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We investigate the fluid flow through two-dimensional ramified structures by direct simulation of the
Navier-Stokes equations. We show that for trees witfenerations, the flow distribution strongly depends on
the Reynolds number Re. Specifically, for a tree without loops the flow becomes highly heterogeneous at high
Re. For a tree with loops, on the other hand, the flow distribution tends to be more uniform at increased Re
conditions. We show that these apparently contradictory behaviors have the same origin, namely, the effect of
inertia on the momentum transport in the channels of the ramified geometry. In order to simulate the propa-
gation of the flow imbalance throughout the tree without loops, we develop a simple model that incorporates
the basic fluid dynamics features of the system. For large trees, the results of the model indicate that the
distribution of flow at the outlet branches can be described by a self-affine landscape. Finally, we argue that the
nonuniform partitioning of flow found for the structure without loops may contribute to the morphogenesis and
functioning of the bronchial tre¢S1063-651%99)18210-2

PACS numbds): 47.60+i, 87.19.Uv

[. INTRODUCTION Degrez[7] investigated numerically the steady inspiratory
flow through two-dimensional airway models with three gen-
The problem of fluid flow in branching geometries ariseserations of branches. They were able to confirm previous
when studying a variety of phenomena in physics, geologyexperimental observation8,13] revealing a significant im-
and biology. Examples range from fluid flow through porousbalance in the flow distribution between the medial and lat-
media[1], a problem that has important implications for ca- eral branches of the tree. Zhatal. [15] studied, both nu-
talysis and oil recovery, to respirati¢@] and blood circula- merically and experimentally, the steady inspiratory and
tion [3], where the mechanism of flow bifurcation plays aexpiratory flow in a three-dimensional airway system of
crucial role. The simplest approach to this problem consistsingle symmetric bifurcations. They showed that the flow
of emulating the channels available for flow with a set ofresults obtained from computational simulations are in good
equivalent impedance elements. Such an approximation aggreement with the experiments, especially during expira-
sumes a linear relation between the flux and the pressuigyn. In the present study, we address the question of flow

gradient along the channels. Calculations based on linear in%isymmetry in a large network of bifurcating segments and in
pedance models are abundant in physics and physiologicglq presence of loops.

problems regardless of their limitation in reproducing some

realistic details. For instance, when applied to steady or P&wo different types of geometries. The first is a tree of up to

riodic flow thrOUQh symmetric airway bifurcations, these five generations of branches, with no loops. The second is a
models predict a perfectly homogeneous and synchronou[s ' :

flow distribution[4]. A network of bifurcating and merging ree of up to nine generations of identice_ll channels that form
channels is a simple model of porous media. The fluid flow? subset of a hgxaggnal lattice. For the first type of geometry,
through such a structure can also be mimicked by the distri?/® shc_)w .that., n _sp|te of the symmgtry of the structure, the
bution of electrical currents in a network of resistors. How-110W distribution in the last generation segments becomes
ever, this analogy cannot account for the combined effects dfighly heterogeneous at high Reynolds numbers. For the tree
fluid inertia together with the geometry of the pore spaceWith loops, we demonstrate that the profile of outflow fluxes
Recently, it has been shown that, in the context of fluid flowat low values of the Reynolds number can be adequately
through porous media, the linear approximation based ofepresented by the distribution of electrical currents exiting
viscous flow conditiongStokes’ flow is not capable of de- an analog resistor network model. We also observe that the
scribing some crucial aspects of the phenomenon, such as tflew at the outlet sections depends on the velocity at the inlet
role of “stagnant” zones and the relevance of flow separa-and tends to become more homogeneous as the Reynolds
tion effects and inertig5]. Numerical and experimental evi- number is increased. The organization of the paper is as fol-
dence presented {6—14|, support the idea that the nonlin- lows. In Sec. Il, we present the characteristics of the numeri-
ear effects arising from the contribution of inertial forces oncal model and related parameters. The results are then pre-
the transport of momentum can also have a strong influencgented and discussed in Sec. Ill where we also develop a
on the properties of flow through branched structures. binary model to represent fluid flow in this type of geometry.
With regard to physiological implications, Wilquem and The results for a tree with loops are shown in Sec. IV and the

