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In this paper theangle-angular-momentum entropic lower and upper bouads proved by using Tsallis-
like entropies, the Riesz theorem, and the Lagrange multiplier method for the quantum scattering of the
spinless particles. A connection between optimal states and the most stringent entropic bounds on Tsallis-like
entropies in the quantum scattering is established. The results of experimental teststatetindependent
angle-angular-momentum entropic bounds well as of the stringent entropic optimal bounds in pion-nucleus
scattering are obtained by calculations of the scattering entropies from the experimental available pion-nucleus
phase shiftsComparisons of these results with predictions of ghieciple of minimum distance in the space
of statesare presented. Then it is shown that experimental pion-nucleus entropies are well described by optimal
entropies, and that the experimental data are consistent wihritha@ple of minimum distance in the space of
scattering stated S1063-651X%99)08011-3

PACS numbs(s): 05.30—d

I. INTRODUCTION tropies from the experimental availalgbase shift§20—24.
Comparisons of these results with predictions of -

Over the past two decades there has been an increasigiple of minimum distance in the space of states are also
interest[1] in the investigation of quantum entropy. Many given in Sec. V. Section VI is reserved for discussions and
authors(see, e.g., Refd2-5|) have reviewed the essential conclusions. A very short version of this paper was pub-
properties of various entropy expressions useful in physicdished in Ref.[25].
The axiomatic derivation of the Jaynpsnciple of maximum
entropy[6], as well as of the Kullbackrinciple of minimum Il. INFORMATION ENTROPIES FOR QUANTUM
cross-entropy 7], were presented in Reff8]. Moreover, the SCATTERING
entropic uncertainty relation$9], which are saturated for
coherent states, were proved by many auth@ee, e.g.,
Refs.[1,10]). All these results on the quantum entropy were
specifically dgsigned to be applicable to extgnsive systems. a+b—a+b, 1)
A generalization of such results to nonextensive systems was
proposed by Tsallis in Ref11], who defined a new form of where, for simplicity,a and b are spin-0 hadrons, an
entropy (see also Refs[12-14). On the other hand, the =cos6, 6 being the center of mass scattering angle. Let
principle of minimum distance in the space of stassvell  f(x),xe[ —1,1] be the scattering amplitude of the two-body
asoptimal statesn the Hilbert space of the scattering ampli- scattering procesd). As is well known, if the normalization
tudes, which are analogous to the coherent states from thef f(x) is chosen such that the differential cross section
Hilbert space of the wave functions, were introduced in Refs(da/dQ)(x) is given by
[15-18. Therefore, it is natural to investigate a possible con- d
ne_ctlon between opt!mal state_dommarﬁfté] and the satu- —U(X):|f(X)|2, xe[—1,1], )
ration of some specific entropic lower or upper bounds for dQ
the quantum scattering of spinless particles. o o

In this paper the angle—angular-momentum entropiéhe” the elastic integrated cross sectianpis given by
lower bounds{lo] are invegtig.ated ina more general form in ide o
Sec. Illby mtroducmgTsall!s—hke entropiedor _the guantum Ue|=277f —(x)dx=27-rf I£(x)|2dx= 2] f]|2.
scattering of spinless particles. Hence by usinglLthgrange 1dQ -1
multiplier methodand theRiesz theoremi19], the stringent 3

entropic inequalities as well as tistate-independent angle i . ]

angular-momentum entropic lower boundse proved in Since we will work at a fixed energy, the dependence gf
Sec. Il for the quantum scattering of spinless particles. Thénd do/dQ2)(x) andf(x) on this variable was suppressed.
optimal entropies obtained from thminciple of minimum Now let H be the Hilbert space of the scattering states,
distance in the space of statgkb] are presented in Sec. Iv. defined on the intervab=[—1,1], with the inner product
The results of the experimental tests of tate-independent (--) and the nornj-|| given by

angle-angular-momentum entropic bounds well as of the o

strlngent_ entr(_)plc optimal bounds in pion-nucleus sca_ttterlng <f’g>:J f(x)g(x)dx, f,geH, (4)

are obtained in Sec. V by calculations of the scattering en- -1

A. Some basic definitions

We start with a two-body scattering process

1063-651X/99/6(5)/5261(14)/$15.00 PRE 60 5261 © 1999 The American Physical Society



