO APPROACH TO THE GAS-LIQUID . ..

5497

from that of a nearby statgpossibly starting from a near

The chemical potential was then refined, using histograntritical state where the interfacial tension is low aR(N)
reweighting, to achieve equal heights of the two peaks irtherefore obtainable by straightforward Boltzmann sam-
P(N). The coexistence densities were then associated withling]. At the end of the simulation the desired particle num-

these two peak positions.

Histogram reweighting38] enables us to obtain the joint

distribution for particle number and energy dengit{N,u)

for any state f,8;) from that of a nearby state
(m,B) (B=1KT). From its definition, omitting, for sake of

ber distribution is regained fror@(N)oP’(N)e™ 9N,

IIl. RESULTS
A. Bulk fluid

notational simplicity, the dependence on matrix configura-

tion, one has
efuN=BVUP (N u)

> fdueB“N’BV“F(N,u),
N

P(N,u)= )

whereI'(N,u) is the density of states and the normalization

is equal to the grand-canonical partition functig{3,«).
Approximating p(N,u)~N"tH(N,u), where H(N,u) is

the joint histogram for particle number and energy densit

recorded during the simulation avdthe number of entries,
an estimate of'(N,u) is obtained from

E(B,M) HB,/L(NYU)

For vanishing matrix densityp(,=0) the system reduces
to a bulk fluid where particles interact through potentibl
The gas-liquid coexistence curve of this system was deter-
mined through Gibbs-ensemble Monte CA{GEMC) simu-
lations [36,42 in the temperature rang&*=1.0—1.22.
With this method a total oN=N;+ N, (in the present cir-
cumstances 50Q@articles are distributed between two boxes
of volume V; andV, with total volumeV=V;+V, fixed.
Chemical(equal chemical potentials in the two boxemsd
mechanical(equal pressurgsequilibria are then achieved
ythrough MC steps involving displacement moves, volume
changes, and particle exchanges, keeping the total volume
and total number of particles constant. After convergence of
the simulation the averageé®,/V,) and(N,/V,) will be

T'(N,u)= (4)  the coexistence densities. At temperaturés>1.18 the gas
efuN-pVU N and liquid boxes changed identity and the coexistence den-
sities were determined from the peak positions in the density
As I'(N,u) is independent of8 and u, distribution P(p). For each temperature between 120000
ePruaN= VUL (N ) an_d 500 OQO cycles were performed, each cycle con;isting of
Pp, u (NU) = _ (5) N=500 trial translation moves, 250 attemp_t_ed particle ex-
v E(B1.p1) changes and one volume change. The densities and chemical
. potentials of the coexisting phases are summarized in Table |
_ E(B.pm) e(erBu)Nf(ﬁrﬁ)VuH'B'“(N'u) and the coexister)ce_ curve shown in Fig. 1 together with the
E(B1,m1) N MSA results of Kierliket al.[37].
(6) The GEMC method does not allow a precise estimate of
the critical temperaturf43,44). A customary procedure for
elBrua= BUIN=(B1=B)VUY ; (N, u) obtaining an estimate of the critical paramet&gsand p.. is
= : to fit the coexistence data to the scaling law
2 f duéﬁl#l_BM)N_(Bl_B)VUHBM(N'u)
N ' p1—pg=B(T-To)* (9)
(7)
In particular, at fixed temperature, integrating over the engznd the law of rectilinear diameters
ergy density,
P, (N)ocelPramfilp (N). ®) (p1+ pg)/2=pe+A(T—T,), (10

