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Fluid flow through ramified structures
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We investigate the fluid flow through two-dimensional ramified structures by direct simulation of the
Navier-Stokes equations. We show that for trees withn generations, the flow distribution strongly depends on
the Reynolds number Re. Specifically, for a tree without loops the flow becomes highly heterogeneous at high
Re. For a tree with loops, on the other hand, the flow distribution tends to be more uniform at increased Re
conditions. We show that these apparently contradictory behaviors have the same origin, namely, the effect of
inertia on the momentum transport in the channels of the ramified geometry. In order to simulate the propa-
gation of the flow imbalance throughout the tree without loops, we develop a simple model that incorporates
the basic fluid dynamics features of the system. For large trees, the results of the model indicate that the
distribution of flow at the outlet branches can be described by a self-affine landscape. Finally, we argue that the
nonuniform partitioning of flow found for the structure without loops may contribute to the morphogenesis and
functioning of the bronchial tree.@S1063-651X~99!18210-2#

PACS number~s!: 47.60.1i, 87.19.Uv
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I. INTRODUCTION

The problem of fluid flow in branching geometries aris
when studying a variety of phenomena in physics, geolo
and biology. Examples range from fluid flow through poro
media@1#, a problem that has important implications for c
talysis and oil recovery, to respiration@2# and blood circula-
tion @3#, where the mechanism of flow bifurcation plays
crucial role. The simplest approach to this problem cons
of emulating the channels available for flow with a set
equivalent impedance elements. Such an approximation
sumes a linear relation between the flux and the pres
gradient along the channels. Calculations based on linear
pedance models are abundant in physics and physiolog
problems regardless of their limitation in reproducing so
realistic details. For instance, when applied to steady or
riodic flow through symmetric airway bifurcations, the
models predict a perfectly homogeneous and synchron
flow distribution @4#. A network of bifurcating and merging
channels is a simple model of porous media. The fluid fl
through such a structure can also be mimicked by the di
bution of electrical currents in a network of resistors. Ho
ever, this analogy cannot account for the combined effect
fluid inertia together with the geometry of the pore spa
Recently, it has been shown that, in the context of fluid fl
through porous media, the linear approximation based
viscous flow conditions~Stokes’ flow! is not capable of de-
scribing some crucial aspects of the phenomenon, such a
role of ‘‘stagnant’’ zones and the relevance of flow sepa
tion effects and inertia@5#. Numerical and experimental ev
dence presented in@6–14#, support the idea that the nonlin
ear effects arising from the contribution of inertial forces
the transport of momentum can also have a strong influe
on the properties of flow through branched structures.

With regard to physiological implications, Wilquem an
PRE 601063-651X/99/60~5!/5486~9!/$15.00
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Degrez @7# investigated numerically the steady inspirato
flow through two-dimensional airway models with three ge
erations of branches. They were able to confirm previo
experimental observations@8,13# revealing a significant im-
balance in the flow distribution between the medial and
eral branches of the tree. Zhaoet al. @15# studied, both nu-
merically and experimentally, the steady inspiratory a
expiratory flow in a three-dimensional airway system
single symmetric bifurcations. They showed that the flo
results obtained from computational simulations are in go
agreement with the experiments, especially during exp
tion. In the present study, we address the question of fl
asymmetry in a large network of bifurcating segments and
the presence of loops.

We investigate fluid flow through channel networks wi
two different types of geometries. The first is a tree of up
five generations of branches, with no loops. The second
tree of up to nine generations of identical channels that fo
a subset of a hexagonal lattice. For the first type of geome
we show that, in spite of the symmetry of the structure,
flow distribution in the last generation segments becom
highly heterogeneous at high Reynolds numbers. For the
with loops, we demonstrate that the profile of outflow flux
at low values of the Reynolds number can be adequa
represented by the distribution of electrical currents exit
an analog resistor network model. We also observe that
flow at the outlet sections depends on the velocity at the i
and tends to become more homogeneous as the Reyn
number is increased. The organization of the paper is as
lows. In Sec. II, we present the characteristics of the num
cal model and related parameters. The results are then
sented and discussed in Sec. III where we also develo
binary model to represent fluid flow in this type of geomet
The results for a tree with loops are shown in Sec. IV and
5486 © 1999 The American Physical Society
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concluding considerations are presented
Sec. V.

