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Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals
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We report a crossover from chaotic to self-organized critical dynamics in the Portevin—Le Chatelier effect in
single crystals of Cu—10% Al in tension as a function of the applied strain rate. For low and intermediate strain
rates, we provide an unambiguous support for the existence of chaotic stress drops by showing the existence of
a finite correlation dimension and a stable positive Lyapunov exponent. A surrogate data analysis rules out the
possibility that the time series is due to a power law stochastic process. As the strain rate is increased, the
distributions of stress drops and the time intervals between the stress drops change from peaked to power law
type with an exponent close to unity reminiscent of self-organized critical state. A scaling relation compatible
with self-organized criticality relates the various exponents. The absence of a finite correlation dimension and
a stable positive Lyapunov exponent at the highest strain rate also supports the evidence of crossover.
[S1063-651X%99)11011-0
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I. INTRODUCTION may or may not propagate along the samj@¢ Different
possibilities of correlation in spader the lack of i} of the
Repeated stress drops followed by periods of reloadindpands also exist. Thus a rich variety of spatiotemporal be-
are observed in many interstitial and substitutional metallichavior is displayed. The objective of the present paper is to
alloys when tensile specimens are deformed in a certaianalyze the structure of the serrated stress versus time series
range of strain rates and temperatlire?]. This phenomenon in single crystal samples when the applied strain rate is var-
is referred to as the Portevin—Le ChateliLC) effect or  jed.
jerky flow. It is one of the best studied forms of plastic  The influence of concepts and methods of dynamical sys-
instability due, in particular, to the interest in removing thetems on the studies of the PLC effect has been considerable.
loss of ductility and surface roughness associated with thén the last few years, starting from a dynamical description,
phenomenon. The physical origin of the effect is the dy-attempts have been made to recover the complex spatiotem-
namic interaction of two defect populations, namely, mobileporal patterns emerging from this instabilitgee, e.g., the
dislocations and solute atoms. Mobile dislocations which areollection of papers in Ref3]). Our interest in the dynami-
carriers of plastic strain rate move jerkily between the ob-cal analysis of the serrations was triggered off by a predic-
stacles provided by other dislocations. Solute atoms diffus@on of chaotic stress drops based on a model due to Anan-
in the stress field generated by mobile dislocations, and furthakrishna and co-workef$]. These authors used a coupled
ther pin them while they are arrested at obstacles. When theet of equations for the evolution of three dislocation popu-
system is in a certain range of strain rates and temperatureigtions, one of which interacts with solute atoms. These
the diffusion time of the solute atoms is of the order of theequations are dynamically coupled to the “machine equa-
waiting time of dislocations at obstacles, a force versus negaion” which determines the stress rate in the sample as a
tive dislocation velocity relationship may occur which at theresult of constant applied strain rate and the resultant plastic
specimen’s scale translates to negative strain rate sensitivigfrain rate. Apart from predicting several general features of
of the flow stres§2-6]. As a consequence, the classicalthe PLC effect including the most dominant feature, namely,
picture of the PLC effect is that of an instability of the uni- the negative strain rate sensitivity of the flow stress, the
form state of tensile deformation due to the anomalous neganodel also predicts that chaotic behavior should be observed
tive strain rate sensitivity5]. The instability manifests itself within a certain range of applied strain ra{&s8]. The pos-
by nucleation of bands of localized plastic deformation withsibility of chaos was also suggested later by Jeanclatidé
a typical width of 10-100um, each band being associated [9] in the framework of a spatiotemporal model for the PLC
with a stress drop on the stress versus time curve. Dependirigand propagation.
on the temperature and strain rate conditions, these bands In order to verify this prediction, several experiments
have been carried out aimed at characterizing the structure of
the recorded stress-time series. The first attempt in this di-
*Also at Jawaharlal Nehru Centre for Advanced Scientific Re-rection was performed on single crystals of Cu-Al allpy6]
search, Bangalore 560 064, India. Electronic addressusing the method of Grassberger and Procaitldto esti-
garani@mrc.iisc.ernet.in mate the correlation dimension. This preliminary analysis
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and further results using complementary methods including _