5262 D. B. ION AND M. L. D. ION PRE 60

) +1 ) Of course, in this case, the Tsallis-like angular-momentum
[f]7=(f.f)= f_l [f(x)|*dx, feH. (5 entropies for the scattering process can be defined as
1
B. Angular entropy S, SL(q)— 1- 2 (21+1)[p1%, qeR, (19

The informational angular entrop$, of any quantum

scattering states is defined as in Ra0] by with the property

1
—~ | axPooin P, © im .(@)=5:(1)=5. 15
_ 0
whereP(x) is the angular distribution defined in terms of the
differential cross section by D. Angle—angular-momentum entropy Sy,
The entropie$6) and(12) are defined as natural measures
(X)zz_”d_“(x) J'l P(x)dx=1 @ of the uncertainties corresponding to the distributions of
0 dQ - ' probabilitiesP(x) andp,, respectively. If we are interested

in obtaining a measure of uncertainty of the simultaneous
The quantum entrop$, [Eq. (7)] was specifically designed realization of the probability distributiorB(x) andp,, then
to be applicable to extensive scattering systdfg. (1)].  we must calculate the entropy corresponding to the product
Generalization of this entropy to the nonextensive scatteringf these distributionsP(x,1)=P(x)p,. It is easy to verify
can be obtained by defining a kind of entropy similar to thatthat the angle—angular-momentum entropy is given by
proposed by Tsallis in Ref.11] (see also Refg12-14).

Hence we define the Tsallis-like angular entropies as fol- . 1
lows: S(’Lz_;b (21 +1)f dxP(x,DIN[P(x,1)]=S,+ S, .
= -1

1 1 (16)
S(q>=—|1—f dx[P(x)]QJ. geR. ®)
0 q-1 -1 In this case the Tsallis-like entropies for the scattering of

spinless particles is given b
with the property P P J y

A SAD=SAD=S,. O su@-g=g(1- E @+ opt [ dX[P(X)]q)
C. Angular-momentum entropy S, =Sy(q) +S(a) +(1-a)Se(a)S.(a), geR,
Now let us consider the case when the scattering ampli- (17)

tude f(x) of the spinless particles is developed in partial

amplitudes as with the property

L lim Sp (q)=Sp(1)=S.=Sy+S, . (18
f(x) 2 (21+1)fP,(x), xe[—-11], feC, -1

(10 Therefore, the indexq#1 controls the degree of entropy

where L+1 is the number of partial amplitude, and ?1o7n)exten5|vny reflected in the pseudoadditivity entropy rule

Pi(x), 1=0,1,...L, are Legendre polynomials. Then the

Fourier coefficients, or the partial amplitudés, are ex-
pressed as I1l. ENTROPIC INEQUALITIES

A. Angular entropic inequalities

1 (+1
flzif f(x)P(x)dx, feC. (11) It is interesting here to present the following generalized
-t entropic inequalities for the Tsallis-like entropies for the

Hence, as in Ref{10] we define the angular-momentum scattering of spinless particles:

entropyS, by 1
—[1-KI7(1, 1)]<50(Q)<_[1 2179]

L qg-1
=-2, (21+1)p; Inpy, (12 for >0 19
where the partial probabilitp, are defined by and
If,]? - 1
p=4m—, > (21+1)p=1. (13) —_[1-219)<S,(q) for g<O. (20)
o’ 150 q-1
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The proof of the lower boundl9) is provided by consid-
ering the condition thaP(x) has, everywhere, a finite mag-
nitude, i.e.,

27 do

1
P()=P(1)=K(1,)=5(Lo+ 1)2= 30

(1).
(21

The upper bound19) as well as the lower boun@®0) are
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9°E
>0

for q<O0.
Ipapy

Hence forqg>0 we obtain the entropic upper bourig0),
while for g<0 we obtain the entropic lower bour{@2). In
conclusion, the equality holds in the upper bou26) and
lower bound(22) if and only if{p,,|=0/L} in Eq.(12) is the
maximum-entropy distributioi26).

optimal bounds which can be obtained via Lagrange multi- _ _
pliers by extremizing the Tsallis-like entropies subject to the C- State-independent angleangular-momentum entropic

normalization constraint§7) and (13), respectively.

