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Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals
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We report a crossover from chaotic to self-organized critical dynamics in the Portevin–Le Chatelier effect in
single crystals of Cu–10% Al in tension as a function of the applied strain rate. For low and intermediate strain
rates, we provide an unambiguous support for the existence of chaotic stress drops by showing the existence of
a finite correlation dimension and a stable positive Lyapunov exponent. A surrogate data analysis rules out the
possibility that the time series is due to a power law stochastic process. As the strain rate is increased, the
distributions of stress drops and the time intervals between the stress drops change from peaked to power law
type with an exponent close to unity reminiscent of self-organized critical state. A scaling relation compatible
with self-organized criticality relates the various exponents. The absence of a finite correlation dimension and
a stable positive Lyapunov exponent at the highest strain rate also supports the evidence of crossover.
@S1063-651X~99!11011-0#

PACS number~s!: 05.45.2a, 62.20.Mk
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I. INTRODUCTION

Repeated stress drops followed by periods of reload
are observed in many interstitial and substitutional meta
alloys when tensile specimens are deformed in a cer
range of strain rates and temperature@1,2#. This phenomenon
is referred to as the Portevin–Le Chatelier~PLC! effect or
jerky flow. It is one of the best studied forms of plast
instability due, in particular, to the interest in removing t
loss of ductility and surface roughness associated with
phenomenon. The physical origin of the effect is the d
namic interaction of two defect populations, namely, mob
dislocations and solute atoms. Mobile dislocations which
carriers of plastic strain rate move jerkily between the o
stacles provided by other dislocations. Solute atoms diff
in the stress field generated by mobile dislocations, and
ther pin them while they are arrested at obstacles. When
system is in a certain range of strain rates and temperatu
the diffusion time of the solute atoms is of the order of t
waiting time of dislocations at obstacles, a force versus ne
tive dislocation velocity relationship may occur which at t
specimen’s scale translates to negative strain rate sensi
of the flow stress@2–6#. As a consequence, the classic
picture of the PLC effect is that of an instability of the un
form state of tensile deformation due to the anomalous ne
tive strain rate sensitivity@5#. The instability manifests itsel
by nucleation of bands of localized plastic deformation w
a typical width of 10–100mm, each band being associate
with a stress drop on the stress versus time curve. Depen
on the temperature and strain rate conditions, these b
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may or may not propagate along the sample@3#. Different
possibilities of correlation in space~or the lack of it! of the
bands also exist. Thus a rich variety of spatiotemporal
havior is displayed. The objective of the present paper is
analyze the structure of the serrated stress versus time s
in single crystal samples when the applied strain rate is v
ied.

The influence of concepts and methods of dynamical s
tems on the studies of the PLC effect has been considera
In the last few years, starting from a dynamical descripti
attempts have been made to recover the complex spatio
poral patterns emerging from this instability~see, e.g., the
collection of papers in Ref.@3#!. Our interest in the dynami-
cal analysis of the serrations was triggered off by a pred
tion of chaotic stress drops based on a model due to An
thakrishna and co-workers@6#. These authors used a couple
set of equations for the evolution of three dislocation pop
lations, one of which interacts with solute atoms. The
equations are dynamically coupled to the ‘‘machine eq
tion’’ which determines the stress rate in the sample a
result of constant applied strain rate and the resultant pla
strain rate. Apart from predicting several general features
the PLC effect including the most dominant feature, name
the negative strain rate sensitivity of the flow stress,
model also predicts that chaotic behavior should be obse
within a certain range of applied strain rates@7,8#. The pos-
sibility of chaos was also suggested later by Jeanclaudeet al.
@9# in the framework of a spatiotemporal model for the PL
band propagation.