the singular value decomposition and the positive Lyapunov o=M
exponent determination provided substantial evidence of

chaotic behaviof12], but on short data sets{6000 point$,

often with high levels of noise. For this reason, specific ex-WhereM is the combined elastic constant of the specimen
periments were performed on Al-Mg polycrystals in order to@nd the machine, aridis the length of the sample. We have
obtain reasonably long, accurate, and nearly noise-free stre§§glected inertial effects since stress equilibrates at the ve-
signals. The analysis of these data using the correlation d|City of sound on a much shorter time scale than any other
mension, the singular value decomposition, the LyapunO\'/nt””s'(f time scale. Thus thg axial stresds constant over
exponents and surrogate analysis showed unambiguous‘i je entire sample, although it gene_rally result.s from the con-
that they are of deterministic chaotic origii3]. There is tfibutions of many events of localized plastic deformation

also a report from another groui4] who calculated only occurring |n-d|ffer-ent par.ts of the specimen. In experiments,
. . : the stress signat is monitored by a load cell located at one
the positive exponent on a very short time series2600

. . . . end of the sample.
points, which renders the results of the analysis less reliable. The experiments on Cu—10% Al single crystals were per-

A different approach to the study of the PL.C.stress drc)p%rmed at Braunschweig Technical University. In general,
was recently undertake15,16 through a statistical analy- e range of strain rates where the PLC effect is seen de-

sis. This study showed that statistics of stress drops can e¥ends on temperature apart from other material parameters
hibit either a peaked or a power law distribution dependings,ch as the alloy composition and microstructure. In the case
on experimental conditions such as the applied strain ratgf cu—10%Al, the boundary for the onset of the PLC effect
and the temperature, thus suggesting various dynamical ren the strain rate and temperature variables is itself complex
gimes. The power law distribution is reminiscent of self-[21]. Thus there is no identifiable time scale with respect to
organized critica(SOQ state where events of all magnitudes which the applied strain rate can be represented in a scaled
occur[17], whereas a peaked distribution is observed to bédorm. One point of relevance here is the fact that the PLC
associated with chaos in the analysis of our experimentadffect is seen at relatively high temperature compared to
signals. The existence of a chaotic dynamics in the PL®ther room temperature alloys like Al-Mg. The samples were
instability under one strain rate condition does not precludenitially homogenized for 36 h at 1230 K. Then single crystal
the possibility of a SOC-type dynamics under a differentsamples oriented for easy glide were deformed at a tempera-
strain rate condition. This, in fact, is a distinct possibility, ture of 620 K. In the domain of occurrence of the PLC effect,
since it is a spatially extended driven system with a built-inthree files containing % 10%, 210, and 1.2¢10* points
threshold for the onset of stress drdfss]. Since our results Were recorded at strain rates %30 ° 5%, 1.7
on chaotic stress drops were obtained at low and intermediX 10 ° 5 %, and 8.%<10 ® 5%, respectively (roughly
ate strain rates, and power law distributions have been reséparated by afactor of SThe sampling rate was 20 Hz. We
ported at high strain ratdd5,16, in this paper we investi- shall refer to these f||§s as RLC filesn, aqdh, respecuvel_y.
gate the possibility of a crossover in the dynamics as the In general, in tensile Ioadmg of metallic alloys, there is an
strain rate is increased. Toward this aim, we use well knowd/Pward drift of the stress-time curve, usually referred to as
quantifiers of deterministic chaotic signals, namely, the corStrain hardening. This effect originates from the accumula-
relation dimension{11], the Lyapunov spectrurfil8—20, t|on_of dislocations in the sample_. The onv and |nt¢rmed|ate
and a surrogate data analysis of each of the time series S§@in rate curves showed very little strain hardening. How-
indicators of the changes as the crossover occurs. FurthefVe": the highest strain rate data showed low but noticeable
the distributions of the stress drop magnitudes and interval§train harding which was removed in our analyses by sub-
are also studied for a statistical characterization. This analyfcting & moving average. Plots of the PLC files, andh
sis is carried out on single crystal specimens in order to tak&" @ short duration of time are shown in Figgalt-1(c) to
advantage of the wide range of strain rates that was availVeé an idea of the structure of the stress drops. As can be
able. seen, at the lowest strain ratBLC file I), we have large
The outline of the paper is as follows. Section Il containsSress drops with very few small ones. In contrast, the high-
experimental details. In Sec. Ill, we briefly outline the meth-©St strain rate casé®LC file h) has numerous small drops
ods used for time series analysis. We present the results fNd fewer large ones. As will be discussed below, this well