B. Angular-momentum entropic inequalities

Here the following generalized entropic inequalities for

lower bound
Here we prove the state-independent entropic lower
bound

IN2<S,+S, . (27)

the Tsallis-like entropies for the scattering of spinless par-

ticles are proved:

1
SL(q)sq_—l[l—[LJrl]z(l"*)] for g>0, (22

i[l— [L+1]24D]<=S/(q)

q-1 for g<0.

(23

Next, the upper bound?2) as well as the lower bound

(23) are optimal bounds which can be obtained via Lagrange
multipliers by extremizing the Tsallis-like entropies subject

to the normalization constraiil3), respectively.
Indeed, as an example, here we prove bou@® and
(23) via Lagrange multipliers, starting with

1 L
E(py)= q_—l[ 1-3 (2 +1>[p|]‘*J

L
+)\[ 1—;0 (21 +1)pl} —(extremum, (24)

where\ e R is a Lagrange multiplier. Then, for extremum
(maximum and minimum we have

JE q
- =" q-1_ =
ap, q_1(2|+1)p| N21+1)=0,
(25
2£ 5
:_q(2|+1)p|q_ 5||r§0.
Ip1Ipy

Therefore, we obtain that the solution of E¢$8) is given
by the maximume-entropy distribution

{pe=[L+1]72, 1=0ML}, (26)
in both caseg>0 andg<0.
As we see from Eq(25),
9’
<0 for g>0
IPIpr

and

A general proof of Eq(27) can be obtained by applying the
Riesz theorenfsee theorem 2.8 from Ref19], p. 102. In-
deed, by using the relations

{f P™(x)dx

1/2m
=[1+(1—m)S (m)]"",

1/2m
=[1+(1—m)Sy(m)]*>"

{E (21+1)pP m=p,q

(28)

from the theorem 2.8(of Ref. [19]), (with p—2p and p’
—2q, so thatp™1+q 1=2), we obtain the following gen-
eral result.

State-independent(p,q) entropic bound: (i) Let f
eLP(—1,+1),5<p=<1, be the scattering amplitude satisfy-
ing Eq. (10) with the Fourier coefficients given by E¢L1).

If the scattering Tsallis-like entropies are defined by Egk.
and (14), respectively, then the entropic inequality

[1+(1-aq)Sc(a)]"™

&
=exX

5|12 [1+(1-p)Sy(p)]*® (29

hold for anyq defined by the relation (19 + (1/2q)=1.

(i) For any finite sequence, with finite [1+(1
—p)S.(p)1¥® there is anfelL9—1,+1) satisfying Eq.
(10), for which

[1+(1—-q)Sy(q)]*™

&
=exX

2p
where (1/)+(1/29)=1. Hence, in the limipp—1 andq
—1, from Eq. (29 [or from Eq. (30)], by developing in
powers of Ap(Aq=—q?Ap/p?) and considering only the
first terms, we obtain the lower bouri@?).

In 2][1+(1— PSPIY®, (30

IV. OPTIMAL ENTROPIES
A. Principle of minimum distance in the space of states

It is well known that any optimizing stud}34] ideally
involves three stepdi) The description of the system, by
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which one should know, accurately and quantitatively, thePMD-SQS [15]. So, the description of the scattering ampli-
variables of the system as well as how these system variablésde f(x) of system(1) will be given in terms of partial
interact. (i) Finding a unique measure of the system effec-amplitudesf,,1=0,1,... L, by formula (10). As system
tiveness expressible in terms of the system varialfigs. variables we consider the partial amplitudes I
The optimization by which one should choose those values 0,1, ... L. Now, since the nornD(f,0)=|/f| given by
of the system variables yielding optimum effectiveness.  EQ. (3) is the natural distance in the space of states, as a

