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Improvement of the local prediction of chaotic time series
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In this paper we explore the effect peudofalseneighbor points, which are true neighbor points in the
reconstructed attractor, but which are considered not suitable to be used when local methods are adopted to
predict the chaotic time series. In our approach,dhaeighbor points are used to reduce the influence of the
pseudofalse neighbor points, thereby improving the performance of the local prediction of the chaotic time
series[S1063-651X99)11111-5

PACS numbes): 05.45—-a

I. INTRODUCTION networks 16]. Clearly, this kind of approach has the disad-

Predicting th luti f phvsical ; f b vantage that if new information is taken into account then all
~redicting the evolution ot physical Syslems 1rom obsers, . parameters of the model may change, and then a long
vations is one of the most pressing challenges of moder

. ) . ) . arameter estimation time may be required. Local methods
time series analysis. Since chaotic systems are frequently e come this drawback by utilizing only part of the history.
encountered in various fields ranging from physics andy, particular, if Xy, is needed, only the set of points of

chemistry to biology and o_ther:sZ pr_e_'diction of chaotic syS—econstructed spaceXy(q):1<g<K, which are close
tems thus has great practical significance. Although deterenough to the predicting poiny, are used to fit the local
ministic chaos is characterized by positive Lyapunov expofynctionf. We can fit a new function for each timé+t and
nents, and thus intrinsically associated with a loss ofhe prediction is given by the value of the fitting function at
predictability, a great deal of research efforts which focus onx, . ,, whereXy,, itself is also a predicted value. The ap-
the nonlinear prediction of chaotic time serigs-17] has  proach allows for considerable flexibility in building a glo-
shown that reliable short term predictions can still bebally nonlinear model, while fitting a few parameters in each
achieved. Furthermore, in addition to the importance of thdocal patch.
predictions themselves, the methodology based on the pre- However, two difficulties arise from this approach. One is
dictability of the systems under study has proved to be an deciding how to choose suitable neighbor points, and the
powerful tool to analyze nonlinear systems in general. Foother is the question of how long into the predicted series we
example, from the cross-correlation function between ob<€an trust. In this paper, we explore the existence of a class of
served values and the predicted values through these techeighbor points in phase space which are not suitable for use
niques, it is possible to estimate the largest Lyapunov expain local prediction — we call thespseudofalseneighbor
nent of the dynamic§l13]. Also, when the fit or agreement points. We propose a method to choose alternative and more
achieved using nonlinear modeling is better than the oneelevant neighbor pointsel neighbor points and thus im-
obtained using probabilistic models, it is reasonable to asprove the performance of the local prediction. As a by-
sume that there is a deterministic mechanism which governgroduct, the prediction process, which adopts our procedure
the process under study, providing in this way a tentativeo select the neighbor points, will in many cases stop auto-
criterion to discriminate between chaos and noisematically (i.e., there will be noe neighbor points around
[4,14,15,17. some predicted point in the phase spagken the predicted
The predictions of chaotic time series are based on thé&rajectory deviates significantly from the original one. Thus it
reconstruction of strange chaotic attractors from an observecan give us a modest warning of the reliability of the pre-
time seriex(t) [20]. It was showr20] that an embedding of dicted series.
the attractors can be obtained by constructing a veXtor The paper is organized as follow: In Sec. Il we will briefly
=(x(t),x(t+7), ... x(t+(d—1)7))"T from time-delayed review the local prediction method, and in Sec. Ill we will
coordinates, where is the embedding dimension andis  define theeP neighbor point. The improvement of the local
the delay time. Then the dynamics on the attractor is a maprediction by usinge® neighbor points instead of the ordi-
f:RI—RY with x, = f(x,), wherex, is the current state and nary e neighbor points is described in Sec. IV Finally, con-
Xy is the future state. Thus if we find an approximatigrof  clusions and some discussions of this approach are pre-
f, then we can use thig as a prediction function. sented.
Most prediction techniques can be grouped into two major
plasses:_glo_bal and local. Ir_1 global methods, the v_vhole Past || | ocAL PREDICTION OF CHAOTIC TIME SERIES
information is used for predictions about the evolution of the
system under study. One example is the method of neural The first step to establish the local prediction model is to
transform the observed scalar sigsali=1,2,... N with
the sample intervabt, into M-dimensional time-delay vec-
*Electronic address: scip7254@nus.edu.sg tors: X;=(Si,Si—r, - - - ,Si—(m—1)r), With the delay timer
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=rét. For sufficiently largeM, the trajectory of reconstructed
vectorsX; reflects the true state space evolution of chaotic
systems.