Sec. IV. Finally, Sec. V is devoted to discussion and concluknown feature of the PLC effect is due to shortening of the
sions. time scale of dislocation mobility as the applied strain rate is

increased.

: @

. 1L
€1~ Efo ep(x,t)dx

[l. EXPERIMENTS IIl. METHODS OF ANALYSIS

Specimens of metallic alloys in the form of thin plates are  \ve follow conventional methods for the analysis of the
loaded in a tensile testing machine at a constant crosshegghe series by calculating the correlation dimension and the
velocity, thus providing a quasiconstant average strain rateyapunov spectrum. Both methods start with the phase space
€. The total extension of the system is the sum of elasticeconstruction of the attractor by embedding the time series
and plastic parts. The elastic part itself has contributions arisn a higher dimensional space using the time delay technique
ing from the extension of the sample and the machine. Thg22].
so-called machine equation can therefore be written as Consider the stress signal defined by
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@ been pointed out that it is possible to use the existence of a
finite correlation dimension as a method of discriminating a
dynamical time series as against a stochastic [@4é by
introducing the method of surrogate data analysis. Surrogate
data sets for each time series are obtained by randomizing
the phases of the signal’s Fourier transform, and Fourier in-

“ae00 a0 swo  verting them. Eighteen to twenty four surrogate data sets
©) have been generated for all our original files. For each of
12 | i
these surrogate data sets, the slopes &{iljIn r for various
3 d values are calculated. If the slopes increase with the em-
10 bedding dimensiord, in contrast with the original file for

which it saturates, it can be concluded that the latter is of
L L L L deterministic origin.
6500 6600 6700 Since Lyapunov exponents are considered as unambigu-
E ous quantifiers of chaotic dynamics, we have also analyzed
the time series for the existence of a stable positive and zero
Lyapunov exponent. Conventional algorithms for calculating
the Lyapunov spectrum, including the most popular algo-
rithm due to Eckmanret al. [18], require a very long time
: series which is impractical. Further, all modified algorithms
P including those suited for shofsuch as the PL@ file) time
7520 7560 7600 . . .
. serieq 26], also fail in the presence of noise level larger than
Time(sec) 2% [27]. (The noise levels in our time series are not known.
For this reason, we have effected a modification of the Eck-
mann’s algorithm which is suitable fahort time seriesn
the presence dfigh levels of noiseThe method is outlined
[o(k),k=1,2, ... N], ) and iIIustrgted elsewher[es,zq.. Here we briefly recall_ the
central point. Eckmann’s algorithm relies on connecting the
where the indexX is in units of the time incremenit. Let initial small difference vector§i—§j to the evolved differ-

ence vectors through a set of tangent matrices. The vef:jtors
used as neighbors r‘fﬁ on the reference trajectory are those