In attempting to use the optimization theory for analyzingunique measure of the system effectiveness we can choose
the interaction of elementary particles, one can reverse thife elastic integrated cross section expressed in terms of the
order of these three steps. Then, knowledge of the interactin%;ys"ezfn variables as follows:oe/2m =23 (2| +1)|f||
system can be deduced by assuming that it behaves so astdfl* Then, the behavior of scattering system will be
optimize some given measure of its effectiveness, and thuempletely specified by the optimal partial amplitudes ob-
the behavior of the system is completely specified by identi-ta'”eq as the solutions of the constrained minimization prob-
fying the criterion of effectiveness and applying optimization €M 1-€-,
to it. This approach is in fact known as describing the system do
in terms of an optimum principle. The earliest optimum prin- min|f|, when —(y)=fixed, ye[—1,1],
ciple was proposed by Hero of Alexand(ib25 B.C) in his dQ
Catoptrics in connection with the behavior of light. Thus
Hero of Alexandria mathematically proved the following
genuine scientific minimum principle of physi¢siPMD):
When a ray of light is reflected by a mirror, the path actually min{ 2 21+ 1)|f||2
taken from the object to the observer’'s eye is the shortest
path from all possible paths

Now let us apply the HPMD idea to the behavior of light +a
in gravitational fields. Then we can obtain immediately that
according to the HPMD, modified to include the interaction
of light with the gravitational field, light must move on a
specific shortest path which is the geodesic.

This very simple optimum principle was Iecenli%] ex- The unique solution of the minimum norm problems of
tended to quantum physics by choosing “partial transition

: N . o . the form of Eq.(31) can be obtained in an elegant and gen-
amplitudes” as fundamental physical quantities with goo.deral form by the reproducing kernel Hilbert spa@KHS)

quantum numbers such as charge, angular momentum, is 1ethod. Therefore, letl be the Hilbert space of the scatter-

spin, etc. These physical quantities are chosen as systeiwg amplitudes defined by the scalar prodggt and norm

variational variables, whlle the distance in the Hilbert spac ). The Hilbert spacé of the scattering states is a RKHS if
of the quantum states is taken as measure of the system eJ-

fecti . . e following two properties are fulfilledi) There exists a

ectiveness expressed in terms of the system variables. The | lued functiok (x,y) on Sx S, called a reproduc-

principle of minimum distance in the space of states is chosompiexvaue ] 24 ' P

- . o X ing kernel(RK), such that:

sen as variational optimum principle by which one should

obtain those values of the partial amplitudes yielding opti- K eH (32)

mum effectiveness. Then it was shoyaee again Ref.15]) Y

that the predictions based on this new optimum principle cafor any fixedy in S=[—1,1].

explain the experimental data on hadron-hadron scattering (jj) K, obeys the reproducing property

with high accuracy. In a general form this optimum principle

can be formulated as follows: . Ky(x)=K(x,y)=(f K,)=f(y) (33
Principle of minimum distance in the space of quantum

states (PMDB-SQS) If D(f,g)=ming|f-gexp(-i®)|=[[[f|*  for eachf from H and anyy in S=[—1,1]. K, is the repro-

+|lgl>—2)(f,)|1+2 is the quantum distance between two arbi-ducing element from poiny, while the totality of elements

trary state€ andg of a giving system ané is the quantum K, is the RK of the Hilbert spackl.

state of the system when the interaction is missing, then the The reproducing kernel was introduced by Aronsjdf]

true interacting quantum stafeof the interacting system is and Bergmar27]. Its usefulness was demonstrated in many

that state which posses the shortest distad¢g h) in the  fields of mathematics and physi¢see also Refg.16—19

space of interacting states compatible with the constraintand[28-31)).

imposed by the interaction. Now we recall briefly some of the definitions and results
Of course this optimum principle, like the PMD-SQS, canon optimal states introduced in Refd5-1§ that are less

be formulated in a more general mathematical form by usingknown and are used in this investigation. The RKHS has the

the Smatrix theory of the strong interacting systems. Suchfollowing useful properties.

generalizations, similar to the PMD-SQS, can be made in (i) The RK, if it exists is unique.

any branch of science by introducing specific spaces; e.g., in (ii) Hermitian symmetryK(x,y) =K(X,y).

genetics, one can introduce the principle of minimum dis- (i) Autoreproducing properties:

tance in the genetic space, etc.
Now our purpose is to show how to deduce knowledge [K(x,y)|2<K(x,x)K(y,y), ||KyH2=K(y,y)>O.