We investigate fluid flow through channel networks with
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concluding considerations are presented in
Sec. V.
KT
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Here, the independent variablesandy denote the position
in the treeu andv are the components of the velocity vector  FIG. 1. Subset of the computational mesh composed of triangu-
in the x and y directions, respectively, and is the local lar elements used to solve the Navier-Stokes and continuity equa-
pressure in the system. The relevant physical properties aions in a tree without loops.

the flowing system are the densjptyand the viscosityw of

the fluid. In our simulations, we use air as the fluid each of the conservation equations is satisfied throughout the
(p=1.225 kgm3,u=1.7894x10 °kgm™! s7!) and flow field. Residuals are computed by summing the imbal-
consider nonslip boundary conditions at the entire solid fluidance in each equation for all cells in the domain. The residu-
interface. In addition, a uniform velocity profile is assumedals for each flow variablée.qg., velocity, pressure, et@ive

at the inlet of the first generation channel whereas at the exitsa measure of the error magnitude in the solution at each
of the last generation branches, the changes in velocity rateteration. In general, a solution can be considered well con-
are assumed to be zetgradientless boundary conditions verged if the normalized residuals are on the order 0f*10
The Reynolds number is defined as=ReVd/w, whered is  In all simulations we performed, convergence is considered
a characteristic length chosen to be the width of the firsto be achieved only when each of the normalized residuals
generation channel andis the inlet velocity. The numerical fall below 10 3. For a given resolution of the numerical
solution of Eqs(1)—(3) for the velocity and pressure fields in mesh, we usually perform an additional 100 iterations to test
the ramified structure is obtained through discretization bythe stability of the converged solution. A typical profile of
means of the control volume finite difference technique. Thehe residuals versus iteration number for a converged solu-
complex geometries involved in the tree of channels maketion is shown in Fig. 2. Finally, it is worth mentioning that
the creation of structured grids comprising quadrilateral elebecauseof the nonlinearity of the equation set being solved, it
ments very difficult, if not prohibitive. To overcome this

problem, we use an unstructured mésee Fig. 1 based on 100
triangular grid elements of a Delaunay netwdik7]. For 1
example, in the case of a five generation tree without loops,

a total of 17864 cells generates satisfactory results when , o1 1 ‘.';,:v Residuals
compared with numerical meshes of small resolutidiffer- s o | continuity
ences are smaller than 1% in the outlet mass fluxe€ke 2 W

. . . . 3 [N} - - - x-momentum
integral form of the governing equatiofi®—(3) is then con- T oot 4 i - N
sidered at each triangular element of the numerical grid to ] B y-momentum
produce a set of coupled nonlinear algebraic equations which <

are pseudolinearized and solved using sheprLE algorithm 0001

[18]. For nonlinear problems which are strongly influenced
by boundary conditions, the stability and convergence char-
acteristics of a numerical method are difficult to demonstrate.
In spite of this, both properties have been exhaustively ¢ ' ' ' ' ' ' ' ' :

. . . 4] 50 100 150 200 250 300 350 400 450
checked for our computational simulations. These tests have lterations
been performed through numerical experiments before using
a given solution in our study. The criteria for convergence F|G. 2. Typical convergence profile obtained from our numeri-
that we used in the simulations is defined in terms of thecal simulations. Since the residuals are still decreasing after conver-
“residuals” which provide a measure of the degree to whichgence is achieved, we can consider the solution to be stable.
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is not generally possible to obtain a solution by fully substi-
tuting the improved values for each variable which have
been generated by the approximate solution of the finite dif-
ference equation. Convergence can still be achieved, how-
ever, byunder-relaxationwhich reduces the change in each
variable produced during each iteration. Especially for con-
ditions of the high Reynolds number, a large number of it-
erationgimore than 3000 stepss needed due to the very low
under-relaxation parameters that are necessary to ensure con-
vergence.