In order to verify this prediction, several experimen
have been carried out aimed at characterizing the structur
the recorded stress-time series. The first attempt in this
rection was performed on single crystals of Cu-Al alloys@10#
using the method of Grassberger and Procaccia@11# to esti-
mate the correlation dimension. This preliminary analy

-
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5456 PRE 60ANANTHAKRISHNA, NORONHA, FRESSENGEAS, AND KUBIN
and further results using complementary methods includ
the singular value decomposition and the positive Lyapu
exponent determination provided substantial evidence
chaotic behavior@12#, but on short data sets (;6000 points!,
often with high levels of noise. For this reason, specific
periments were performed on Al-Mg polycrystals in order
obtain reasonably long, accurate, and nearly noise-free s
signals. The analysis of these data using the correlation
mension, the singular value decomposition, the Lyapu
exponents and surrogate analysis showed unambiguo
that they are of deterministic chaotic origin@13#. There is
also a report from another group@14# who calculated only
the positive exponent on a very short time series (;2500
points!, which renders the results of the analysis less relia

A different approach to the study of the PLC stress dro
was recently undertaken@15,16# through a statistical analy
sis. This study showed that statistics of stress drops can
hibit either a peaked or a power law distribution depend
on experimental conditions such as the applied strain
and the temperature, thus suggesting various dynamica
gimes. The power law distribution is reminiscent of se
organized critical~SOC! state where events of all magnitud
occur @17#, whereas a peaked distribution is observed to
associated with chaos in the analysis of our experime
signals. The existence of a chaotic dynamics in the P
instability under one strain rate condition does not preclu
the possibility of a SOC-type dynamics under a differe
strain rate condition. This, in fact, is a distinct possibilit
since it is a spatially extended driven system with a built
threshold for the onset of stress drops@3,6#. Since our results
on chaotic stress drops were obtained at low and interm
ate strain rates, and power law distributions have been
ported at high strain rates@15,16#, in this paper we investi-
gate the possibility of a crossover in the dynamics as
strain rate is increased. Toward this aim, we use well kno
quantifiers of deterministic chaotic signals, namely, the c
relation dimension@11#, the Lyapunov spectrum@18–20#,
and a surrogate data analysis of each of the time serie
indicators of the changes as the crossover occurs. Fur
the distributions of the stress drop magnitudes and inter
are also studied for a statistical characterization. This an
sis is carried out on single crystal specimens in order to t
advantage of the wide range of strain rates that was av
able.

The outline of the paper is as follows. Section II conta
experimental details. In Sec. III, we briefly outline the me
ods used for time series analysis. We present the resul
Sec. IV. Finally, Sec. V is devoted to discussion and conc
sions.

II. EXPERIMENTS

Specimens of metallic alloys in the form of thin plates a
loaded in a tensile testing machine at a constant cross
velocity, thus providing a quasiconstant average strain
ėa . The total extension of the system is the sum of ela
and plastic parts. The elastic part itself has contributions a
ing from the extension of the sample and the machine.
so-called machine equation can therefore be written as
g
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L

ep~x,t !dxG , ~1!

whereM is the combined elastic constant of the specim
and the machine, andL is the length of the sample. We hav
neglected inertial effects since stress equilibrates at the
locity of sound on a much shorter time scale than any ot
intrinsic time scale. Thus the axial stresss is constant over
the entire sample, although it generally results from the c
tributions of many events of localized plastic deformati
occurring in different parts of the specimen. In experimen
the stress signals is monitored by a load cell located at on
end of the sample.

The experiments on Cu–10% Al single crystals were p
formed at Braunschweig Technical University. In gener
the range of strain rates where the PLC effect is seen
pends on temperature apart from other material parame
such as the alloy composition and microstructure. In the c
of Cu–10%Al, the boundary for the onset of the PLC effe
in the strain rate and temperature variables is itself comp
@21#. Thus there is no identifiable time scale with respect
which the applied strain rate can be represented in a sc
form. One point of relevance here is the fact that the P
effect is seen at relatively high temperature compared
other room temperature alloys like Al-Mg. The samples we
initially homogenized for 36 h at 1230 K. Then single crys
samples oriented for easy glide were deformed at a temp
ture of 620 K. In the domain of occurrence of the PLC effe
three files containing 43104, 23104, and 1.23104 points
were recorded at strain rates 3.331026 521, 1.7
31025 521, and 8.331025 521, respectively ~roughly
separated by a factor of 5!. The sampling rate was 20 Hz. W
shall refer to these files as PLC filesl, m, andh, respectively.