II. MATHEMATICAL MODEL AND NUMERICAL
SOLUTION

The mathematical description for the detailed fluid m
chanics in a branching cascade of two-dimensional chan
is based on the steady state form of the Navier-Stokes
continuity equations@16# for momentum and mass conserv
tion, respectively,

rFu
]u

]x
1v

]u

]yG5 2
]p

]x
1mF]2u

]x2 1
]2u

]y2G , ~1!

rFu
]v
]x

1v
]v
]yG5 2

]p

]y
1mF]2v

]x2 1
]2v
]y2G , ~2!

]u

]x
1

]v
]y

50. ~3!

Here, the independent variablesx andy denote the position
in the tree,u andv are the components of the velocity vect
in the x and y directions, respectively, andp is the local
pressure in the system. The relevant physical propertie
the flowing system are the densityr and the viscositym of
the fluid. In our simulations, we use air as the flu
(r51.225 kg m23,m51.789431025 kg m21 s21) and
consider nonslip boundary conditions at the entire solid fl
interface. In addition, a uniform velocity profile is assum
at the inlet of the first generation channel whereas at the e
of the last generation branches, the changes in velocity r
are assumed to be zero~gradientless boundary conditions!.
The Reynolds number is defined as Re[rVd/m, whered is
a characteristic length chosen to be the width of the fi
generation channel andV is the inlet velocity. The numerica
solution of Eqs.~1!–~3! for the velocity and pressure fields i
the ramified structure is obtained through discretization
means of the control volume finite difference technique. T
complex geometries involved in the tree of channels ma
the creation of structured grids comprising quadrilateral e
ments very difficult, if not prohibitive. To overcome th
problem, we use an unstructured mesh~see Fig. 1! based on
triangular grid elements of a Delaunay network@17#. For
example, in the case of a five generation tree without loo
a total of 17 864 cells generates satisfactory results w
compared with numerical meshes of small resolution~differ-
ences are smaller than 1% in the outlet mass fluxes!. The
integral form of the governing equations~1!–~3! is then con-
sidered at each triangular element of the numerical grid
produce a set of coupled nonlinear algebraic equations w
are pseudolinearized and solved using theSIMPLE algorithm
@18#. For nonlinear problems which are strongly influenc
by boundary conditions, the stability and convergence ch
acteristics of a numerical method are difficult to demonstra
In spite of this, both properties have been exhaustiv
checked for our computational simulations. These tests h
been performed through numerical experiments before u
a given solution in our study. The criteria for convergen
that we used in the simulations is defined in terms of
‘‘residuals’’ which provide a measure of the degree to wh
-
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each of the conservation equations is satisfied throughou
flow field. Residuals are computed by summing the imb
ance in each equation for all cells in the domain. The resi
als for each flow variable~e.g., velocity, pressure, etc.! give
a measure of the error magnitude in the solution at e
iteration. In general, a solution can be considered well c
verged if the normalized residuals are on the order of 1023.
In all simulations we performed, convergence is conside
to be achieved only when each of the normalized residu
fall below 1023. For a given resolution of the numerica
mesh, we usually perform an additional 100 iterations to t
the stability of the converged solution. A typical profile o
the residuals versus iteration number for a converged s
tion is shown in Fig. 2. Finally, it is worth mentioning tha
becauseof the nonlinearity of the equation set being solve

FIG. 1. Subset of the computational mesh composed of trian
lar elements used to solve the Navier-Stokes and continuity e
tions in a tree without loops.

FIG. 2. Typical convergence profile obtained from our nume
cal simulations. Since the residuals are still decreasing after con
gence is achieved, we can consider the solution to be stable.
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is not generally possible to obtain a solution by fully subs
tuting the improved values for each variable which ha
been generated by the approximate solution of the finite
ference equation. Convergence can still be achieved, h
ever, byunder-relaxationwhich reduces the change in ea
variable produced during each iteration. Especially for c
ditions of the high Reynolds number, a large number of
erations~more than 3000 steps! is needed due to the very low
under-relaxation parameters that are necessary to ensure
vergence.