Ill. TREE WITHOUT LOOPS

The geometrical model for the tree without loops consists
of a two-dimensional symmetrical cascade of rectangular
channels branching along generations of bifurcationsn(
=3). In most of the simulations, we use a fixed bifurcation
anglef between daughter branches in all generations as well
as realistic physiological dimensions from lung morphology
[19]. Due to the symmetry with respect to the axis of the first
generation channel, the flow field in only half of the domain
needs to be calculated. The flow distribution in two-
dimensional incompressible systems can be conveniently de-
scribed in terms of the stream functiog, which is usually
defined asu=dy/dy andv= —dy/ox. Figure 3a) shows

the contour plot of the stream function in a three generation ‘“

f

1 ©

Re = 1200

tree with branching angl@=60° and Re=100. The lengths
and widths of the channels correspond to the lengths and
diameters of generations 3-5 in the morphological model of
the bronchial tree proposed by Horsfigdtlal. [19]. As ex-
pected, the streamlines are equally distributed among the
channels at low Reynolds conditions. As a consequence, we
observe identical mass fluxes at the outlets of the terminal
branchegterminals 0-3 in Fig. @]. In this situation of
viscous flow, the system displays a linear behavior which
validates the analogy between fluid flow in a cascade of
branches and electrical transport in a network of ideal resis- {on ool

tors[1]. At high Re values, however, the nonlinear contribu-

tion from the convective terms in Eqgél) and (2) becomes

relevant. The effect of inertial forces on the flow field is to g 3 (a) Contour plot of the stream function in a three gen-
produce an uneven distribution of outlet fluxes in the treegration tree with bifurcation anglé=60° and Re=100. Fluid is
[see Fig. 8)]. By visual inspection of the flow pattern, we pushed from top to bottom throughout the tree. Also shown is the
note that the flux partitioning between pairs of daughteminary representation of each outlet bran@). Same as ina) but
branches in the last generatifterminals 0 and 1 and termi- for a higher Reynolds number (R&200).(c) Same as ir(b) but

nals 2 and 3 in Fig. @)] favors the branches which are for #=120°. The larger the number of streamlines in a branching
aligned(1 and 2 with the inlet channel at the first genera- element, the higher the flux. Note that the streamlines are equally
tion. Figure 4 shows a closeup plot of the velocity vectorsdistributed among the last generation channel&ajpwhile in (b)
through a three generation tree calculated at R200. Due and(c) the outlets 1 and 2 have higher fluxes compared to outlets 0
to symmetry, the mass flux in the first branehif Fig. 4) is and 3. Also, the number of streamlines and thus the fluxes at outlets
equally divided between the branchBgto the lefy andC 1 and 2 are larger ifb) than in(c).

(to the righ} composing the second generation of channels.

However, the velocity profiles at the beginning of thesethan those entering the outer branchBsandG). When the
branches are asymmetric with velocity peaks which are sigbranches are sufficiently long and/or the Reynolds number is
nificantly shifted towards the inner walithe walls close to low, a symmetric shape of the velocity profile at the exits of
the axis of branct\). If the lengths of segmenBandC are  branchesB andC can be reestablished by viscous forces. In
not too large and Re is sufficiently high, the flow still dis- this situation, the mass fluxes B and C split into equal
plays an asymmetric profile at the distal ends of chanBels amounts at the bifurcation sections, maintaining, therefore,
andC. As a consequence, the fluxes entering the next gerthe symmetry of the flow distribution. We examine the con-
eration daughter brancheB @ndE of branchB andF andG  tribution of inertia to the flow nonuniformity by computing
of branch C) are different: the fluxes entering the inner the flow rates at the eight exits on the left-hand side of a five
branches £ andF that are aligned with branch) are higher generation tree. As shown in Fig. 5, at high Re, the local
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0.20

FIG. 4. Closeup of the velocity vector field in the first three
generations of channels comprising a tree without loops (Re
=1200). Theeffect of inertia on the fluid flow is revealed by the  FIG. 6. Flux distributionsG at the outlet branches in a five
asymmetric distribution of velocity vectors in branch@sand C. generation tree for Re150 (circle), 300 (square, 600 (triangle),
Vectors with large magnitudes are substantially shifted toward the 200 (full circle), 2400 (full squaré, and 4800(full triangle). The
direction of the axis of channe\. The propagation of this effect inset compares the fluid flow simulations (R&200, circlé and the
throughout the remaining generations is responsible for the fludinary tree model = 0.58, full circle.
heterogeneity at the outlets of the flowing system at high Re con-