In general, in tensile loading of metallic alloys, there is
upward drift of the stress-time curve, usually referred to
strain hardening. This effect originates from the accumu
tion of dislocations in the sample. The low and intermedi
strain rate curves showed very little strain hardening. Ho
ever, the highest strain rate data showed low but noticea
strain harding which was removed in our analyses by s
tracting a moving average. Plots of the PLC filesl, m, andh
for a short duration of time are shown in Figs. 1~a!–1~c! to
give an idea of the structure of the stress drops. As can
seen, at the lowest strain rate~PLC file l ), we have large
stress drops with very few small ones. In contrast, the hi
est strain rate case~PLC file h) has numerous small drop
and fewer large ones. As will be discussed below, this w
known feature of the PLC effect is due to shortening of t
time scale of dislocation mobility as the applied strain rate
increased.

III. METHODS OF ANALYSIS

We follow conventional methods for the analysis of t
time series by calculating the correlation dimension and
Lyapunov spectrum. Both methods start with the phase sp
reconstruction of the attractor by embedding the time se
in a higher dimensional space using the time delay techni
@22#.

Consider the stress signal defined by
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@s~k!,k51,2, . . . ,N#, ~2!

where the indexk is in units of the time incrementDt. Let

jW k5@s~k!,s~k1t!, . . . ,s~k1~d21!t!#,

k51, . . . ,@N2~d21!t# ~3!

be a vector defined by embedding the signal with a ti
delay t in a d-dimensional space. Once the reconstruc
attractor is obtained, its self-similar nature is quantified
calculating appropriate dimensional quantities. The simp
is the correlation dimension which is obtained by using
popular algorithm due to Grassberger and Procaccia@11#.
The correlation integral is defined as the fraction of the pa
of points jW i and jW j whose distance is less than a specifi
value r,

C~r !5
1

Np
(
i , j

H~r 2ujW i2jW j u!, ~4!

whereH(•) is the Heaviside function andNp is the number
of pairs used in the sum. The self-similar structure is
flected in the scaling relationC(r );r n in the limit of small
r, wheren is the correlation dimension. As the embeddi
dimensiond is increased, the slope lnC(r)/ln r tends to a
constant valuen, taken as the correlation dimension. In pra
tice, due to limited length of the time series and noise sup
imposed on the signal, one looks for a scaling regime
intermediate length scales ofr, for some values of embed
ding dimension. However, the existence of a finite corre
tion dimension is not by itself a compelling reason for t
time series to be of chaotic origin, since it can also arise
to a power law stochastic process@23–25#. However, it has

FIG. 1. ~a!–~c! Time series data for the PLCl, m, andh files
showing the fine structure of the time series.
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been pointed out that it is possible to use the existence
finite correlation dimension as a method of discriminating
dynamical time series as against a stochastic one@24# by
introducing the method of surrogate data analysis. Surrog
data sets for each time series are obtained by randomi
the phases of the signal’s Fourier transform, and Fourier
verting them. Eighteen to twenty four surrogate data s
have been generated for all our original files. For each
these surrogate data sets, the slopes of lnC(r)/ln r for various
d values are calculated. If the slopes increase with the
bedding dimensiond, in contrast with the original file for
which it saturates, it can be concluded that the latter is
deterministic origin.

Since Lyapunov exponents are considered as unamb
ous quantifiers of chaotic dynamics, we have also analy
the time series for the existence of a stable positive and z
Lyapunov exponent. Conventional algorithms for calculati
the Lyapunov spectrum, including the most popular alg
rithm due to Eckmannet al. @18#, require a very long time
series which is impractical. Further, all modified algorithm
including those suited for short~such as the PLCh file! time
series@26#, also fail in the presence of noise level larger th
2% @27#. ~The noise levels in our time series are not know!
For this reason, we have effected a modification of the E
mann’s algorithm which is suitable forshort time seriesin
the presence ofhigh levels of noise. The method is outlined
and illustrated elsewhere@28,29#. Here we briefly recall the
central point. Eckmann’s algorithm relies on connecting