III. TREE WITHOUT LOOPS

The geometrical model for the tree without loops cons
of a two-dimensional symmetrical cascade of rectangu
channels branching alongn generations of bifurcations (n
>3). In most of the simulations, we use a fixed bifurcati
angleu between daughter branches in all generations as
as realistic physiological dimensions from lung morpholo
@19#. Due to the symmetry with respect to the axis of the fi
generation channel, the flow field in only half of the doma
needs to be calculated. The flow distribution in tw
dimensional incompressible systems can be conveniently
scribed in terms of the stream function,c which is usually
defined asu[]c/]y and v[ 2]c/]x. Figure 3~a! shows
the contour plot of the stream function in a three genera
tree with branching angleu560° and Re5100. The lengths
and widths of the channels correspond to the lengths
diameters of generations 3–5 in the morphological mode
the bronchial tree proposed by Horsfieldet al. @19#. As ex-
pected, the streamlines are equally distributed among
channels at low Reynolds conditions. As a consequence
observe identical mass fluxes at the outlets of the term
branches@terminals 0–3 in Fig. 3~a!#. In this situation of
viscous flow, the system displays a linear behavior wh
validates the analogy between fluid flow in a cascade
branches and electrical transport in a network of ideal re
tors @1#. At high Re values, however, the nonlinear contrib
tion from the convective terms in Eqs.~1! and ~2! becomes
relevant. The effect of inertial forces on the flow field is
produce an uneven distribution of outlet fluxes in the t
@see Fig. 3~b!#. By visual inspection of the flow pattern, w
note that the flux partitioning between pairs of daugh
branches in the last generation@terminals 0 and 1 and termi
nals 2 and 3 in Fig. 3~b!# favors the branches which ar
aligned~1 and 2! with the inlet channel at the first gener
tion. Figure 4 shows a closeup plot of the velocity vecto
through a three generation tree calculated at Re51200. Due
to symmetry, the mass flux in the first branch (A in Fig. 4! is
equally divided between the branchesB ~to the left! and C
~to the right! composing the second generation of chann
However, the velocity profiles at the beginning of the
branches are asymmetric with velocity peaks which are
nificantly shifted towards the inner walls~the walls close to
the axis of branchA). If the lengths of segmentsB andC are
not too large and Re is sufficiently high, the flow still di
plays an asymmetric profile at the distal ends of channeB
and C. As a consequence, the fluxes entering the next g
eration daughter branches (D andE of branchB andF andG
of branch C) are different: the fluxes entering the inn
branches (E andF that are aligned with branchA) are higher
-
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than those entering the outer branches (D andG). When the
branches are sufficiently long and/or the Reynolds numbe
low, a symmetric shape of the velocity profile at the exits
branchesB andC can be reestablished by viscous forces.
this situation, the mass fluxes inB and C split into equal
amounts at the bifurcation sections, maintaining, therefo
the symmetry of the flow distribution. We examine the co
tribution of inertia to the flow nonuniformity by computin
the flow rates at the eight exits on the left-hand side of a fi
generation tree. As shown in Fig. 5, at high Re, the lo

FIG. 3. ~a! Contour plot of the stream function in a three ge
eration tree with bifurcation angleu560° and Re5100. Fluid is
pushed from top to bottom throughout the tree. Also shown is
binary representation of each outlet branch.~b! Same as in~a! but
for a higher Reynolds number (Re51200).~c! Same as in~b! but
for u5120°. The larger the number of streamlines in a branch
element, the higher the flux. Note that the streamlines are equ
distributed among the last generation channels in~a!, while in ~b!
and~c! the outlets 1 and 2 have higher fluxes compared to outle
and 3. Also, the number of streamlines and thus the fluxes at ou
1 and 2 are larger in~b! than in ~c!.
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flow partitioning between any two daughter branch
~branches that belong to the same parent! favors the branch
which is aligned with the grandparent branch~branch located
two generations above in the same cascade!. Following the
enumeration scheme presented in Fig. 5, Fig. 6 shows
the outlet fluxes normalized by the total flux penetrating
system~through the first generation channel! become pro-
gressively more heterogeneous as Re increases from 15
4800. As can be seen, the normalized flow rates at exi
and 10 are substantially increased compared to those a
other exits when the convective mechanism of momen
transport becomes a dominating mechanism in determin
the fluid flow field. The branching angleu has a strong in-
fluence on the distribution of flows. A comparison betwe
the contour plots shown in Figs. 3~b! and 3~c! clearly indi-
cates that for high Re the tendency in which the flow fav
the internal branches is greatly enhanced for a tree wit