ditions. smaller branching angle. This observation is quantified in

Fig. 7, where we show, for two different values 6f the

flow partitioning between any two daughter bramhesdependence on Re of the rat@, /G, of the fluxes at the
(branches that belong to the same parémtors the branch  jternal (G,) and external G,) outlets of the third genera-
which is aligned with the grandparent brar{ehanch located o pranches. As expected, for a fixed branching angle, both
two generations above in the same castaBellowing the curves show a gradual increase®j/G, with the Reynolds

enumeration scheme presented in Fig. 5, Fig. 6 shows hoWumber. Furthermore, for high Re, the value®f/G, be-
the outlet fluxes normalized by the total flux penetrating theComes significantly larger fof=60° than for=120°. In

system(through the first generation chanhdﬂecome PrO= order to elucidate the effects of the branching arfyten the
gressively more heterogeneous as Re increases from 150%

4800. As can be seen, the normalized flow rates at exits %ymmetry of flow, additional fiuid dynamic simulations

410 bstantially i q d to th tt ith three generation trees have been performed. We denote
an are substantially increased compared 1o those a l?ﬁ"e branching angle between the first generation of daughter

other exits when the convective mechanism of momentu”ﬂ)ranchesls andC in Fig. 4) by 6, and the branching angle
transport becomes a dominating mechanism in determiningewveen the second geﬁerationlof daughter brandbeang

the fluid flow fiel_d. The_ branching angié has a strong in- E, andF andG in Fig. 4) by 6,. The simulations are carried
fluence on the distribution of flows. A comparison betweenOut according to the following specificationd) The bifur-

the contour plots shown in Figs(i and 3c) clearly indi- cation angled, is fixed to 120°.(2) The internal exit

Soranches(branchef andF in Fig. 4) are kept aligned with

the internal branches is greatly enhanced for a tree with the root (branch A) independently ofé, (the bifurcation
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FIG. 5. Contour plot of the stream function in a five generation
tree without loops for high Reynolds number conditions (Re FIG. 7. Dependence of the flux rat®, /Gy on the Reynolds
=4800). The width of the first channelds=1.8 cm and the length number Re in three generation trees for two different values of the
isl=12 cm. bifurcation anglef.
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FIG. 8. Dependence of the flux rat®, /G, on the bifurcation FIG. 9. Dependence of the flux rati®,/G, on the pressure

angle 6; between daughter branches at the second generation. Thgop ratio Ap,/Apg in three generation treesf€120° and Re
simulations have been performed with three generation trees at high 1200).
Reynolds conditions (Re1200). The bifurcation angle at the sec-
ond generation i%,=120°. change when the pressure at any of the exits is modified. We
therefore calculate the average pressure at the inlet by inte-

angle between branchds and C). (3) We use the same g 4ting over all fluid cells connected with the interface. The
Reynolds number for all simulations (R€200). Note that  egyjts of these simulations are displayed in Fig. 9 where we
for Re=1200, the flux ratio with equal bifurcation angles ghow the dependence of the mass flux raig/G, on the
(01=10,=120°) is G1/Go=1.47 (see Fig. T. (4) Simula-  ratio petween the pressure drops of outletsAp{) and
tions are then carried out for different values of the bifurca-q (Apo) in relation to the static pressure at the inlet of the
tion angled, (6,=60°,80°,100°, and 120°). first generation channel. For a ratlop; /Ap, of unity, we

In Fig. 8, we clearly see that increasing the anglérom  recover the flux ratio G, /Go=1.47) found for Re: 1200
0,=60° to ;=120° results in a Qecrease of the flux ratio 5nq9=120° (see Fig. 7. More importantly, we observe that
G1/Go from 2.52 to 1.47, respectively. Based on these and, order to reestablish a “symmetric” flux partitioning
the previous simulations, we conclude that there are two 9€QG,/G,=1) one has to applAp;/Ap,~0.43. Thus, a
metrlcal factors to be conS|dereq.Wh'en analyzing the bra”ChS'trong asymmetry of the outlet pressures (variability
ing angle effect on the flux partitioning. >100%) is necessary in order to compensate for the flux