initial small difference vectorsjW i2jW j to the evolved differ-

ence vectors through a set of tangent matrices. The vectojW j

used as neighbors ofjW i on the reference trajectory are tho

contained within a shell sizees aroundjW i . The number of
neighbors used is usually taken to be min@2d,d14#. How-
ever, so few points cannot be expected to properly sam
the statistics of uncorrelated noise which corrupts the or
nal signal whose effect we wish to average out. Thus
basic idea is tosample the statistics of noise properly b
including enough neighbors within the shell sizees subject to
the following conditions. For a chaotic dynamics we shou
ensure that~a! the sum of the Lyapunov exponents is neg
tive as required for a dissipative system,~b! there exists a
stable zero exponent, and~c! stable values of the positive
Lyapunov exponent emerge when we vary the shell size~and
the time lag! in a certain range.~By ‘‘stable,’’ we mean
constancy as a function of these parameters. Once th
done, we expect that both the positive and zero exponen
a deterministic chaotic signal remainstableover a fair inter-
val of the shell sizees . Here we mention that this improve
algorithm is capable of detecting the existence of posit
and zero exponents for high levels of noise and short t
series (;6000), as we have shown for the Lorenz syste
with noise levels up to 15% of the mean amplitude of t
time series@28,29#. Apart from this, we have also shown th
the Lyapunov spectrum for the surrogate data sets of cha
time series do not exhibit a stable positive Lyapunov ex
nent or zero exponent as a function of the shell sizees . The
method is also capable of estimating the superposed n
level. We shall use this method for the analysis of the ti
series.
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Looked at from the point view of dynamics, a SOC sign
is different from a chaotic one. There is a power law grow
of any disturbance@30# as against an exponential growth
chaotic dynamics. Thus we expect that the improved al
rithm shows no stable positive Lyapunov exponent for
time series which exhibits scaling distribution.

IV. RESULTS

A. Low and medium strain rates

Since the methods used and the results obtained are
similar for the low and medium PLC strain rate filesl andm,
we illustrate the results with that of the PLC filem mention-
ing the differences from the PLC filel when they exist. In
both cases, the distribution of stress drops is peaked, w
single peak for the PLCl data and two peaks for the PLCm
case. The autocorrelation function displays an oscillat
trend once it crosses the zero value with a large autocorr
tion time tc;35. ~We take tc to be the time at which the
autocorrelation function falls to 1/e of its original value.!
Using a slightly smaller delay timet520, we have calcu-
lated the correlation integralC(r ) shown in Fig. 2 fromd
54 to 9. A scaling region of two orders of magnitude can
seen in the interval24.0, ln r,22.0, with the slopes
ln C(r)/ln r converging as the embedding dimension a
proachesd59. The resulting correlation dimension is abo
2.7. As a guide to the eye, dashed lines show the conve
slopes ford58 and 9.

A similar exercise was carried out on all surrogate d
sets keeping the same time delayt. In Fig. 3 we have shown
the slopes lnC(r)/ln r in the same scaling regime as for th
original file from d54 (s). It is clear that the slopes kee

FIG. 2. Log-log plot of the correlation integralC(r ) vs r for the
PLC m file for d54 –9. The dashed line is shown as a guide to
eye with an exponent valuen52.7.

FIG. 3. Plot of the estimated scaling exponentn of the correla-
tion integralC(r ) in the scaling region as a function ofd for several
surrogate data sets (s with lines! for the PLCm file. Also shown is
the convergence of the exponent as a function ofd for the original
data (d connected by a line!.
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increasing withd, implying that there is no converged valu
for the slope. For the sake of comparison, the convergenc
the slope in the scaling regime for the original signal is a
shown (d).

Before proceeding with the calculation of the Lyapun
spectrum for the time series, we briefly outline the proced
followed. First the correlation timetc is obtained from the
time series. Using a time delayt;tc , we calculate the
Lyapunov spectrum for a judiciously chosen embedding
mensiond for a range of values of the outer radiuse1, keep-
ing the inner radiuse0 fixed. Usually, fort;tc , the condi-
tion is violated for some values ofe1. ~The l i ’s here
correspond to the converged values ofl i as a function of
time.! Therefore,t is decreased until this condition is sati
fied over theentire rangeof e1. For such at, l1 will be
generally constant over a fair interval ofe1, and does not
change much ast is reduced further. However, general
there will be no exponent whose value is close to ze
Therefore,t is further decreased until we obtain an expone
l2 whose value is close to zero over a fair interval ofe1 for
which l1 is also constant.