k=1,...[N=(d—=1)7] 3 contained within a shell sizeg aroundéi . The number of
neighbors used is usually taken to be pdid,d+4]. How-
be a vector defined by embedding the signal with a timesyer, so few points cannot be expected to properly sample
delay 7 in a d-dimensional space. Once the reconstructegne statistics of uncorrelated noise which corrupts the origi-
attractor is obtained, its self-similar nature is quantified byna| signal whose effect we wish to average out. Thus the
calculating appropriate dimensional quantities. The simpleshasic idea is tasample the statistics of noise properly by
is the correlation dimension which is obtained by using gncjuding enough neighbors within the shell sizesubject to
popular algorithm due to Grassberger and Procaftid.  the following conditions. For a chaotic dynamics we should
The correlation integral is defined as the fraction of the pairgnsure thata) the sum of the Lyapunov exponents is nega-
of points & and € whose distance is less than a specifiedtive as required for a dissipative systeth) there exists a
valuer, stable zero exponent, ar(d) stable values of the positive
1 Lyapunov exponent emerge when we vary the shell Gne
_* _1Z_Z the time lag in a certain range(By “stable,” we mean
Cln= Np .E, H(r=[§ gll)’ “ constancy as a function of these parameters. Once this is
done, we expect that both the positive and zero exponents of
whereH(-) is the Heaviside function and, is the number a deterministic chaotic signal remastableover a fair inter-
of pairs used in the sum. The self-similar structure is rewval of the shell sizes5. Here we mention that this improved
flected in the scaling relatio@(r)~r" in the limit of small  algorithm is capable of detecting the existence of positive
r, wherewv is the correlation dimension. As the embeddingand zero exponents for high levels of noise and short time
dimensiond is increased, the slope G(r)/Inr tends to a series (-6000), as we have shown for the Lorenz system
constant value, taken as the correlation dimension. In prac-with noise levels up to 15% of the mean amplitude of the
tice, due to limited length of the time series and noise supertime serie§28,29. Apart from this, we have also shown that
imposed on the signal, one looks for a scaling regime athe Lyapunov spectrum for the surrogate data sets of chaotic
intermediate length scales of for some values of embed- time series do not exhibit a stable positive Lyapunov expo-
ding dimension. However, the existence of a finite correlanent or zero exponent as a function of the shell gizeThe
tion dimension is not by itself a compelling reason for themethod is also capable of estimating the superposed noise
time series to be of chaotic origin, since it can also arise duéevel. We shall use this method for the analysis of the time
to a power law stochastic proce23—25. However, it has  series.

Stress (MPa)

FIG. 1. (a—(c) Time series data for the PLC m, andh files
showing the fine structure of the time series.

E=[a(k),o(k+7), ... ,ok+(d=1)7],
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FIG. 2. Log-log plot of the correlation integr@l(r) vsr for the —
PLC mfile for d=4-9. The dashed line is shown as a guide to the °\'\-\.\,\_
eye with an exponent value=2.7. -15 ' i et
0.02 0.03 0.04 0.05

Looked at from the point view of dynamics, a SOC signal &

is different from a chaotic one. There is a power law growth ;= 4 piot of the Lyapunov spectrur), i=1-5, as a func-
of any dlsturba_ncéSO] as against an exponentlal growth in tion of the shell sizes; for the PLCm file (@ connected by lines
chaotic dynamics. Thus we expect that the improved algothe dotted line shows the zero value.

rithm shows no stable positive Lyapunov exponent for the

time series which exhibits scaling distribution. ) ) ) ) ) )
increasing withd, implying that there is no converged value

for the slope. For the sake of comparison, the convergence of

the slope in the scaling regime for the original signal is also
A. Low and medium strain rates shown @).