about the scattering systerfEq. (1)] by using the (34

or equivalently,

2

d
%(y)—‘z(ﬂﬂ)ﬁﬂ(y) ) (31

wheref, are the partial amplituddsee Eqs(10) and(11)],
P/(y) are the Legendre polynomials, amdis a Lagrange
multiplier.
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(iv) If the Hilbert spaceH of the scattering amplituddss
a RKHS with a RK denoted bi£, then for allf in H and any
yin§

12 o el
[FI=IKYNTHI o g (=5_K(y.y),
(35
the equality is holding in Eq(35) if and only if
K(x,y)
f(X)="foy(X)=1(y) K(y,y)#0. (36

K(y,y)’

(v) If {d,} is a complete orthonormal sequence in RKHS,

then the RK is given by

K(x,y)=2 ®,(x)P(y). (37)

Hence, as a corollary of properti€35), we obtain

P(y)=— (39

7 =
m(y)\K(y,y)

for anyy e[ —1,1] for which theK(y,y) #0, the equality in
Eq. (38) holding if and only if the scattering amplitudes
the optimal scattering amplitudgEqg. (36)]. Therefore, in or-
der to obtain the concrete expression of the optimal $&8e
we must calculate the reproducing kernel functi®(x,y)
corresponding to scattering amplitudd®). In this case it is
easy to verify thatsee Ref[15]) (a) the scattering amplitude
f(x) is an element of a RKH$! defined on —1,1] if and
only if L<o0; and(b) H is a finite (L + 1)-dimensional sub-
spaceL?[—1,1]. Then, according to Eq37), the Hilbert
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since
erldX P|(X) P|I(X):[2/(2| +1)]5||1 .
-1

In the particular casg=1 we have the following impor-
tant results(see again Ref(15]). If o anddo/dQ(1) are
fixed from experiment, then the number{1) of partial
amplitudes, in any phase shift analysis must obey the optimal
bound

(|_+1)2>4—7T (41)

or, equivalently,

47 do 12
L+1=L,+1= mtegem( OIQ(1)} ] (42
O¢l

The equality in Eq(41) holds if and only iff (x) is equal
to the optimal stat€Eq. (36)] for y=1, which now is given
as

PLya(X)+PL(X)
f - - -
W (L+1)2 7

K(x,1)
K(1,1)

for(x)=1(1) (43)

with L=L,, respectively.

We note that the model-independent re$&lq. (41)] in-
cludes, in a more general and exact form, the Rarita-Schwed
bound(see Ref[32])

(L+1)2=g2/4m\ 20,

spaceH possesses a polynomial reproducing kernel given bynd also the bound

L

2 21+ 1)P

K(x,y)= )PI(X)Pi(y)

I\)IH

L1 PLa()PLY) = PLOOPLLa(Y)
2 X—y

. (39

L

EO (21+1)P\(y)P,(y)

1
K(y,y)= >
1. .
= T[PL+1(y)PL(y)_ PL(Y)PL1(Y) ],
(40)
whereP,(y)=dP,(x)/dx.

Indeed, using Eqg4) and(10), we can verify thak(x,y)
given by Eq.(39) fulfills the reproducing propertyEq. (33)].

+1
(f,Ky)= ﬁl dx[Z (2l +1)f,,P.,(x)]

1
Xi5 2 <2I+1>P|<x>P|<y)}

=2 21+ LfPi(y)=f(y),

(L+1)2=g/4m\2.

B. Optimal angular entropy

Now, having obtained the concrete optimal states, the op-
timal angular entropsg,” , as well as the corresponding Tsal-
lis entropyS;’(p), are given by

1K(X,Y]? [K(x,y]?
)
S f_l K(y,y) — K(y,y) dx (44
and
1 1 [K(x,y]Tp
0y - _ - -
A= ‘1 fldx{ K(Y.y) ] PeR
(45)
since
[K(x,y]? 1 [K(x,y)]?
oy - - - - - =
PO0= Ry J_l Kiyy Ox-1 (49