Following this procedure, we have usedd55 and the
inner shell radiuse050.5%, and varied the outer radiuse1.
For a fixed time delayt, the Lyapunov spectrum is calcu
lated as a function ofe1, and stable values of the positiv
and zero exponentsl1 and l2 are looked for over a fair
interval ofe1, generally from 1% to 6%. Sincetc is large, the
range over whicht must be scanned is wide. Starting fro
t;15, as we decreaset, we find that the sum of Lyapunov
exponents is not negative until the valuet510 is reached. At
this point, there is a stable value of the positive exponentl1,
but there is no exponent whose value is close to zero. S
a zero exponent is one of the characteristic features o
deterministic system, the time delayt is further decreased
We find thatl2 is close to zero whent52. For this delay, a
stable positive exponentl1 is also obtained. The Lyapuno
spectrum fort52 is plotted in Fig. 4.~Each point in the plot
corresponds to the converged value ofl i as a function of
time.! It is clear that bothl1 and l2 are constant in the
interval 2.0%,e1,4.5%. Actually,l2 is constant up to 6%,
over a larger range thanl1 ~not shown in the figure!.

e

FIG. 4. Plot of the Lyapunov spectruml i , i 51 –5, as a func-
tion of the shell sizee1 for the PLCm file (d connected by lines!.
The dotted line shows the zero value.
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A similar analysis has been carried out on all surrog
data sets. Plots of the mean Lyapunov spectrum~over 18
samples! ^l i

s&, i 51 to d, along with the dispersions ar
shown in Fig. 5. As can be seen, both^l1

s& and^l2
s& show a

decreasing trend in the entire range ofe1. ~All other ^l i& ’s
are also decreasing.! Further, the Lyapunov exponents of a
the surrogate data sets behave in a similar manner whic
reflected in the small dispersions, particularly in the range
e1 values for whichl1 andl2 are stable for the original data
Further, we do not find any time delayt such that̂ l1

s& and
^l2

s& are stable.
Thus the evidence in support of chaos for the PLCm file

is strong, as is clear from the existence of a finite correlat
dimension, a stable positive Lyapunov exponentl1 and a
stable zero exponentl2. Moreover, stable positive and zer
exponents are absent for the corresponding surrogate
sets. On the basis of these results, we conclude that the
series is of chaotic origin. As already mentioned, very sim
lar results are obtained for the low strain rate PLCl file with
stable positive and zero Lyapunov exponents~over a similar
range ofe1) and the same value of the correlation dimens
~with a slightly smaller scaling region!. Again, the corre-
sponding surrogate data sets for this file do not show fi
correlation dimension and positive Lyapunov exponent.

B. High strain rate

.
Now, consider the analysis of the PLCh file correspond-

ing to the highest strain rate. The distribution of stress dr
in this case is no more peaked as the earlier two. Instea
shows a scaling form with an exponenta:

FIG. 5. Plot of the mean Lyapunov spectrum^l i
s&, i 51 – 5,

over 18 surrogate data sets as a function of the shell sizee1 for the
PLC m file (d). The dispersion is also shown. Note that there is
stable positive or zero exponent. The dotted line shows the
value.

FIG. 6. Log-log plot of the distribution of the magnitude of th
stress drops for the PLCh file (d). The dashed line shown is a fi
obtained witha51.1.
e
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P~Ds!;Ds2a. ~5!

A log-log plot of the normalized distributionP(Ds) is
shown in Fig. 6. The dashed line corresponds to an expo
valuea;1.1. In Fig. 7 we also show the normalized dist
bution of the time duration of the stress dropsT ~which is a
multiple of Dt) having a scaling form

P~T!;T2b. ~6!

Clearly, there is a scatter in the midrange ofT. Actually, it is
known that, even in numerical simulations, the distributi
of the duration of events is not as impressively scaled as
of the event sizes@17#. In the PLC effect, this is largely due
to the shortness of the plastic relaxation time compared
the time interval at whichs is recorded (Dt;0.05 s). Even
so, a rough estimate of the exponentb is still possible which
we find to beb;0.9 ~dashed line!.

The magnitude of the events scales with their durat
according to a power law given by

Ds;T1/x. ~7!

In practice, since time is monitored at finite intervalsDt,
there is a distribution of stress drops for each value ofT.
Thus one can also plot the average magnitude of the st
drops as a function of their duration. Figure 8 displays a p
of ^Ds& versusT showing an exponent valuex51.25. The
three exponentsa, b, andx are related to each other throug
the scaling relationa5x(b21)11. Clearly, this is satisfied
quite well. However, since the confidence level inb is not
high due to the scatter in Fig. 7, an independent chec
needed which can be done by using the alternate sca
relation derived by Kerte´sz and Kiss@31#, connectinga and

o
ro

FIG. 7. Log-log plot of the distribution of the time interval
between stress drops for the PLCh file (d). The dashed line shown
is a fit obtained withb50.9.