FIG. 4. Closeup of the velocity vector field in the first thre
generations of channels comprising a tree without loops
51200). Theeffect of inertia on the fluid flow is revealed by th
asymmetric distribution of velocity vectors in branchesB and C.
Vectors with large magnitudes are substantially shifted toward
direction of the axis of channelA. The propagation of this effec
throughout the remaining generations is responsible for the
heterogeneity at the outlets of the flowing system at high Re c
ditions.

FIG. 5. Contour plot of the stream function in a five generat
tree without loops for high Reynolds number conditions (
54800). The width of the first channel isd51.8 cm and the length
is l 512 cm.
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smaller branching angle. This observation is quantified
Fig. 7, where we show, for two different values ofu, the
dependence on Re of the ratioG1 /G0 of the fluxes at the
internal (G1) and external (G0) outlets of the third genera
tion branches. As expected, for a fixed branching angle, b
curves show a gradual increase ofG1 /G0 with the Reynolds
number. Furthermore, for high Re, the value ofG1 /G0 be-
comes significantly larger foru560° than foru5120°. In
order to elucidate the effects of the branching angleu on the
asymmetry of flow, additional fluid dynamic simulation
with three generation trees have been performed. We de
the branching angle between the first generation of daug
branches (B andC in Fig. 4! by u1 and the branching angle
between the second generation of daughter branches (D and
E, andF andG in Fig. 4! by u2. The simulations are carried
out according to the following specifications.~1! The bifur-
cation angleu2 is fixed to 120°. ~2! The internal exit
branches~branchesE andF in Fig. 4! are kept aligned with
the root ~branch A) independently ofu1 ~the bifurcation

e

e

x
n-

FIG. 6. Flux distributionsG at the outlet branches in a fiv
generation tree for Re5150 ~circle!, 300 ~square!, 600 ~triangle!,
1200 ~full circle!, 2400 ~full square!, and 4800~full triangle!. The
inset compares the fluid flow simulations (Re51200, circle! and the
binary tree model (p50.58, full circle!.

FIG. 7. Dependence of the flux ratioG1 /G0 on the Reynolds
number Re in three generation trees for two different values of
bifurcation angleu.
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5490 PRE 60M. P. ALMEIDA et al.
angle between branchesB and C). ~3! We use the same
Reynolds number for all simulations (Re51200). Note that
for Re51200, the flux ratio with equal bifurcation angle
(u15u25120°) is G1 /G051.47 ~see Fig. 7!. ~4! Simula-
tions are then carried out for different values of the bifurc
tion angleu1 (u1560°,80°,100°, and 120°).

In Fig. 8, we clearly see that increasing the angleu1 from
u1560° to u15120° results in a decrease of the flux ra
G1 /G0 from 2.52 to 1.47, respectively. Based on these a
the previous simulations, we conclude that there are two g
metrical factors to be considered when analyzing the bran
ing angle effect on the flux partitioning.

~i! If we keep the internal exit branches~branchesE andF
in Fig. 4! aligned with the root, a large branching ang
between outlets 0 and 1 will correspond to a high flux ra
G1 /G0. This effect is solely due to the relative alignment
the outlets~third generation branches! with the inlet branch.

~ii ! The second factor refers to the horizontal shift b
tween the inlet and internal outlet branches caused by
first branching angleu1. That is, while the outlet branche
and the root remain parallel (E andA, andF andA), for a
largeru1 the horizontal distance between branchesE andA
~and F and A) increases. This shift reduces the flux ra
considerably and is responsible for the lower flux ratio
higher branching angles.