A second techniqgue we made repeatedly use of was mul-

ticanonical ensemble samplif@9-41, which can be ap-

where, in the present casg,is the critical exponent of the

plied advantageously to enhance crossing of the free ener@D Ising universality classg~0.3258[45]). Care should,
barrier separating the coexisting gas and liquid phases at sutirough, be in order when applying this procedure. Gibbs
critical temperatures. Briefly stated, in this method samplingensemble simulations are generally performed for rather
is made from a non-Boltzmann distribution with modified small system sizes, therefore suppressing long-range density
Hamiltonian' =H+ g(N) where the functiorg(N) will be fluctuations. As a result crossover from nonclassical to
adjusted in such a way that the particle number distributiormean-field(classical behavior is expected at some unknown
P’(N) will be nearly flat, implying that, contrary to simple crossover temperature. For this reason data close ttathe
Boltzmann sampling, the interfacial states will be sampledpareni critical temperature are generally discarded in the fit.
with nearly the same probability as the gas and liquid con- The critical temperature and density are closeTid
figurations. The ideal choice fulfilling the preceding require-=1.225 andp* =0.315. Due to the wider range of the at-
ment would beg(N) =In P(N). In practiceP(N) is of course traction near the core region this critical temperature is
unknown, but an estimate can be made by extrapolation, usomewhat higher than that of the Lennard-Jones system trun-
ing the histogram reweighting technique described abovecated at 2.6 [40].
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TABLE . Liquid-vapor equilibrium of the bulk fluid §5,=0) from GEMC simulation. Results obtained
from the reference hypernetted chain equafi®@ have been included.

™ Cycles Py Bug I Bu BHRHNC
1.22 220000 0.2@) —2.85(4) 0.422) —2.86(4)
1.21 384000 0.1804) —-2.87(4) 0.4%2) —2.87(4)
1.20 574000 0.1630) —2.85(5) 0.49115) —2.86(5)
1.19 370000 0.14%) —2.89(4) 0.50210) —2.89(4)
1.175 171000 0.129) —2.95(4) 0.5248) —2.95(4)
1.15 129 000 0.108) —3.06(3) 0.55410) —3.05(3) —3.000
1.10 550 000 0.098) —-3.19(3) 0.62010) —3.19(3) —3.195
1.05 120000 0.059) —3.40(3) 0.67113) —3.40(3) —-3.414
1.00 230000 0.038) —3.67(3) 0.69710 —3.67(3) —3.664
B. Volume 500 densities and chemical potentials are summarized in Table Il

A first set of GCMC simulations was performed at vol- and the coexistence curves for different matrix densities and
the bulk fluid compared in Fig. 1 with theoretical results
[37]. With increasing matrix density, the critical temperature
decreases, as expected in a confined syswsh and the
ecoexistence curve narrows. The critical density shifts to-

sidered. For fixed matrix configuration and a temperatur rds th ide. Th litative trends are in agreement
estimated to be close to the critical temperature, the chemicdf2rds the gas side. These qualitative trends are in agreeme
with previous simulationg§33] and experimental observa-

potential was varied until a bimodal structure of the particletions althouah the narrowing of the coexistence curve is less
number distributionP(N) was found. The combined histo- ' 9 9

gram for particle number and energy density was recordeﬁ:onounced as, for instance, in He and [2¢5]. Moreover,

and the histogram reweighting technique described in Sec. rZJﬁ:?ilé)lrtfszatzgslg dsgm(c;}téa&tge:n;e zar%;tairenrgﬁgt?\]/vlth theoretical
applied to adjust the chemical potential to obtain equal peaP However, despite the ualitati\F/)s a reement.with theoreti-
heights inP(N). The coexistence densities were then asso- ' P q 9

ciated with the positions of these two peaks. The coexistenc(éal calculatlon_s, experience, and S|mu_|at|ons .Of similar sys-
tems, a quantitative assessment of this location of the gas-

, , . liquid transition can only be assured if the influence of the
matrix configurations on this location is determined and,
moreover, finite-size effects are evaluated. To examine the

ume 50@° for four values of the porosity corresponding to
matrix densitiesp¥ =p,0°=0.026, 0.046, 0.15, and 0.30.
As in previous work only one matrix configuration was con-

TABLE II. Coexistence densities and chemical potential at vol-
umeV/o3=500. All results are obtained with one matrix configu-
ration. pg , pi°, andp{" denote the densities of the gas, inhomoge-
neous fluid, and liquid phases, respectively. For each state the
number of trial configurations was»x810°.