FIG. 8. Log-log plot of the mean of the stress drops as a fu
tion of the duration of the stress drops for the PLCh file (d). The
dashed line shown is a fit obtained withx51.25.
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x to the low-frequency exponent of the Fourier power sp
trum of the time series. Assuming that the total energy d
sipation stems from independent elementary events wh
energy density spectrum is quasi-Lorentzian, these aut
have shown that if the scaling exponents satisfy the ineq
ity

2x1a.3, ~8!

the low-frequency power spectrumS(v) behaves as

S~v!;v2(32a)/x. ~9!

Using the values obtained fora andx, we see that inequality
~8! holds, and we obtainS(v);v21.48. The power spectrum
of the time series is shown in Fig. 9. The low-frequen
region has a scaling behavior shown by the dashed line
an exponent value 1.55, clearly consistent with the va
1.48 obtained from Eq.~9!. ~For higher frequencies, th
power spectrum has a different scaling with an expon
value 2.05 shown by the continuous line.! This also implies
that that the autocorrelation function also scales, i.e.,C(t)
;t2f. We find a good scaling region withf50.37.

The correlation dimension and Lyapunov spectrum
now calculated in order to understand these results fro
dynamical point of view. For this file,tc is much larger than
the earlier two files. For a decay timet570, the calculated
correlation integralC(r ) is displayed in Fig. 10. As can b
seen, there is no convergent scaling region as the embed
dimension is increased which is in sharp contrast to the
sults on two earlier data sets.@We have verified that the
behavior ofC(r ) is the same for all othert values.#

FIG. 9. Power spectrum corresponding to the PLCh file. The
dashed line corresponds to a fit for the low-frequency region w
an exponent 1.55. The solid line fits the high-frequency part,
has an exponent 2.05.

FIG. 10. Log-log plot ofC(r ) vs r for the PLC h file for d
53 –14. Note the lack of convergence of the slope.
-
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We proceed with the calculation of the Lyapunov spe
trum for the PLCh file, keeping the inner shell radiuse0
50.05% ford55. Sincetc is much larger than for the ear
lier two cases, the range over whicht need to be scanned i
considerably larger. For a given choice oft, the Lyapunov
spectrum is computed as a function of the outer radiuse1.
Only belowt;15, do we find that the sum of the Lyapuno
exponents is negative in the entire range ofe1. However, at
this stage, we do not find a stable positive exponentl1, as a
function of e1, as was the case for the two earlier file
Moreover, ast is further reduced, we are unable to obta
stable values of positive and zero exponents for any valu
t. As an illustration, a plot of the Lyapunov spectrum f
t51 is shown in Fig. 11. Clearly,l1 has a decreasing ten
dency to zero, andl2 becomes negative ase1 is increased in
the range 1.0%,e1,7%. This is in sharp contrast to th
stable values ofl1 and l2 obtained as a function ofe1 for
the PLCl andm data sets. This result should again be tak
as indicative of the crossover in the nature of the underly
dynamics.

We have calculated both the correlation integral a
Lyapunov spectrum for a number of surrogate data sets
tained from the PLCh file, keeping the same value of th
time delay t. The results on the correlation integral an
Lyapunov spectrum were similar to the original file; no co
verged value of the slope lnC(r)/ln r could be found, and no
stable positive or zero Lyapunov exponent could be fou
Thus the original signal and the surrogates are not dis
guishable. This is in marked contrast to the PLC data sel
and m, where the original files and the surrogates beha
very differently. Therefore, these results must be taken as
additional support for the crossover reflected in accompa
ing changes in the underlying dynamics as the strain rat
increased.