Thus, for a given fixed Re, whenu1 andu2 increase to-
gether as in Fig. 7, due to the increased horizontal dista
between the root~branchA) and the internal outlet branche
(E and F), the flux partitioning decreases. Finally, we pe
form a series of simulations with a tree of three generati
and branching angles of 120° to demonstrate that the as
metry effect caused by inertia is rather robust against
outlet pressure boundary conditions. A constant flow rat
imposed at the inlet of the system (Re51200) and we gradu
ally change the pressure at the end of the internal bran
@outlets 1 and 2 in Fig. 3~a!# keeping the static~gauge! pres-
sures of the external branches@outlets 0 and 3 in Fig. 3~a!#
constant~equal to zero, for reference!. Obviously, since the
flow rate is fixed at the inlet, the pressure at the inlet w

FIG. 8. Dependence of the flux ratioG1 /G0 on the bifurcation
angleu1 between daughter branches at the second generation.
simulations have been performed with three generation trees at
Reynolds conditions (Re51200). The bifurcation angle at the se
ond generation isu25120°.
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change when the pressure at any of the exits is modified.
therefore calculate the average pressure at the inlet by
grating over all fluid cells connected with the interface. T
results of these simulations are displayed in Fig. 9 where
show the dependence of the mass flux ratioG1 /G0 on the
ratio between the pressure drops of outlets 1 (Dp1) and
0 (Dp0) in relation to the static pressure at the inlet of t
first generation channel. For a ratioDp1 /Dp0 of unity, we
recover the flux ratio (G1 /G051.47) found for Re51200
andu5120° ~see Fig. 7!. More importantly, we observe tha
in order to reestablish a ‘‘symmetric’’ flux partitioning
(G1 /G051) one has to applyDp1 /Dp0'0.43. Thus, a
strong asymmetry of the outlet pressures (variabi
.100%) is necessary in order to compensate for the
asymmetry due to inertial effects at high Reynolds numbe

A. Binary model

All the fluid dynamic features presented in the preced
section can be combined in a model to qualitatively descr
the role of convection on transport of fluid in a self-simil
branching system of two-dimensional channels. First, we
sume that every branch of the next generation forms an a
of 6u degrees with its parent. Also, we assume that
Reynolds number is sufficiently high at the entrance so tha
is also high at each bifurcation. As a consequence, the
partitioning can be taken to be approximately constant
independent of the Reynolds number~see Fig. 7!. Thus, we
assume that the flux partitioning is constant throughout
tree so that the flow rates in any two daughter branches
vide always in a fixed proportion ofp/q, where p1q
51, p.q, andp5 f (Re,u). The effects of convective mo
mentum transport are then mimicked by assigning the lar
factor p to the flow of the daughter branch which is aligne
with its grandparent. All branches in generationn are num-
bered from 0 to 2n2121. In this way, the branchk in gen-
erationn21 bifurcates to branches 2k and 2k11 in genera-
tion n. The branch 2k forms an angle2u and the branch
2k11 forms an angle1u with the parent. Following this
scheme, the branch 2k11 ~odd! is aligned with its grandpar-
ent if k is even and the branch 2k ~even! is aligned with its

he
gh

FIG. 9. Dependence of the flux ratioG1 /G0 on the pressure
drop ratio Dp1 /Dp0 in three generation trees (u5120° and Re
51200).
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grandparent ifk is odd. As a consequence, a branch will
aligned with its grandparent if the two last digits in its bina
representation are different. For a tree of three generati
the branches should have flows asq/2, p/2, p/2, q/2, corre-
sponding to their binary codes 00, 01, 10, and 11, resp
tively. By induction, for a tree withn generations, the flow in
branchk should then be

G~n,k!5
1

2
pl (k)qn222 l (k), ~4!