Since the methods used and the results obtained are very Before proceeding with the calculation of the Lyapunov
similar for the low and medium PLC strain rate filesndm,  spectrum for the time series, we briefly outline the procedure
we illustrate the results with that of the PLC filemention-  followed. First the correlation timé; is obtained from the
ing the differences from the PLC filewhen they exist. In time series. Using a time delay~t., we calculate the
both cases, the distribution of stress drops is peaked, with kyapunov spectrum for a judiciously chosen embedding di-
single peak for the PLCdata and two peaks for the PL@  mensiond for a range of values of the outer radigg keep-
case. The autocorrelation function displays an oscillatorying the inner radius, fixed. Usually, forr~t., the condi-
trend once it crosses the zero value with a large autocorrelaion is violated for some values of;. (The \y’s here
tion time t.~35. (We taket. to be the time at which the correspond to the converged values)gfas a function of
autocorrelation function falls to &/of its original valuel  time) Therefore,r is decreased until this condition is satis-
Using a slightly smaller delay time=20, we have calcu- fied over theentire rangeof e;. For such ar, \; will be
lated the correlation integral(r) shown in Fig. 2 fromd  generally constant over a fair interval ef, and does not
=410 9. A scaling region of two orders of magnitude can bechange much as is reduced further. However, generally
seen in the interval—4.0<Inr<-2.0, with the slopes there will be no exponent whose value is close to zero.
InC(r)/inr converging as the embedding dimension ap-Thereforer is further decreased until we obtain an exponent
proachesl=9. The resulting correlation dimension is about ) . whose value is close to zero over a fair intervalegffor
2.7. As a guide to the eye, dashed lines show the convergeghich \, is also constant.
slopes ford=8 and 9. Following this procedure, we have useid=5 and the

A similar exercise was carried out on all surrogate datgnner shell radius,=0.5%), and varied the outer radies.
sets keeping the same time delayin Fig. 3 we have shown o 3 fixed time delayr, the Lyapunov spectrum is calcu-
the slopes II€(r)/Inr in the same scaling regime as for the |5ted as a function o,, and stable values of the positive
original file fromd=4 (O). Itis clear that the slopes keep znd zero exponents; and \, are looked for over a fair
interval of 4, generally from 1% to 6%. Sindg is large, the

IV. RESULTS

gt s/° range over whichr must be scanned is wide. Starting from
/e/ 7~15, as we decrease we find that the sum of Lyapunov
o 61 " exponents is not negative until the valge 10 is reached. At
4l ,/° this point, there is a stable value of the positive expongnt
but there is no exponent whose value is close to zero. Since
2t ° ) a zero exponent is one of the characteristic features of a
4 ' é ' é ' deterministic system, the time delayis further decreased.

We find that\, is close to zero whem=2. For this delay, a
d stable positive exponemt; is also obtained. The Lyapunov

FIG. 3. Plot of the estimated scaling exponenof the correla- ~ SP€Ctrum forr=2 is plotted in Fig. 4(Each point in the plot
tion integralC(r) in the scaling region as a function dfor several ~ corresponds to the converged valueXgfas a function of
surrogate data set€(with lines) for the PLCmfile. Also shownis ~ time,) It is clear that both\; and A, are constant in the
the convergence of the exponent as a functiod &dr the original ~ interval 2.0%< ; <4.5%. Actually,\, is constant up to 6%,
data @ connected by a line over a larger range thaxy (not shown in the figure
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FIG. 5. Plot of the mean Lyapunov spectruix;), i=1-5, FIG. 7. Log-log plot of the distribution of the time intervals
over 18 surrogate data sets as a function of the shellegifer the ~ between stress drops for the Phdile (®). The dashed line shown
PLC mfile (®). The dispersion is also shown. Note that there is nois a fit obtained with3=0.9.
stable positive or zero exponent. The dotted line shows the zero
value. P(Ao)~Aoc™“. (5)

A similar analysis has been carried out on all surrogatéd log-log plot of the normalized distributioP(Ao) is
data sets. Plots of the mean Lyapunov spectforer 18  shown in Fig. 6. The dashed line corresponds to an exponent
samples (\}), i=1 to d, along with the dispersions are valuea~1.1. In Fig. 7 we also show the normalized distri-
shown in Fig. 5. As can be seen, bdtt;) and(\3) show a  bution of the time duration of the stress draps$which is a
decreasing trend in the entire rangeegf (All other (\;)’s ~ multiple of At) having a scaling form
are also decreasingrurther, the Lyapunov exponents of all
the surrogate data sets behave in a similar manner which is
reflected in the small dispersions, particularly in the range of . . . -
e, values for whichy; and , are stable for the original data. Clearly, there is a scatter in the midrangeTofActually, it is