_ (i) Ifwe keep the internal exit branchésranches= andF 55y mmetry due to inertial effects at high Reynolds numbers.
in Fig. 4 aligned with the root, a large branching angle

between outlets 0 and 1 will correspond to a high flux ratio
G1/Gy. This effect is solely due to the relative alignment of
the outlets(third generation branchgwith the inlet branch. All the fluid dynamic features presented in the preceding
(i) The second factor refers to the horizontal shift be-section can be combined in a model to qualitatively describe
tween the inlet and internal outlet branches caused by thihe role of convection on transport of fluid in a self-similar
first branching angled,. That is, while the outlet branches branching system of two-dimensional channels. First, we as-
and the root remain paralleE(andA, andF andA), for a  sume that every branch of the next generation forms an angle
larger 6, the horizontal distance between branckeandA  of =6 degrees with its parent. Also, we assume that the
(and F and A) increases. This shift reduces the flux ratio Reynolds number is sufficiently high at the entrance so that it
considerably and is responsible for the lower flux ratio atis also high at each bifurcation. As a consequence, the flux
higher branching angles. partitioning can be taken to be approximately constant and
Thus, for a given fixed Re, whe#, and 6, increase to- independent of the Reynolds numldsee Fig. 7. Thus, we
gether as in Fig. 7, due to the increased horizontal distancassume that the flux partitioning is constant throughout the
between the rootbranchA) and the internal outlet branches tree so that the flow rates in any two daughter branches di-
(E andF), the flux partitioning decreases. Finally, we per-vide always in a fixed proportion op/q, where p+q
form a series of simulations with a tree of three generations=1, p>q, andp=1f(Re,f). The effects of convective mo-
and branching angles of 120° to demonstrate that the asynmentum transport are then mimicked by assigning the larger
metry effect caused by inertia is rather robust against théactor p to the flow of the daughter branch which is aligned
outlet pressure boundary conditions. A constant flow rate igvith its grandparent. All branches in generatioare num-
imposed at the inlet of the system (R&200) and we gradu- bered from 0 to 2-*—1. In this way, the branck in gen-
ally change the pressure at the end of the internal branchesationn— 1 bifurcates to brancheskand X+ 1 in genera-
[outlets 1 and 2 in Fig. @)] keeping the stati¢gauge pres- tion n. The branch R forms an angle— ¢ and the branch
sures of the external branchgsutlets 0 and 3 in Fig. @] 2k+1 forms an anglet+ # with the parent. Following this
constant(equal to zero, for referengeObviously, since the scheme, the branctk2-1 (odd) is aligned with its grandpar-
flow rate is fixed at the inlet, the pressure at the inlet willent if k is even and the branchk2evern is aligned with its

A. Binary model
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FIG. 11. Distribution of normalized fluxeg(x) defined in Eq.

(5) as a function of the normalized branch numbet the outlets of

i Y] 1 L Y] 1 a five generatiortthick line) and a ten generatiofthin line) tree.
x x These steplike functions are calculated using the binary tree model

with a partitioning ratiog/p=0.75.
FIG. 10. Construction of the self-affine landscape of normalized P g ratiod’p

fluxes g(x) defined in Eq.(5) as a function of the normalized o )

branch number. Successive applications of @j.using the step-  tiply gn(x) by a scaledy; if k is even or multiplyg,(x) by a
like functiongs(x) shown in(a) generatesb) g4(x), (c) gs(x), and  scaled mirror ofg, if k is odd, i.e.,

(d) gs(X)-

n-2y,__ H H
grandparent ik is odd. As a consequence, a branch will be Ons1(X)= 9n(X)g3(2" X~ K) itk is even,

aligned with its grandparent if the two last digits in its binary [ 9n(X)ga(k+1-2""2x) if k is odd.
representation are different. For a tree of three generations,

the branches should have flows@&, p/2, p/2, q/2, corre-  For a fixedx e [0,1), the sequence of numbagg(x) result-
sponding to their binary codes 00, 01, 10, and 11, respeGng from this iterative process)=3,4, ... converges to a

tively. By induction, for a tree witlm generations, the flow in valueg(x) €[0,1]. Therefore, we can define the function
branchk should then be