Pm i Py pi pi Bu
0.026 1.00 0.04 0.635 —3.4262
0.026 1.05 0.06 0.595 —3.1956
0.026 1.10 0.09 0.530 —2.9911
0.026 1.15 0.15 0.450 —2.8150
0.026 1.18 0.17 0.380 —2.7315
0.046 0.95 0.04 0.625 —3.5045
. . . 0.046 1.00 0.05 0575 —3.2525
0'40.0 0.2 0.4 0.6 0.8 0.046 1.05 0.075 0.505 —3.0343
p* 0.046 1.10 0.115 0.435 —2.8470
) ) . 0.046 1.12 0.13 0.38 —2.7843
_F-IG._ 1. Coexistence curves for matrix densitigg=_0 .(bullf 015 075 0.015 0535 —3.7123

fluid; triangles, 0.046, 0.15, and 0.3(from top to bottom; solid

circles. Results at finite matrix density are for volurie= 5000 0.15 0.80 0.022 0435 —3.3487
and correspond to one matrix configuratiatbeit different for each 0.15 0.85 0.040 0.285  —3.0684
temperature valyelt should be noted that the coexisting states on0.15 0.87 0.050 0.26 —2.9767
the low-density side of the coexistence curvep#t=0.30 corre-  0.30 0.50 0.085 0.39  —4.0440
spond to the inhomogeneous density phésese text The solid  0.30 0.55 0.09 0.35  —3.3890
lines are the MSA results of Kierlilet al. [37] for p;,=0, 0.05, 0.30 0.58 0.12 0.31 —3.0318
0.15, and 0.30, respective{from top to bottom. The dotted lineis  0.30 0.60 0.13 0.275 —2.8252

the fit of the bulk coexistence curve to E¢8) and(10).
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. ) o . . ) FIG. 4. Fluid particle distribution in matrix configuratid® (cf.
FIG. 2. Fluid particle distribution in matrix configuratid® (cf. Table Ill) for 8= —3.1011(open trianglel Bu= — 3.0640(open
Tgble ) for Bu=— 3.0365§open squargs Bu= —3.0159(solid squarel Bu=—3.0365 (solid triangles, Bu=—2.9957 (solid
triangles, Bu=—2.9957(solid squares andBu = —2.9759(open squarel and Bu = —2.9759(open circles
circles.

influence of the matrix configuration on the location of the Present in the two other configurations, which seems indica-
gas-liquid transition, we determined the chemical potentialdive of a fluid-fluid transition in this density range. Table II
corresponding to the equilibrium of the two phases as well a§ummarizes the properties of phase equilibrium, identified,
the corresponding densities for different matrix configura-2S described above, by the valuestyi at whichP(N) has
tions of densityp*=0.15 and temperatur&* =0.85. Fig- two maxima of _equal he|ght, for the eight configurations
ures 2—4 show the evolution of the histograP&\) as a  Studied at matrix density;=0.15, and temperatur@*
function of the chemical potenti@u for three of these con- =0.85. _ o _
figurations. They show quite convincingly that the values of ~The different coexistences seem qualitatively different.
By and the densities of the phases in equilibrium, in particuAs @ matter of fact, the phase of densiy~0.15-0.20 in

lar the dense phase, differ notably with configuration. Equi-equilibrium with a gas of densityg ~0.04 corresponds, as
librium is found atBu~ —3.015, — 3.058, and—3.0366 for  shown by a snapshot of a configuration in Fig. 5, to a very
a gas density close to 0.04 and high-density phases of deithomogeneous filling of the matrix. In this phase most of
sities 0.46, 0.15, and 0.24, respectively. Wi increases the fluid particles are localized in a specific subvolume,
from its coexistence values the histogramgN) vary in  which, for givenT* and Bu, occupies the same position in
quite different ways. In particular, Fig. 3 gives evidence ofthe matrix configuration during the MC run. On the contrary,
the existence of large density fluctuations, a behavior nothe fluid phase of density] ~0.4—0.5, also in equilibrium
with a gas of densit3p§~0.04, corresponds to a homoge-
neous occupation of the volume accessible to the fluid par-
ticles (cf. Fig. 6. These findings are compatible with the
existence of two phase transitions similar to those discussed