C. Optimal angular-momentum entropy

The optimal angular entrop$;’, as well as the corre-
sponding Tsallis entrop$,’(q), are given by
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P? P? SyY+S3Y=In2K(y,
P=-3 @ gy ”{2K|<(yy;>} e
, , 1 - 2 2
PF(y) 5 T 2K(y,y) Zo (21+1)Pi(y)In[P{(y)]
=I(2K(y,y)1= 2 (2141 g Il PE(y)]
| - fl [K(X’y]2|r‘[K(x'y]2dx>ln2
(47) L Kyy) Ky
and the corresponding Tsallis-like entropy 1 L
[, 2 2
§ . ‘ o7y r] Ky 2 (AT DPIWINPIY)]
SL (p)—m 1—2 (21+1) m , eR, K(y,y)
since since, according to Eq(34) and using the inequality
PF(y) > K(x,x)<K(1,1), we obtain
prl==—, (21+1)pY=1. (49
b 2K(y,y) ' _fl [K(x.y]? r\[K(X'y]de>_|n[K(1 -
~1Kyy) Ky o

D. Entropic angle—angular-momentum inequality

for pure states F. Optimal entropies as maximum-minimum entropies

The angular entropy for the pure states is obtained by oy e discuss in more detail the principle of minimum
using definitions(1)—(3) with the angular distributions of distance in the space of state:
pure states. For example, for the scattering of the spinless '

particles, we have do
min|[f|?> when gq (1 isfixed. (56)
Poo=27 9% o=1+2]p? flp dx=1
(0= oo dQ 00 ={1+3 P, 1 (gdx=1. The unique solution of problert56) is given by the optimal
(500  state(43) which is the particular case of the optimal state
o (36) wheny=1.
Consequently, the angular entrofy is given by Hence from Eq(54) for y=1, we obtain just the inequal-
it
| 1 1 2 1 2 ’
1\ [+1 The optimal angular entropy‘;éis given by
=In2-In(2l+1)— |1+ = f P2(x)IN[PZ(x)],
2191 s [} [KOuI? (K02 -
g = — n X,
(51) -1 K(1,) " K(LD)
while, for the pure I-state while the corresponding optimal Tsallis-like entroB%l(q)
’ ’ can be written as
S =In(21+1), p=1/21+1), (52)

1 r[[K(x,27%]¢
Sgl(Q):q_—1|1—f_ldX{m} ] geR (59

where

Hence for the pure state we have the state-independent
angle—angular-momentum entropic inequality

f“Pf(x)|n[P,2(x)]dx>|n 2,
1

|~|—1
2

Sy+S =In2- (K12 [PL+a00+PL ()]

(53) PH= K@D - 2(Lo+1)2

(59

which is just inequality(27), since ImP,Z(x)]sO for any an-

gular momentum 1 For the optimal angular-momentum entropiﬁl and

S(q), we obtain

E. Entropic angle—angular-momentum inequality S°l=|n[2K(1 D]=In(L +l)2 60
for optimal states L ' o

For optimal states we have and
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1 1
M) = —=[1-[2K(1,D]* )= —[1—[L,+1]2* 9], (61)
q-1 q-1
since
p,°1:2K(1,1) forO<I<L, andp’’=0 forl=L,+1 (62
and
1 2
K(1,1)=§(L0+1) . (63

Now, from comparison of the optimal distributiof&2) and(26), we see that the entropic inequaliti&®?) and(23) can be
improved up to the following most stringent entropic bounds. Indeed, solving the problems

maxmin){Sy(q),S,(9),Se.(q)} when o and g—;(l) are fixed, (64

we obtain the following important bounds. whereSa(q)={Sy(q),S.(9),Ss.(q)}, respectively.
(i) The most stringent entropic bounds on the entropy Indeed, the proof thax,=0 in Eq.(72) is evident since
S (g), whenaog and do/dQ)(1) aregiven from experi- we proved that there exists a solutifdq. (43)] for the mini-

ment, are mum distance probleni56) in the space of states when
N (da/dQ)(1) is fixed. The equality holds in bound$5)—
S.(@)<S(q) for g>0, (65 (70) if and only if the scattering amplitud&x) of the quan-
o1 tum scattering1) (see Sec. )lis given by the optimal state
S (aq)<S.(q) for g<0. 66 (43
(i) The most stringent entropic bounds on the entropy
Sy(a), whenog and do/dQ)(1) aregiven from experi- V. EXPERIMENTAL TESTS
ment, are
A. Experimental tests of the state-independenf@,L] entropic
Sy(q)=<S;%(q) for g>0, (67) bounds
For a numerical investigation of our state-independent
0l
Sy (A)=Sy(q) for q<0. (68 [4,L] entropic bound$27), (29), and(30), is interesting to

calculate the entropie), (12), and(16) by reconstruction
of the pion-nucleus scattering amplitudes using the available
experimental phase-shiff0-24 for the 7°-*He, #°-°C