wherel (k) is the number ofswitchesfrom 1 to 0 and from 0
to 1 in the binary representation ofk with n21 digits. For
instance, in a tree of five generations, the branches w
numbers 5 and 10 will have the maximum flow ofp3/2 be-
cause their binary representations, 0101 and 1010, res
tively, both have 3switches. This simple binary model pre
dicts a flux distribution that is compatible with the dire
solution of the Navier-Stokes equations~see Fig. 6 inset!.
Due to the symmetry of the tree, we only need to analyze
flow distribution through its first half. Thus, for generationn,
we can normalize the flowG in branch k by the factor
pn22/2 and define the steplike flux function,

gn~x!5S q

pD n222 l (k)

~5!

for k/2n22<x,(k11)/2n22 with k50,1, . . . ,(2n2221).
In this way, forn>3 andxP@0,1), gn(x) is a well defined
right-continuous and positive function with an upper bou
of 1. The four first functions of this series (g3 ,g4 ,g5, and
g6) are shown in Fig. 10. The functiongn has 2n22 steps
which are sequentially numbered beginning from 0. We
serve thatgn11 can be generated fromgn if we simply mul-

FIG. 10. Construction of the self-affine landscape of normaliz
fluxes g(x) defined in Eq.~5! as a function of the normalized
branch number. Successive applications of Eq.~6! using the step-
like functiong3(x) shown in~a! generates~b! g4(x), ~c! g5(x), and
~d! g6(x).
s,

c-

th

ec-

e
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tiply gn(x) by a scaledg3 if k is even or multiplygn(x) by a
scaled mirror ofg3 if k is odd, i.e.,

gn11~x!5H gn~x!g3~2n22x2k! if k is even,

gn~x!g3~k1122n22x! if k is odd.
~6!

For a fixedxP@0,1), the sequence of numbersgn(x) result-
ing from this iterative process,n53,4, . . . converges to a
valueg(x)P@0,1#. Therefore, we can define the function

g~x!5 lim
n→`

gn~x! xP@0,1!, ~7!

which is also non-negative, bounded by 1 and everywh
discontinuous in the interval@0,1). For instance, the maxi
mum flowgmax51 will be located atx52/3 since its binary
representation is 0.1010101 . . . which has the maximum
possible number ofswitchesin the sequence. In the limitn
→`, g(x) is equal to 0 for everyx except values ofx which
are periodic~with period 01) in their binary representation
For all the other numbersk222s(k)→` as n→`, and
henceg(x)→0. It can be readily shown that the followin
identity is also valid in the limitn→`:

g~x!5S q

pD m

g~2mx! for 0<x,
1

2m
. ~8!

This relationship~8! indicates that the landscape~see Fig.
11! generated from the fluxes at the exits of the ramifi
structure is self-affine@20#, i.e., g(x)}b2ag(bx), with an
exponenta5 log10(p/q)/ log102. If 2mx has binary represen
tation 0.x1x2 . . . xk0101 . . . ,then it is easy to show thatx is
represented by 0.000 . . .x1x2 . . . xk0101 . . . which hasm
switches less than the binary representation of 2mx. Hence,
we obtain the prefactor (q/p)m.

d

FIG. 11. Distribution of normalized fluxesg(x) defined in Eq.
~5! as a function of the normalized branch numberx at the outlets of
a five generation~thick line! and a ten generation~thin line! tree.
These steplike functions are calculated using the binary tree m
with a partitioning ratioq/p50.75.
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IV. TREE WITH LOOPS