Deterministic predictions assume that the trajectory gov-
erned by a deterministic continously mappiRglf the state
at timej was similar to the presenX; (and thus close in the
phase spaggecontinuity of F guarantees that; . ; will also
be close toX; . ;. Let X; be the present state. To predict, 4,
we can find all points within a region in phase space of
radius €, i.e., the e neighbors ofX; :Xik,k=1,2, oK,
where the indek does not refer to time order, and denote the
image of each VeCtdl(ik ainkH. The predicted valué(i+l
is then estimated from theseimages. Specifically, for each

Xi, we define the displacememk=xik—xi . Xi41 is then

computed aX;;=X;+A;, whereA, is determined by local
interpolation. Different methods thus appear based on the
different methods of local interpolation, where the local lin-
ear method is most attractive due to its simplicity. This ap-
proach works very well for low-dimensional chaotic sys-
tems. There are also many ways to improve the performanct
of the prediction, e.g., by reducing the weight given to near o )
neigthc))rs which aregthe?;selves r?eighbors%n ti?ne' by allow: FIG. _1. A sche_matlc view |IIustrat_|ng the effect of the pseudo-
ing K to vary with X, ; by using regularization techniques; false neighbor point. In the figur&, is the pseudofalse neighbor
1 3 . . S
and by adopting other metrics instead of the normal EuclidPoIt of Xn, when using local prediction methods.

ean metric. : -
nent. It is then clear that for the purpose of local prediction,

Xn, is much better thalxnl; evenX,, is closer to the refer-
Ill. PSEUDOFALSENEIGHBORS AND €” NEIGHBORS ence point. We call such points pseudofalse neighbor points

One of the critical steps to establish the local prediction©r l0cal predictions. In our experience, the the error of the
model is to find the neighbor points of a given point in thelocal prediction method always bursts at a certain region in
training data set. Our choice of neighbors is limited by thethe State spacéRef. [10] also observes this phenomenon
finite size of the data set, by the stochastic noise, and mo e believe that an |mpor_tant reason for this is the_ existence
importantly by the complex structure of the attractor. Thesé! these pseudofalse neighbors. Pseudofalse neighbors fre-
limitation are the main source of errors in the analysis. Fingduently occur near saddle points in phase space. For ex-
ing legitimate neighbors of a given point is one of the most2MPI€, in the Lorenz system, when usirf) to predict,
critical tasks in obtaining reliable results. False neighbor&!Most all divergence of the predicted trajectory from the
can be caused by improper embedding, such as an insufffiginal one burst when the trajectory approackés =0,
cient large embedding dimensi§21]. In this paper, we are where near crossing of tra_ljectorles happen_s and the number
not concerned with this kind of difficulty, since it cannot be Of Pseudofalse neighbors increases dramatidakie Fig. 2
altered after we reconstruct the state space using a particular
embedding method. The question of how to perform an op- IV. IMPROVEMENT OF THE LOCAL PREDICTION
timal reconstruction for the purpose of the prediction will be
considered elsewhere.

While considering the particular problem of prediction,

Our approach to eliminate the influence of the pseudofalse
neighbors is to choose th& neighbor instead of ordinary
there is at one other kind édlseneighbor. From the point of neighbor to fit the local function. Suppose we have the scalar

ghaotic time seriegx(n),n=1,2, ... N}. According to the

the view of attractor reconstruction, they are true neighbo Kens' th h ¢
points in the original phase space, but will greatly influence! 2kens’ theonf20], we can reconstruct the state space from

the performance of the local fitting of the dynamics. Wethe delayed coordinates. The state space can be written as

_ T H
iilustrate this effect in Fig. 1, where the projection of the Xn=(X(n),x(n—=7), ... x(n—d(7—1)))’, where 7 is the

three-dimensional state space is described. Projected trajeté'-ne lag, and is the embedding dimension. It can be shown

tories appears to cross near the pofpt Suppose the pre- tEatdZ_Z_DOI+l (wher(_eDO i?f_th_e box-countinlglj dimension_of
dicting (reference point is X,,, while X, andX,,_ are two the original attractoris sufficient, but smaller embedding

. . dimensions will suffice for the purposes of forecastitg].
neighbor points ofX,, and [ X, =Xy [[<[[Xa =Xy - Note  pe’yaiue ofr can be determined by the first minimum of

that in the phase spack,, is a true neighbor oK. Itis  the mutual informatior[19] or the first zero value of the
evident that if we took this point into account for local fit- correlation function, and the embedding dimensibcan be
ting, it would decrease the fitting accuracy dramatically,decided by the nearest-false neighbor metf2s.