0.08

TABLE Ill. Coexistence densities and chemical potentials at

0.04 | temperatureT* =0.85 for eight different matrix configurations
(A, ... H) at densityp}=0.15. The volume i8//o3=500. p} ,
§ p¥ , andp;® denote the densities of the gas, inhomogeneous fluid,
and liquid phases, respectively.
002 Configuration Py p¥ pF Bu
A 0.04 0.46 —2.9479
B 0.04 0.44 —3.0129
C 0.04 0.21 —3.0297
o D 0.04 041  —2.9477
E 0.04 0.36 —3.0597
FIG. 3. Fluid particle distribution in matrix configuratidt (cf. F 0.04 0.47 —2.9876
Table IIl) for Bu= —3.1582(open triangles Bu= —3.0683(solid G 0.04 0.29 —3.0684
triangles, Bu=—3.0365 (solid squares Bu=—2.9957 (solid H 0.04 0.14 —3.0591

circles, and Bu= —2.9565(open circles
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) FIG. 5. Snapshot of a configuration corre-
N sponding to matrixH (cf. Table Ill) and fluid

DY s Mo )»
S

\g')"\\» 0 densityp =0.14. The light and dark spheres rep-
). »/‘.’ resent the matrix and fluid particles, respectively.
l P The box lengths are in units ef.

s

’\‘v i ’v’\

by Page and Monsof83], one between a gas and an inho- affected by the configuration of the solid matrix and give

mogeneous fluid phase, the second between this latter phaseidence for the possibility of equilibrium between three

and a homogeneous fluid, as attested, in particular, by thiypes of phases.

histograms shown in Fig. 3 fggu> —3.058. The possibility

of this second phase equilibrium is confirmed by the results

for px,=0.30. For the matrix configurations considered at

this density(one for each temperatyrthe values 0)‘03 seem To assess the reliability of these results we investigated a

notably higher than fop},=0.15(cf. Fig. 1). Examination of ~ system with matrix density’=0.15 and temperaturg*

the snapshot in Fig. 7 of the arrangement of fluid particles in=0.8 with a larger volume/=1000-2. For this state the

this low-density phase at* = 0.55 shows that these particles V=5000° system showed a clear liquid-gas transition. Six

are localized in a subvolume of the matrix forming a micro-different matrix configurations, markea—f in Table IV,

drop of liquid. were considered. In each case phase equilibrium was
In summary, the simulations performed at voluwier®  achieved by varying the chemical potential until equal peak

=500 show unambiguously that phase coexistence is greatlyeights inP(N) were obtained. In accord with the results for

C. Volume 1000

2

Y
&
N

V) ))"

! )
aall

; .)))\ -,r‘\\“'\

3 -
| ‘
)))'l)l’i
x

.’};))))) ‘.)’ -Qyf
Iu‘
[:

y

FIG. 6. Snapshot of a configuration corre-
sponding to matriB (cf. Table 1ll) and fluid den-
sity p =0.44. The light and dark spheres repre-
sent the matrix and fluid particles, respectively.
The box lengths are in units f.
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4
T~
, wi)'\ﬁ
> ~\, I
o~
\ \ FIG. 7. Snapshot of a configuration for matrix
), 7 H * *
) .)))v« density p};,=0.30, temperaturel*=0.55, and
N 0 )!‘;:’a‘\l,.‘? ‘)\} fluid density p* =0.09 (cf. Table 1). The light
A @)\)P‘Q))) )) and dark spheres represent the matrix and fluid

’\'o))\):\)\'%’»\m

particles, respectively. The box lengths are in
units of o.

the smaller volume three different situations were encounheights are different, but by varying the chemical potential

tered(cf. Table IV): equality of either, the two low-density peaks or the two high-
(i) In three casesdb,c) a transition between a low- density peaks can be achieved.

density gas f;~0.03) and a homogeneous liquich{(

~0.5) is observed.