=i n 0,1, 7
G(n,k):%pl(k)qn*Z*Nk)’ 4) 9(x) n'_rjlg (x) xe[0,) (7)

wherel (k) is the number obwitchesfrom 1 to 0 and from 0  Which is also non-negative, bounded by 1 and everywhere
to 1 in the binary representation &fwith n—1 d|g|ts For discontinuous in the interleO,l). For instance, the maxi-
instance, in a tree of five generations, the branches witfum flowg™®*=1 will be located ak=2/3 since its binary
numbers 5 and 10 will have the maximum flow @¥/2 be-  representation is 0.101010.. which has the maximum
cause their binary representations, 0101 and 1010, respeiossible number ofwitchesin the sequence. In the limit
tively, both have 3switches This simple binary model pre- —, g(X) is equal to O for everx except values ok which
dicts a flux distribution that is compatible with the direct are periodic(with period 01) in their binary representation.
solution of the Navier-Stokes equatiofsee Fig. 6 inset  For all the other numberk—2—s(k)—« asn—, and
Due to the symmetry of the tree, we only need to analyze thBenceg(x)—0. It can be readily shown that the following
flow distribution through its first half. Thus, for generation  identity is also valid in the limin—oe:

we can normalize the flows in branchk by the factor
p"~2/2 and define the steplike flux function,

(g n—2-1(k)
si0-[3

g(x)=(—) g(2™x) for Osx<2—1m. ©)
5

This relationship(8) indicates that the landscapsee Fig.
for k/2" 2<x<(k+1)/2""? with k=0,1,...,(22-1). 11) generated from the fluxes at the exits of the ramified
In this way, forn=3 andxe[0,1), g,(x) is a well defined structure is self-affind20], i.e., g(x)><b~“g(bx), with an
right-continuous and positive function with an upper boundexponenta = log;o(p/q)/log;2. If 2™x has binary represen-
of 1. The four first functions of this serieg4,94,95, and  tation Ox;X, . ..x0101 ... thenitis easy to show thatis
ge) are shown in Fig. 10. The functiog, has 22 steps represented by 0.00...XX, . ..x0101 ... which hasm
which are sequentially numbered beginning from 0. We ob-switches less than the binary representation &f.2Hence,
serve thag,; can be generated frog), if we simply mul-  we obtain the prefactorg(p)™.
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FIG. 13. Flux distribution at the outlet branches of a nine gen-
eration tree with loops for Rel (circle). The results from an ana-
1 2 3 4 5 log electrical network mode(stap are in agreement with the fluid

o ] ~dynamic simulations. The solid line is the analytical solution of the
FIG. 12. Contour plot of the stream function in a five generationjnfinite network[21].

tree with loops. In this case, fluid is pushed from top to bottom

throughout the tree at low Reynolds conditions €Rlg. Note that V. DISCUSSION
the number of streamlines is larg@nd thus the fluxes are higher
at the center channels in the last generation. The classical correspondence between fluid flow and elec-
trical current in analog resistor networks certainly represents
IV. TREE WITH LOOPS a simple and useful approximation, especially when the fluid

) ) _domain is a complex geometry, as in the case of trees of
The detailed geometry of the tree with loops adopted inchannels with or without loops studied in the present work.

the present study is analogous to a subset of a hexagonghis analogy, valid only for low Reynolds numbers or, more

lattice whose bonds are two-dimensional channels with equajrecisely, in the situation of Stoke’s flow, is consistent with
lengths and widthgsee Fig. 12 Hence, the fluid domainis e assumption that fluid flow in such complicated mor-

essentially a sequence of closed loops of channels. Due 10 i, g|ogies should not depend on the relative direction of the
geometry, the flow field in this structure has a distinct anGspannels. Therefore, if Hagen-Poiseuille’s flow is locally ap-
opposite treqd as compared with the flow field in a tree With'plicable, only the dimensionsvidth and length of the rect-

out loops. Figure 12 shows the contour plot of the streamynqjar channels composing the ramified structure should
function in a five generation tree at a low Reynolds condi-conripute to their correspondinfydraulic conductances.