since the deviation at the next time is large. For a chaotic In the reconstructed state space, for a particular reference
system, this will lead to the fast amplification of error in point Xy, the ordinary e neighbor points {Xyjy.]
future predictions because of the positive Lyapunov expo=1,2, ...} satisfied|Xy,—Xy[<e for j=1,2,.... TheeP
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20 X=—oX+oy,
x(t)-x(t+1) projection of the
15 1 time-delay reconstruction Y= —XZ+IX—Y, )
of the Lorenz attractor
10 7 z=xy—bz,
5 - wherex is the amplitude of the convection motiopjs the
temperature between the ascending and descending currents,
0 z is the distortion of the vertical temperature profile from
}g linearity, ando,r, andb are dimensionless parameters. The
> 5 parameters are most commonly selected tarb€l0r =28,
andb=8/3 for a rich dynamical behavidg5].
.10 4 The standard fourth-order Runge-Kutta method is used to
solute the equationgliscarding the transientsThe time step
15 4 is set to be6=0.01, and thex values are used to reconstruct
the state space with the time lag-r 17 andd= 3. One of the
20 - projection of the reconstructed attractor is described in Fig.
2.
25 | | | | | | | : Since our main purpose is to show the improvement of the

25 20 15 10 5 0 5 10 15 20 performance of the prediction, we adopt the simplest local
prediction method, the locally constant approximation
’f(t) method. In order to predict one step into the future of the

Fig. 2 reference poinKy, we (1) find the set ofe” neighbor points

FIG. 2. Thex(t)—x(t+ ) projection of the time-delay recon- ©Of the reference point(Xy,e”) [the Euclidean metric is

struction of the Lorenz attractor described as E2), where »  Used in Eq.(1)]; (2) take the average of the values of the
=17 andd=3. one-step future prediction of these points as the predicted

state vector for the next time step,

neighbor points{Xyj p.J=12,... p=12,...} are de- 1
fined as those points satisfying Xy 1= . E

||U(XN , € )” XN(k)EU(XN,Ep)

where|U(Xy,€P)| denotes the number of the points in the

for everyj andp. Noted that whemp=0, it is equivalentto  set of U(Xy,€eP); and then(3) take first component of the
the ordinarye neighbor. This approach is in fact using a vector as the scalar predicted value.
segment of the pattern included in the training data set to Randomly selected time series with the length Nf
ensure that the predicted value does not diverge from the-10000 are used as training set, and the prediction is made
original one.(However, if the original time series generate aas far asn=400 time steps into the future. Three examples
new pattern that is distinct from the training data set, theryre shown in Figs. @)—3(c). In making the predictions, we
this method may give a wrong result. This is in generalset e=0.5, and if there is na” neighbor point of certain
caused by insufficient training data, and cannot be resolvegkference point and certajn which means that there is no
in the framework of the local prediction method’he main  such pattern in the training datae., the predicted trajectory
rationale behind this strategy is that te® neighbor points already diverge from the original opeve then stop the pre-
lie near the reference point not only in state space, but also ifliction process(In actual implementation, because of the
tangent space. The similar idea is also used to identify theorrelation between the temporally nearby points, &in
embedding dimensiof26,21], where the directions of vec- neighbor point is in most cases ah"* neighbor point also,
tors in a neighborhood are examined to exclude the falsge increasep by Ap=5 to reduce the computing timeln
crossing caused by the improperly reconstructed space. Thgg. 3a), the case ofp=3Ap, the prediction process is
pseudofalse neighbor points for prediction mentioned abovetopped around time step 110. This means that if we use
can be excluded when adopting teeneighbor points. €”=1% neighbor points, then after 110 steps, the predicted

To illustrate the improvement of the performance of localresylt is already totally unreliable. No such indicator and
prediction method by using® neighbor points, we use the information is available if we are using ordinary neighbor
Lorenz quel as an example. This model describes thﬁoints.
Rayleigh-Beard  convection arising from the two-  To measure the quality of the prediction, thestep rms
dimensional Navier-Stokes equation, which is formulated forgrror
a fluid slab of finite thickness subjected to gravity loading, e
heated from below and between the top cold and the bottom 1 , )
hot surface the temperature is held constant. The partial dif- e(p)=y k§=:1 [x(k)=x"(k,p)]%, (4)
ferential equations were transformed to a set of three ordi-
nary differential equationg23]. Later Lorenz described the whereM is the total prediction steps(k) is the observed
way he derived the model both physically and mathemativalue, andx’ (k,p) is the predicted value using’ neighbor
cally [24]. The Lorenz equations can be written in the fol- points. Furthermore, the cross-correlation between the series
lowing forms: of predicted values and the observed values,