Further, we do not find any time delaysuch tha{\3) and known that,' even in numencal S|mulat|on_s, the distribution
(\3) are stable. of the duration of events is not as impressively scaled as that

. . of the event sizegl7]. In the PLC effect, this is largely due
. Thus the gwdence In support of chaos for.the Adlle ._to the shortness of the plastic relaxation time compared to
is strong, as is clear from the existence of a finite correlatio

. . " he time i I hiclo i ~0. . E
dimension, a stable positive Lyapunov expong&ptand a the time interval at which s recorded £t~0.05 ). Even

" S0, a rough estimate of the exponghis still possible which
stable zero exponeit,. Moreover, stable positive and zero we find to be~0.9 (dashed ling

exponents are absent for the corresponding surrogate data.l.he magnitude of the events scales with their duration
sets. On the basis of these results, we conclude that the tiné%cording to a power law given by

series is of chaotic origin. As already mentioned, very simi-
lar results are obtained for the low strain rate PlLfile with
stable positive and zero Lyapunov expongioiger a similar
range ofe,) and the same value of the correlation dimensiony practice, since time is monitored at finite intervals,

(with a slightly smaller scaling regionAgain, the corre- there js a distribution of stress drops for each valueTof
sponding surrogate data sets for this file do not show finiterhys one can also plot the average magnitude of the stress
correlation dimension and positive Lyapunov exponent.  grops as a function of their duration. Figure 8 displays a plot
of (Ao) versusT showing an exponent value=1.25. The
three exponenta, B, andx are related to each other through
the scaling relatiomr=x(8— 1)+ 1. Clearly, this is satisfied

Now, consider the analysis of the PLiCfile correspond-  duite well. However, since the confidence levelgnis not
ing to the highest strain rate. The distribution of stress drop&igh due to the scatter in Fig. 7, an independent check is

in this case is no more peaked as the earlier two. Instead ftée€ded which can be done by using the alternate scaling
shows a scaling form with an exponest relation derived by Kerz and Kisg31], connectinge and

P(T)~T ~. (6)

Ag~Tx, (7)

B. High strain rate

- 10
—_ T e A r - "”:.”/
© 10" 1L P b
102 | 02!l
01t
01 0.2 1 2 10 01 02 1 2
Ac T

FIG. 6. Log-log plot of the distribution of the magnitude of the FIG. 8. Log-log plot of the mean of the stress drops as a func-
stress drops for the PL@ file (®). The dashed line shown is a fit tion of the duration of the stress drops for the Ph@le (®). The
obtained witha=1.1. dashed line shown is a fit obtained witl 1.25.
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Frequency FIG. 11. Plot of the Lyapunov spectrum, i=1-5, as a func-

tion of the shell size; (@ joined by line$ for the PLCh file. Note
hthat there is no stable positive or zero exponent. The dotted line
(Jj'epresents the zero value.

FIG. 9. Power spectrum corresponding to the Ph.@le. The
dashed line corresponds to a fit for the low-frequency region wit
an exponent 1.55. The solid line fits the high-frequency part, an
has an exponent 2.05.

We proceed with the calculation of the Lyapunov spec-
x to the low-frequency exponent of the Fourier power specirum for the PLCh file, keeping the inner shell radius,
trum of the time series. Assuming that the total energy dis=0.05% ford=5. Sincet. is much larger than for the ear-
sipation stems from independent elementary events whodigr two cases, the range over whiegineed to be scanned is
energy density spectrum is quasi-Lorentzian, these authog®nsiderably larger. For a given choice of the Lyapunov
have shown that if the scaling exponents satisfy the inequaspectrum is computed as a function of the outer radius
ity Only belowr~15, do we find that the sum of the Lyapunov
exponents is negative in the entire rangespf However, at
2X+ a>3, (8) this stage, we do not find a stable positive expongntas a
function of €;, as was the case for the two earlier files.
the low-frequency power spectruB{w) behaves as Moreover, asr is further reduced, we are unable to obtain
stable values of positive and zero exponents for any value of
S(w)~aw~ G-, (9) 7. As an illustration, a plot of the Lyapunov spectrum for
7=1 is shown in Fig. 11. Clearlyy; has a decreasing ten-
dency to zero, andl, becomes negative & is increased in