tions (Re=1). In contrast with Fig. @) where we observe @ |5 his case, a change in the bifurcation angles between
uniform distribution of streamlines among branches in they, ghter channels in the branching cascade should have no
same generation at low values of Re, Fig. 12 shows a high&lffect on the momentum transport and continuity through the
density of streamlines in the center chanriefsannels which  yee 5 situation which is entirely analogous to the distribu-

are close to the axis of the first generation chanrielFig.  {jon of currents in an electrical resistor network. At increased
13 we show the profile of outlet mass fluxes at low Re in a

nine generation tree. In the limit of low Reynolds numbers,
the flux on the looped structure can also be found by solving
the analog electrical circuit problef21]. The analytic solu-
tion that gives the velocities in the looped structure when the 0.14
number of generationk—o can be found by a conformal
mapping of an equilateral triangle onto the upper semicircle

in the complex plane with two charges Ir'{—i) and —In(z

+i). As shown in Fig. 13, this analytic solution is in good ¢
agreement with the flux distribution obtained from the nu- 010 |
merical solution of the Navier-Stokes equations. At high
Reynolds numbers, the flow pattern at the outlet level departs
from that obtained by the electrical analog mog¢el. 14). 008 I
As we gradually increase Re, the profile of outlet fluxes be-

comes more uniform due to a relative increase in the flows 006
carried by the segments far from the symmetry axis of the e o284
system. In contrast to the fluid flow characteristics observed

in a tree without loops, the effect of inertia here is to “delo-  FIG. 14. Flux distribution at the outlet branches of a nine gen-
calize” the velocity field so that a condition of homogeneouseration tree with loops for Rel (circle), 10 (triangle up, 100
flow field is generated. (squarg, and 100Q(triangle down.

0.16

0.12

o



PRE 60 FLUID FLOW THROUGH RAMIFIED STRUCTURES 5493

Reynolds numbers, however, the convective mechanism djions that match the size of the region. This would then
momentum transport becomes relevant and the changes #@ilow for a homogeneous ventilation distribution which is
the relative directions of the channe(sccurring at the required for the normal functioning of the lung. _
bifurcations/curvelscan significantly affect the flow pattern. ~ The second possible mechanism is related to the existence
More specifically, we note that the flow field in a tree with- Of l0ops in the tracheobronchial tree. These loops, called
out loops becomes more heterogeneous at high Reyno|§§)llateral airways, are channels connecting different subtrees
numbers, as opposed to the highly uniform distribution ofin the tracheobronchial structuf@7,23. The primary role
fluxes found for low Re flow. Interestingly, the effect of collateral airways may play in the functioning of the lung has
inertia on the flow through a tree with loops is to enhance thé)een a controversial issue in the literature. Our simulations
transport of momentum and then promote a more unifor ay_prowde a new interpretation for their phy5|olog|cal_
distribution of streamlines among different fluid pathways. unction. Figure 14.shows that when the Reynolds _number IS
To some extent, this corresponds to a “delocalization” thlgh, flow distribution at the outlets of the tree with loops

velocity field. Thus, the presence of loops in a tree structunl,‘ends to become more homogeneous. Thus, similarly to the

can have very important consequences on the establisheecfifeCt of Iopps .that compensate for the asymmetfy n ﬂ(.)W
flow field. caused by inertia, the collateral airways may help in provid-

With regard to the physiological implications of our re- ing a more homogeneous flow delivery to the periphery and

sults, we note that Fig. 4 suggests that the relative flowger_}%?rgegﬂlra;'%]u?;?itéfsgzghme riid channel walls. How-
delivered to the various outlets of this symmetric structure ' 9 |

become increasingly asymmetric with a large variability forﬁg\?vr’istrll:ralervivnagsszremceonTpczlfgttgttr#ecggﬁéz|}iheeff|g<r:]tg.|e\1/tvehrgln
large Re. Applied to steady flow conditions during inspira- 9 9 ' '

tion, our model predicts that the amount of air and hencg:gzzﬁ:g rz;i?gstzihirzv;r}rq V}g{}?\?&?ﬁ?;z:ggshigcz ';;zisr:jslpwﬁlrsl
oxygen delivered to the periphery of the lung is also veryp P . '

heterogeneously distributed among the alveoli where gas eﬁg\r,va'?'/h(ﬂgmf(rct)svr ((jj?si:?batjstﬁnsnavr\]/ﬁlSt?edZﬁzrlggﬁlnRt?én%ISZrBum_
change occurs. This appears to be in contradiction to the fact. ' y

that time constant inequalities among parallel pathways arg?s%meonstgik;?eihrgf?hnee;?gétﬁ:f;;;lﬁqwthh;ﬁ:\?v%en\?vgﬁ' é;;}s
relatively small in the normal lung and hence ventilation P Y

distribution should be fairly uniform and primarily deter- locally regulate airway wall compliance so that flow hetero-

mined by the distribution of local compliancég2]. The geneity and hence ventilation distribution becomes more uni-