XnN(K) » ©)
Xng)-p— Xn—pll <€ (1)
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—— observed value

———- predicted value with p=0

- predicted value with p=3Ap
o predicted value with p=6Ap

Time step t
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—— observed value

O predicted value with p=9Ap
~~~~~~~~~~~ predicted value with p=6
— —- predicted value with p=0

0 100 200 300 400
Time step t

(b)

—— observed value

——- predicted value with p=0

----------- predicted value with p=3Ap
O  predicted value with p=7Ap

0 100 200 300 400
Time step t

(c)

FIG. 3. Predicted and observed values of theoordinate of the Lorenz system using differgntThree time series with lengtN
=10000 are selected randomly from a long time series severed as the training set. 400 time steps are prediétethde=0.5.

k=M
gl [x(k)—=x][x' (k,p)—x(p)]

C(p)=

k=M

> [x(k)—x]?
k=1

k=M

> [X(kp)—x'(p)]?
k=1

©)

are also calculated as a functionpfind prediction timek,
wherex(k) represents the observed valugss the average

value of the observed valug/ (k,p) represents predicted
values usingeP neighbor points, and’(p) is the corre-
sponding average value.

The results are shown in Figs. 4 and 5. It can be seen
clearly that the modified local prediction method improved
the performance greatly. Because choosing legitimate neigh-
bor points is the inevitable step for local modeling, our
method is thus valuable to more sophistical local prediction
methods. Furthermore, it should be pointed out that it cannot
be ascertained that this technique will improve the perfor-
mance greatly for every system, since the rationale behind
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P FIG. 5. The cross correlation of the predicted and observed val-
ues is described as a function pf The training data set and the

FIG. 4. Root-mean-squalems) errors are described as a func- L
goarameters are the same as in Fig. 4.

tion of p. The training data set is the same as the one used in Fi

3(b) op=1, and the predicted time stéy»=400. problem is not so serious. As we mentioned above, we
) ) ) ) ~ should usesP neighbors to construct our predictor, where

this technique is based on the existence of pseudofalse neighnyays larger than 0&° neighbors just the ordinary neigh-

bor points as defined. However, we believe that the proposegrg, while the noise carkick offthe legitimate point from

techniques exploits more of the available information in thee set ofeP neighbor, there is just little possibility tick a

data sets, and is likely to lead to more satisfactory results. OWrong point into oure? neighbors wherp is large. So the

the practical side, since recurrence is a fundamental charagyise may decrease the length of the effective prediction, but
teristics of nonlinear dynamical systems, we can always eXy;ill not raise the risk of absurd prediction.

pect to find pseudofalse neighbors for use in the local pre- |, conclusion. we have explored the problem of the

diction. pseudofalse neighbor points in phase space for local predic-
tion, and developed a method using t#feneighbor points
V. DISCUSSION AND CONCLUSION instead of ordinarye neighbor points. The improvement of
the performance is significant, even for the simplest local
is systematically increased, there seems to exist a criticgionstant approximation method. E§sent|ally, this meth_od ex-
tends the local prediction by replacing the close-by points by

value p; (cf. Figs. 4 and & around which the prediction a close-by pattern, i.e., a series of points sequentia in time
performance will change dramatically. Beyopd, there is This approach utilizes effective the temporal correlation

effectively no change in the performance of the method. " X ) X .
How the critical valuep, varies with different reference in ad.dlpon to the spatial correlation, while the ordinary local
points, system dynamics, and difference local fitting methocprg.d'ctt'or:hr?ettﬁo‘j usgst only t.?.e Ilattelr. O'ur tLesut!ts also
needs further study. In our simulation, there seems to be . cate that there exists a critical valyk in the time

an optimalp value after averaging over the whole attractor.wmdow' Itis a_Iso Important to note that the Iogal prediction
This may suggest the optimal time window for prediction method has its intrinsic limitation as mentioned above,

The problem however is that this “optimal” value is sensi- e.g., It cannot pred|qt_ the new pattern but only the
tive to the diameter of the neighborhoad and thus the ¢X|stlng ones in the training data set. W.h".e our method can
effect of the finite length of the time series should be con-Mprove _the performance of local predlc_tlor_L It Is not our
sidered purpose in this paper to overcome these intrinsic difficulties.
Another important problem is the influence of the noise. It
is well known that any method based on tangent space is
sensitive to nois¢21], because both points used to form the  X.G. gratefully acknowledges the research scholarship
tangent vector are inaccurate. In our method, however, thisupport at the National University of Singapore.

An interesting phenomenon is that when the paramgter
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