The detailed geometry of the tree with loops adopted
the present study is analogous to a subset of a hexag
lattice whose bonds are two-dimensional channels with eq
lengths and widths~see Fig. 12!. Hence, the fluid domain is
essentially a sequence of closed loops of channels. Due t
geometry, the flow field in this structure has a distinct a
opposite trend as compared with the flow field in a tree w
out loops. Figure 12 shows the contour plot of the stre
function in a five generation tree at a low Reynolds con
tions (Re51). In contrast with Fig. 3~a! where we observe a
uniform distribution of streamlines among branches in
same generation at low values of Re, Fig. 12 shows a hig
density of streamlines in the center channels~channels which
are close to the axis of the first generation channel!. In Fig.
13 we show the profile of outlet mass fluxes at low Re in
nine generation tree. In the limit of low Reynolds numbe
the flux on the looped structure can also be found by solv
the analog electrical circuit problem@21#. The analytic solu-
tion that gives the velocities in the looped structure when
number of generationsk→` can be found by a conforma
mapping of an equilateral triangle onto the upper semicir
in the complex planez with two charges ln(z2i) and2 ln(z
1i). As shown in Fig. 13, this analytic solution is in goo
agreement with the flux distribution obtained from the n
merical solution of the Navier-Stokes equations. At hi
Reynolds numbers, the flow pattern at the outlet level dep
from that obtained by the electrical analog model~Fig. 14!.
As we gradually increase Re, the profile of outlet fluxes
comes more uniform due to a relative increase in the flo
carried by the segments far from the symmetry axis of
system. In contrast to the fluid flow characteristics obser
in a tree without loops, the effect of inertia here is to ‘‘del
calize’’ the velocity field so that a condition of homogeneo
flow field is generated.

FIG. 12. Contour plot of the stream function in a five generat
tree with loops. In this case, fluid is pushed from top to bott
throughout the tree at low Reynolds conditions (Re51). Note that
the number of streamlines is larger~and thus the fluxes are highe!
at the center channels in the last generation.
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V. DISCUSSION

The classical correspondence between fluid flow and e
trical current in analog resistor networks certainly represe
a simple and useful approximation, especially when the fl
domain is a complex geometry, as in the case of trees
channels with or without loops studied in the present wo
This analogy, valid only for low Reynolds numbers or, mo
precisely, in the situation of Stoke’s flow, is consistent w
the assumption that fluid flow in such complicated mo
phologies should not depend on the relative direction of
channels. Therefore, if Hagen-Poiseuille’s flow is locally a
plicable, only the dimensions~width and length! of the rect-
angular channels composing the ramified structure sho
contribute to their correspondinghydraulic conductances.
In this case, a change in the bifurcation angles betw
daughter channels in the branching cascade should hav
effect on the momentum transport and continuity through
tree, a situation which is entirely analogous to the distrib
tion of currents in an electrical resistor network. At increas

FIG. 13. Flux distribution at the outlet branches of a nine ge
eration tree with loops for Re51 ~circle!. The results from an ana
log electrical network model~star! are in agreement with the fluid
dynamic simulations. The solid line is the analytical solution of t
infinite network@21#.

FIG. 14. Flux distribution at the outlet branches of a nine ge
eration tree with loops for Re51 ~circle!, 10 ~triangle up!, 100
~square!, and 1000~triangle down!.
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Reynolds numbers, however, the convective mechanism
momentum transport becomes relevant and the change
the relative directions of the channels~occurring at the
bifurcations/curves! can significantly affect the flow pattern
More specifically, we note that the flow field in a tree wit
out loops becomes more heterogeneous at high Reyn
numbers, as opposed to the highly uniform distribution
fluxes found for low Re flow. Interestingly, the effect o
inertia on the flow through a tree with loops is to enhance
transport of momentum and then promote a more unifo
distribution of streamlines among different fluid pathway
To some extent, this corresponds to a ‘‘delocalization’’
velocity field. Thus, the presence of loops in a tree struct
can have very important consequences on the establi
flow field.

With regard to the physiological implications of our r
sults, we note that Fig. 4 suggests that the relative flo
delivered to the various outlets of this symmetric struct
become increasingly asymmetric with a large variability
large Re. Applied to steady flow conditions during inspir
tion, our model predicts that the amount of air and hen
oxygen delivered to the periphery of the lung is also ve
heterogeneously distributed among the alveoli where gas
change occurs. This appears to be in contradiction to the
that time constant inequalities among parallel pathways
relatively small in the normal lung and hence ventilati
distribution should be fairly uniform and primarily dete
mined by the distribution of local compliances@22#. The
flow heterogeneity at the outlets of the branching casc
certainly depends on the loads and their heterogeneitie
tached to the last generation channels. In the airway
these loads are the compliance of the alveolar wall tissue
the compressibility of the alveolar gas. One may argue
flow asymmetry in the bronchial tree is very likely to be
consequence of the unequal pressure distribution at the lo
generation branches due to heterogeneities in the comp
elements. Experimental data obtained using the alveolar
sule technique@25# provide evidence that at low frequencie
~close to the breathing rate of'0.1 Hz), the coefficient of
variation of alveolar pressures in phase with lung volume
between 2% and 6%. Our simulation results in Fig. 9 in
cate that this amount of variability in pressures at the exit
significantly smaller than the variability necessary to elim
nate the flux heterogeneity due to convective inertia. Th
alveolar pressure nonhomogeneity in the lung cannot c
pensate for the large flux heterogeneity, yet ventilation d
tribution ~fluxes delivered to the periphery! is reasonably
uniform. The question therefore arises as to what are
mechanisms in the real lung that can balance flow imbala
due to nonlinear inertial effects? Below, we discuss th
possible mechanisms.