V. DISCUSSION AND CONCLUDING REMARKS

As the single crystal PLC time seriesl, m, andh offer a
wide range of strain rate variations and reasonably long t
series, they provide a suitable basis for the analysis of
namical regimes of the PLC effect. Further, single cryst
present the advantage of exhibiting crystallographic str
localization, parallel to the slip planes of the mobile disloc
tions, which can be thoroughly investigated by high spe
cinematography and optical analysis of the slip steps left
dislocations emerging at free surfaces@32#.

h
d

FIG. 11. Plot of the Lyapunov spectruml i , i 51 –5, as a func-
tion of the shell sizee1 (d joined by lines! for the PLCh file. Note
that there is no stable positive or zero exponent. The dotted
represents the zero value.
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We have shown in this paper that the low and medi
strain rate PLC filesl and m are chaotic, characterized b
stable positive and zero Lyapunov exponents and finite
relation dimensions; concomitantly their stress drop distri
tions are peaked. In contrast, the high strain rate PLC fih
exhibits power law distributions for the magnitude and du
tion of the stress drops. The autocorrelation function and
power spectrum also exhibit power laws. These features
reminiscent of the SOC state@17#, where events of all length
scales and time scales occur, with power law distributions
such a dynamics, any disturbance grows as a power la
time, implying the absence of a positive Lyapunov expon
@30#. Indeed, no stable positive Lyapunov exponent could
detected for the PLCh file. In addition, relations connectin
the various scaling exponents have been found to be co
tent with SOC-type dynamics. Further, a finite correlati
dimension is absent for this case.Thus, a crossover from
chaos to a SOC-type dynamics has been identified as
applied strain rate is increased within the range of the PL
effect.To the best of the authors’ knowledge, this is the fi
experimental report in the literature of such a crossover.
stress that power law distributions have been observed f
range of values of high strain rates. Additional extens
experiments@33# also suggest that similar crossover mig
occur in Al-Mg polycrystals, and possibly in Al-Mg singl
crystals, where the statistics of stress drops also evolve f
peaked to monotonously decreasing distributions.

This crossover has not been explained or modeled so
However, it is likely that physical factors that may affect t
observed dynamics are the instability mechanism itself,
the existence of an anomalous force versus flux respons
the dislocations, and the spatial coupling existing betw
the various defect populations.

The instability mechanism reviewed above in Sec. I c
be better described as follows. When the applied strain ra
in the range where the PLC effect manifests itself, the lo
plastic strain rate is bivalued, with one low value corr
sponding to pinned dislocations, and the other, with a m
higher value, to freed dislocations.~See Ref.@34# for more
details. See also Ref.@6#, where this negative strain sensitiv
ity has been shown to result from nonlinear interaction
dislocations.! Starting from the pinned state at any locati
in the sample, the access to the unpinned state requir
finite fluctuation which is provided by a gradual loading
the sample. Then the local strain rate jumps to a higher le
eventually jumping back to the pinned state. The reload
time as well as the jump in the local strain rate depend on
applied overall strain rate. Both decrease due to the nega
strain rate sensitivity as the applied strain rate increases
na
r-
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Spatial coupling, whose origin is still a matter of deba
is responsible for the widening and propagation of bands
localized plastic deformation. In single crystals, it may ste
either from dislocation mechanisms or from geometrical
compatibilities between slipped and unslipped regions.
present, it is believed that these incompatibilities are acco
modated elastically but can be also partly relaxed by pla
flow, with a certain relaxation time. The magnitude of t
coupling is at a maximum when elasticity alone is involve
it decreases with increasing plastic relaxation, the latter
ing favored by material or experimental conditions th
lower the flow stress. Since the strain rate sensitivity of
flow stress is negative, the magnitude of spatial coupl
decreases as the applied strain rate increases. Thus the p
relaxation time increases with the applied strain rate.

The crossover might be expected as the plastic relaxa
time becomes comparable with the characteristic reload
time. At low strain rates, the reloading time is larger than
plastic relaxation time. In such conditions, incompatibiliti
are fully relaxed within the reloading time and, in spac
within a characteristic relaxation length scale which allo
for stress drop uniformization. Within the spatial elemen
where the relaxation is complete, different types of dislo
tion populations themselves interact in nonlinear way lead
to chaos@6#. At a sufficiently high applied strain rate, th
plastic relaxation time becomes larger than the reload
time. Then new small inhomogeneities can form before pl
tic relaxation is complete. This picture results in a recurren
of partial relaxation processes, each time with a differ
magnitude, which in turn may provide stress drop distrib
tions without a characteristic value. Partial relaxation of s
tial nonuniformities entails ‘‘diffusion’’ of dislocation popu
lations into the neighboring material elements, which m
lead to a SOC-type dynamics. Following these ideas, a
tional experiments in single crystals, as well as further m
eling, are required to understand more thoroughly the cau
of the crossover.
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