Using the values obtained far andx, we see that inequality the range 1.0% e,<7%. This is in sharp contrast to the

(8) holds, and we obtaif(w)~ ™~ 148 The power spectrum . :
of the time series is shown in Fig. 9. The Iow-frequencyStable values ok, and), obtained as a function o, for

region has a scaling behavior shown by the dashed line witwe. Pdl__CItgndr?tc:]ata sets. Th'?’ r::ﬁult s?ouldfat%am bg t?k_en
an exponent value 1.55, clearly consistent with the valy&s Inaicative ot the crossover in the nature of the underlying

1.48 obtained from Eq(9). (For higher frequencies, the dynamics.

power spectrum has a different scaling with an exponenﬁ We have calculated both the correlation integral and
value 2.05 shown by the continuous lin@his also implies yapunov spectrum for a number of surrogate data sets ob-

that that the autocorrelation function also scales, Céz) Ealne% f:om th_?_hPLCh f'llte’ keeﬁ)r:ng the slatme \(a:ue Olf thed
~ 7 We find a good scaling region wit#h=0.37. ime delay 7. The results on the correlation integral an

The correlation dimension and Lyapunov spectrum aré_yapunov spectrum were similar to the original file; no con-

now calculated in order to understand these results from gerged value of the slope &r)/inr could be found, and no

dynamical point of view. For this file,, is much larger than Stable positive or zero Lyapunov exponent could be found.

the earlier two files. For a decay time=70, the calculated Th.us the orig'ingl §ignal and the surrogates are not distin-
correlation integraC(r) is displayed in Fig. 10. As can be guishable. This is in marked contrast to the PLC data Isets

seen, there is no convergent scaling region as the embeddirilind m, where the original files and the surrogates behave

dimension is increased which is in sharp contrast to the re\-’%ry differently. Therefore, these results must be taken as an

sults on two earlier data setiWe have verified that the additional support for the crossover reflected in accompany-

behavior ofC(r) is the same for all other values] :zgrggggdges in the underlying dynamics as the strain rate is

]

V. DISCUSSION AND CONCLUDING REMARKS

As the single crystal PLC time seriésm, andh offer a
wide range of strain rate variations and reasonably long time
series, they provide a suitable basis for the analysis of dy-
namical regimes of the PLC effect. Further, single crystals
6 4 2 0 present the advantage of exhibiting crystallographic strain
localization, parallel to the slip planes of the mobile disloca-
tions, which can be thoroughly investigated by high speed

FIG. 10. Log-log plot ofC(r) vs r for the PLCh file for d cinematography and optical analysis of the slip steps left by
=3-14. Note the lack of convergence of the slope. dislocations emerging at free surfa¢&g].