. ; form.
flow heterogeneity at the outlets of the branching cascade While the above mechanisms may act to reduce flow het-

certainly depends on the loads and their heterogeneities at- . o "

. . rogeneity, they are not sufficient to make the flow distribu-
tached to the last generation channels. In the airway tre? N uniform. Unfortunatelv. large trees are impossible to
these loads are the compliance of the alveolar wall tissue a J??aat numeri.call our bin}a/} trge model is hoveever ver
the compressibility of the alveolar gas. One may argue thauseful as it cany. rovide insiyht into the efféct of inert’ia or)ll
flow asymmetry in the bronchial tree is very likely to be a b 9

consequence of the unequal pressure distribution at the Ionge flow dlgt_ﬂbgﬂon n large trees. The self-affine StF“CF“re
{ flow partitioning indicates a heterogeneous flow distribu-

generation branches due to heterogeneities in the complia 1L - We expect that this feature does not depend on the ap-
elements. Experimental data obtained using the alveolar cap-. '’ P P P

sule techniqué25] provide evidence that at low frequencies .
: - angles and constaptalong the tree. In realityp may depend
(close to the breathing rate 0.1 Hz), the coefficient of . o
. in a complex manner on the actual geometry. However, it is

variation of alveolar pressures in phase with lung volume i : ]
between 2% and 6%. Our simulation results in Fig. 9 indi-s[he mean value op that determines flow distribution in the

cate that this amount of variability in pressures at the exits i€v i”ﬁzsri[nzesa]\‘/;:ng \52152’ c:;ur,_ Elmf5£\(l)eogge\r,1viriiﬂoni\};eses'
significantly smaller than the variability necessary to elimi- g q=-= : 9

nate the flux heterogeneity due to convective inertia. Thus'?”o‘s’g at Rﬁﬁc 1200. This value IS consistent wih=0.58

alveolar pressure nonhomogeneity in the lung cannot comUsed in the binary tree model to fit the flow data. The small
i e ) .

pensate for the large flux heterogeneity, yet ventilation disya”ab'“ty (~6% of the meahconfirms our assumption that

tribution (fluxes delivered to the peripherys reasonably the p/q ratio is approximately constant throughout the gen-

uniform. The question therefore arises as to what are thgratfloln_s for su1t°f|C|_entI%/hlargf(]=c: Rte \;alues. Thte eépon}ensﬂ
mechanisms in the real lung that can balance flow imbalancg>€u! 1N guan ifying the effect of asymmetry due to flow

due to nonlinear inertial effects? Below, we discuss threé)artitior)ing in large tregs. Using the values piandq re-
possible mechanisms. ported in Ref[26], we find «=0.9 for the human lung and

First, our simulation uses a symmetric Cayley tree,®= 1-6 for the more asymmetric dog lung.

whereas the geometrical structure of the airway tree is highly Fmally,.we note tha% 'L wlas arguet:li Iln 5@4] that the ical
asymmetric. In Horsfield's airway tree models, asymmetr symmetric structure of the lung Is solely due to geometrica

not only means that some branches are missing, but the Gq_onstraints. Our study, however, suggests a possible different

ameters of the branches toward a shorter pathway decreaS89in for this structure since the asymmetry of the bronchial
faster leading to smaller size subtrd@$]. Thus, one pos- tree can be influenced by the fluid flow asymmetry combined
sible mechanism that may compensate for flow imbalanc&/th the requirement of homogeneous ventilation.

due to nonlinear inertial effects is structural asymmetry. In ACKNOWLEDGMENT

other words, the central airways receiving smaller flgdise

to inertig may serve correspondingly smaller alveolar re- We thank CNPq, NSF, and FUNCAP for support.

proximations in the binary tree model, namely, constant
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