(i) In two cases @,e) equilibrium is found to occur be- . _ 3 )
tween a gas at density 0.03 and a “liquid” at a density. A still larger system of volum& = 4000 has been stud

considerably lower ¢* =0.13 for matrix configurationd, ied by piecing together the eight different matrix configura-

*—0.30 f tri f i than for th di tions considered for volume 500. Overlaps between particles
p* =0.30 for matrix configuratio) than for the preceding of the different matrix configurations occurring at the com-

flon interfaces after assembling, taking into account the pe-

D. Volume 4000

in the matrix, but extensive regions in the matrix have very . - ;
. - . ) . . displacement of 0.42 of the overlapping spheres. In consid-
low fluid density. By increasing the chemical potential for P bpIng Sp

; 7 " ! ering such a matrix configuration our aim was to show that,
these matrix realizations the position of the peakPifiN) g g

X S . ) ; if for given chemical potential and temperature one of the
corresponding to this “droplet” arrangement shifts to h'ghersubvogl]umes of the mgtrix is typically oF():cupied by gas

a homogeneous distribution of the fluid particles is obtained}.{qwd)’ this property would persist when the subvolume is

(iii) For the matrix labeled, at chemical potentigBu =

—3.298,P(N) shows a three-peak structure with peak posi-

tions corresponding t@*=0.03, 0.16, and 0.48, respec-

tively, the fluid densities already observed in the previous

cases(cf. Fig. 8. For the chosen value g8u the peak 0.006 |

TABLE 1IV. Coexistence densities and chemical potentials for

six different matrix configurationga,b, ... ,j at densitypy,=0.15

and temperatur@* =0.80. The volume i8//a°=1000. \, is the g 0004

number of trial configurationgy , pi* , andp]" denote the densities

of the gas, inhomogeneous fluid, and liquid phases, respectively.

Configuration N, Py pF or Bu 0002 1
a 10° 0.03 050 —3.265
b 2x10°  0.03 051 -—3.182 . ‘
c 16x10°  0.03 050 —3.2702 000 0 20 80 40 50 60
d 1 0025 013 -3.352 N
e 8x10° 0.03 0.30 —3.393 FIG. 8. Fluid particle distribution in matrix configuratidn(cf.
f 2x10° 003 0.16 048 —3.298 Table IV) (p%=0.15, T* =0.80, V/¢*=1000). The chemical po-

tential isBu=—3.298.
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0.02 -

0.015 -

P(N)
P(N)
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FIG. 11. Fluid particle distributions in the eight subvolumes of
FIG. 9. Variation of the fluid particle distribution fopy, the V/0=4000 system at chemical potentjak.= —3.068.
=0.15, T*=0.85 and volume//a3=4000 with the values of the

chemical potential: Bu=—3.182 (solid triangles up Bu=  tions and, forBu~—2.996 and larger values, histograms

—3.158 (open circles Bu=-—3.068 (solid squares Bu=  wijth a single narrow peak are found again. The differences in
—3.047(diamonds, Bu=—3.037(solid triangles dowpy andBu  occupation by the fluid particles of each subvolume can be
= —2.995(open triangles left determined by calculating the histograms associated with the

corresponding subconfigurations at the same values of the

included in a matrix configuration of larger size. Such anchemical potential mentioned above. The histogran(sl)
eventuality would obviously speak in favor of the existenceso; the eight subvolumes aBu=—3.158, —3.068, and
of a stable fluid phase associated with a large inhomogeneity 3 037 are shown in Figs. 10—12, respectively. From these
of the local density. . . three cases it is clearly seen that the different subvolumes are