Inr
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We have shown in this paper that the low and medium Spatial coupling, whose origin is still a matter of debate,
strain rate PLC filed and m are chaotic, characterized by is responsible for the widening and propagation of bands of
stable positive and zero Lyapunov exponents and finite cotocalized plastic deformation. In single crystals, it may stem
relation dimensions; concomitantly their stress drop distribu-either from dislocation mechanisms or from geometrical in-
tions are peaked. In contrast, the high strain rate PLChfile compatibilities between slipped and unslipped regions. At
exhibits power law distributions for the magnitude and dura{present, it is believed that these incompatibilities are accom-
tion of the stress drops. The autocorrelation function and thenodated elastically but can be also partly relaxed by plastic
power spectrum also exhibit power laws. These features arfdow, with a certain relaxation time. The magnitude of the
reminiscent of the SOC staf&7], where events of all length coupling is at a maximum when elasticity alone is involved,;
scales and time scales occur, with power law distributions. liit decreases with increasing plastic relaxation, the latter be-
such a dynamics, any disturbance grows as a power law img favored by material or experimental conditions that
time, implying the absence of a positive Lyapunov exponentower the flow stress. Since the strain rate sensitivity of the
[30]. Indeed, no stable positive Lyapunov exponent could bdlow stress is negative, the magnitude of spatial coupling
detected for the PL@® file. In addition, relations connecting decreases as the applied strain rate increases. Thus the plastic
the various scaling exponents have been found to be consiselaxation time increases with the applied strain rate.
tent with SOC-type dynamics. Further, a finite correlation The crossover might be expected as the plastic relaxation
dimension is absent for this cas€hus, a crossover from time becomes comparable with the characteristic reloading
chaos to a SOC-type dynamics has been identified as theme. At low strain rates, the reloading time is larger than the
applied strain rate is increased within the range of the PLCplastic relaxation time. In such conditions, incompatibilities
effect.To the best of the authors’ knowledge, this is the firstare fully relaxed within the reloading time and, in space,
experimental report in the literature of such a crossover. Wevithin a characteristic relaxation length scale which allows
stress that power law distributions have been observed for for stress drop uniformization. Within the spatial elements
range of values of high strain rates. Additional extensivewhere the relaxation is complete, different types of disloca-
experimentg 33] also suggest that similar crossover mighttion populations themselves interact in nonlinear way leading
occur in Al-Mg polycrystals, and possibly in Al-Mg single to chaos[6]. At a sufficiently high applied strain rate, the
crystals, where the statistics of stress drops also evolve fromplastic relaxation time becomes larger than the reloading
peaked to monotonously decreasing distributions. time. Then new small inhomogeneities can form before plas-

This crossover has not been explained or modeled so fatic relaxation is complete. This picture results in a recurrence
However, it is likely that physical factors that may affect the of partial relaxation processes, each time with a different
observed dynamics are the instability mechanism itself, i.e.magnitude, which in turn may provide stress drop distribu-
the existence of an anomalous force versus flux response tibns without a characteristic value. Partial relaxation of spa-
the dislocations, and the spatial coupling existing betweetial nonuniformities entails “diffusion” of dislocation popu-
the various defect populations. lations into the neighboring material elements, which may

The instability mechanism reviewed above in Sec. | carlead to a SOC-type dynamics. Following these ideas, addi-
be better described as follows. When the applied strain rate isonal experiments in single crystals, as well as further mod-
in the range where the PLC effect manifests itself, the locakling, are required to understand more thoroughly the causes
plastic strain rate is bivalued, with one low value corre-of the crossover.
sponding to pinned dislocations, and the other, with a much
higher value, to freed dislocationéSee Ref[34] for more
details. See also Rdf6], where this negative strain sensitiv-
ity has been shown to result from nonlinear interaction of The data provided by Professor Neuhauser's group in
dislocations. Starting from the pinned state at any location Braunschweig Technical University is gratefully acknowl-
in the sample, the access to the unpinned state requiresealged. This work was supported by Indo-French Centre for
finite fluctuation which is provided by a gradual loading of the Promotion of Advanced Resear¢RCPAR, New-Delhi,
the sample. Then the local strain rate jumps to a higher levelndia) under Contract No. 1108-1, CNRS/PICS Program No.
eventually jumping back to the pinned state. The reloading57, and JNCASR. Support from these agencies is also
time as well as the jump in the local strain rate depend on thgratefully acknowledged. One of the auth@fs.A.) would
applied overall strain rate. Both decrease due to the negativike to acknowledge the support of the University of Metz
strain rate sensitivity as the applied strain rate increases. for his stay at Metz during 1998 and 1999.
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