First, our simulation uses a symmetric Cayley tre
whereas the geometrical structure of the airway tree is hig
asymmetric. In Horsfield’s airway tree models, asymme
not only means that some branches are missing, but the
ameters of the branches toward a shorter pathway decr
faster leading to smaller size subtrees@19#. Thus, one pos-
sible mechanism that may compensate for flow imbala
due to nonlinear inertial effects is structural asymmetry.
other words, the central airways receiving smaller flows~due
to inertia! may serve correspondingly smaller alveolar
of
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gions that match the size of the region. This would th
allow for a homogeneous ventilation distribution which
required for the normal functioning of the lung.

The second possible mechanism is related to the existe
of loops in the tracheobronchial tree. These loops, ca
collateral airways, are channels connecting different subtr
in the tracheobronchial structure@27,23#. The primary role
collateral airways may play in the functioning of the lung h
been a controversial issue in the literature. Our simulati
may provide a new interpretation for their physiologic
function. Figure 14 shows that when the Reynolds numbe
high, flow distribution at the outlets of the tree with loop
tends to become more homogeneous. Thus, similarly to
effect of loops that compensate for the asymmetry in fl
caused by inertia, the collateral airways may help in prov
ing a more homogeneous flow delivery to the periphery a
hence ventilation distribution.

Third, our simulations assume rigid channel walls. Ho
ever, the airways are compliant structures in the lung. W
flow is large in a segment, due to the Bernoulli effect, late
pressure near the airway wall decreases and hence transm
pressure across the compliant wall increases. As a result
airway diameter decreases and so does local Reynolds n
ber. Thus, flow distribution will be altered in the nearb
segments in a manner that reduces flow heterogeneity.
also possible that the smooth muscle in the airway wall
locally regulate airway wall compliance so that flow heter
geneity and hence ventilation distribution becomes more u
form.

While the above mechanisms may act to reduce flow h
erogeneity, they are not sufficient to make the flow distrib
tion uniform. Unfortunately, large trees are impossible
treat numerically. Our binary tree model is, however, ve
useful as it can provide insight into the effect of inertia
the flow distribution in large trees. The self-affine structu
of flow partitioning indicates a heterogeneous flow distrib
tion; we expect that this feature does not depend on the
proximations in the binary tree model, namely, const
angles and constantp along the tree. In reality,p may depend
in a complex manner on the actual geometry. However, i
the mean value ofp that determines flow distribution in th
periphery@26#. Using three, four, and five generation tree
we find an average value ofp/q51.4560.03 which gives
p'0.59 at Re51200. This value is consistent withp50.58
used in the binary tree model to fit the flow data. The sm
variability ('6% of the mean! confirms our assumption tha
the p/q ratio is approximately constant throughout the ge
erations for sufficiently large Re values. The exponenta is
useful in quantifying the effect of asymmetry due to flo
partitioning in large trees. Using the values ofp and q re-
ported in Ref.@26#, we find a50.9 for the human lung and
a51.6 for the more asymmetric dog lung.

Finally, we note that it was argued in Ref.@24# that the
asymmetric structure of the lung is solely due to geometr
constraints. Our study, however, suggests a possible diffe
origin for this structure since the asymmetry of the bronch
tree can be influenced by the fluid flow asymmetry combin
with the requirement of homogeneous ventilation.
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