At T* =0.85 andpy, = 0.15(i.e., the density of each of the occupied in a very different way by the fluid particles. The
eight subconfigurationswe have calculated the histograms eyolution of the occupation of the different subvolumes with
P(N) for gu varying from —3.182 to—2.976. The histo- g, demonstrates, in agreement with the results at volume
grams obtained for gu=-3.182, —3.158, —3.068, v/s3=500, that for each of these subvolumes the dense
—3.047, —3.037, and—2.996 are shown in Fig. 9. They phase appears at different valuesgf. Moreover, in spite
show the evolution of the filling of the matrix by the fluid of the interactions between the fluid particles located in the
from a gas phase at density 0.04 to a liquid phase of densityifferent subvolumes, the order in which the dense phases
0.35-0.40. Between these two densities one observes, f@ppear in the isolated matrix subconfigurations is conserved
Bp=—3.158, a histogram characteristic of an equilibriumin the larger volumecf. Table II).
between a gas of densipj ~0.04 and a phase with density  The evolution ofP(N) of both the total volume and the
~0.14, then, for Bu varying between —3.124 and subvolumes proves again the existence of two coexistences,
—3.058, a histogram with a single peak of narrow width. Forfirst between a gas phase and an inhomogeneous fluid phase
B approximately in the range 3.047 to—3.037 the his- followed by that between the latter phase and a homoge-
tograms correspond to states presenting large density fluctuaeous fluid phase of higher density. The existence of a range

0.07

0.06 - 0.03 -

0.05 -

0.04 - 0.02

P(N)

0.03 -
0.02 - 0.01

0.01

o 40 80 120 160 200 240

FIG. 10. Fluid particle distributions in the eight subvolumes of  FIG. 12. Fluid particle distributions in the eight subvolumes of
the V/0*=4000 system at chemical potentjék = —3.158. the V/0=4000 system at chemical potentjak.= —3.036.
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of Bu values for which the inhomogeneous fluid phase is It would seem that our simulations, especially those ob-
stable is also confirmed by the occurrenceR{N) histo- tained for the volume&//o>=4000, allow for an interpreta-

grams (typical of a stable phagehaving a single peak of tion of the existence of the inhomogeneous fluid phase. It is
small width for S between—3.124 and—3.079. due to the diversity of the values of the chemical potential at

In conclusion the computations made at the voluvhe which the fluid goes from the gas to the liquid phase in

= 40002 enabled us to verify that the qualitative behavior subvolumes of typical size equal to a few tens of molecular
of the fluid, as expected from the previous simulations aidiameters. This variety of transition chemical potentials at
smaller volumes, remained stable with respect to an increashis microscopic scale is susceptible to occurrence in numer-

of the total volume by a factor of 8. ous types of solid matrices and makes plausible the existence
of inhomogeneous fluid phases, such as those identified by
IV. CONCLUSION Page and MonsofB33] and in the present work, in a large

. . , class of porous material.

_Our simulations have shown that grand-canonical sam- e important differences entailed by the matrix in the
pling combined with a histogram reweighting technique al-51yes of the densities of the coexisting phases, for example,
lows the location of equilibrium between fluid phases in thegiorce the conclusion that an average over a significant
presence of disorder. Thus for the fluid inve_stigated in thisyumber of matrix configurations is necessary to obtain a
work two types of coexistence between fluid phases havgantitative location of the coexistence curves and to define
been unambiguously identified when determined with ghe gomains of the stability or metastability of the different
single realization of the disorder. It seems remarkable that)h,ses. Performing such an average represents a consider-

although the matrix of quenched particles used in our studypie numerical task, which we plan to tackle in future work.
differs in particle size and interaction between the matrix and

fluid particles from that considered by Page and Monson
[33], the observation of these three phases are in qualitative
agreement with the results of these authors.

The present findings seem also to be corroborated by the- We thank M.-L. Rosinberg for discussion and E. Kierlik
oretical calculations based upon the ORPB,, approxima-  for providing the MSA results of Fig. 1. M.A. acknowledges
tion [37]. For the matrix density}y=0.15 and temperature financial support from the Center National de la Recherche

*=0.80 the intermediate phase occurs in a narrow densit$cientifique(CNRS for her stay at the Laboratoire de Phy-
and temperature range. It should be noted, however, that treque Therique. She also wants to thank the laboratory for
theoretical results are very sensitive to the approximatiorits kind hospitality. Computing time on the CRAY C-98 was
used. Neither MSA nor the higher-order approximationgranted by the Institut de ™eloppement et de Ressources
ORPA+B,+B; predict this intermediate phase at* en Informatique (IDRIS). The Laboratoire de Physique
=0.80[37]. Theorique is UniteMixte de Recherche No. 8627 of CNRS.
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