(iii) The most stringent entropic bounds 8p (q) when
o and do/dQ)(1) aregiven from experiment, are

Se(@)=Sji(q) for g>0, 69 andm®-1%0, n°-*°Ca scatterings. The results obtained in this
way are presented in Table | and Fig. 1 as functions of the
Sgﬁ(q)gsm_(q) for q<0 (70) pion laboratory kinetic energ¥. In the nonextensive case

p#1, we rewrote the entropic inequaliti€é®9) and (30) in
whereSyY(q), SP(q), andS3i(q) are given by Eqs(57)—  terms of the test function¥ , (p) and Y 4(p) as

(64 and [1+(1-p)Syp)]® p”l—p

SoL(@=SyH(a) + S a) + (1-)SHH @S (q), geR. a(P) [1+(1-qS (@& A 2p n]

(71 (73

A general proof of the stringent entropic optimal bounds
(65)—(70) can be obtained immediately by observing thatand
these bounds are singular solutions, € 0) [33] of the fol-

lowing extremum problems: [1+(1-p)S.(p)]¥® 1-p
o TP T q)sm)]l’z‘*;epo 2p '"2]
— e 2 - 6
£=1NoSa(0Q) + 4 E_Z 21+ 1)/ } (74)
do 2 ) i
+X\, d_Q(l)_ > 21+ —extremum, for any 1/2<p=<1, andq is defined by (1/B)+(1/2q)
=1. Moreover, bound$73) and (74) can be combined to

(72 obtain the following importanté,L] entropic lower bound
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TABLE I. The experimental values &, S_, L,, andL,., andL calculated by using the experimental
pion-nucleus phase shifts from Ref20-24.

Pion-nucleus T Sy S Sy+S. Lme L,

scattering (MeV) Eq. (6) Eq. (12 Eq. (69 Eq. (42
7°-*He 25.0 0.295 1.342 1.637 0 0
51.0 0.399 1.471 1.870 1 0

60.0 0.414 1.507 1.921 1 0

68.0 0.416 1.543 1.959 1 0

75.0 0.406 1.580 1.986 1 0

90.0 0.342 1.676 2.018 1 1

110.0 0.152 1.836 1.988 1 1

130.0 —0.158 2.017 1.859 1 1

150.0 —0.444 2.139 1.695 1 2

180.0 -0.774 2.269 1.495 2 2

220.0 —1.037 2.406 1.369 2 2

240.0 -1.121 2.465 1.344 2 2

260.0 —-1.167 2.504 1.337 2 3

w0-12C 30.0 0.596 1.256 1.852 0 0
50.0 0.305 1.998 2.303 1 1

75.6 —-0.376 2.262 1.886 2 2

80.0 —0.499 2.274 1.776 2 2

100.0 —0.658 2.404 1.746 2 2

148.0 —1.421 2.888 1.467 3 3

162.0 —1.546 2.989 1.444 3 3

226.0 —1.790 3.297 1.507 4 4

486.0 —2.608 4.051 1.443 6 7

584.0 —2.949 4.360 1.411 7 8

662.0 —3.145 4.609 1.465 9 9

672.0 —3.168 4.638 1.469 9 10

766.0 —3.210 4.882 1.672 10 10

870.0 —3.058 5.123 2.065 11 11

m0-160 40.0 0.584 1.686 2.270 1 0
50.0 0.310 2.011 2.321 1 1

79.0 -0.772 2.479 1.708 2 2

114.0 —1.277 2.806 1.528 3 3

162.0 —1.756 3.216 1.460 3 4

240.0 -2.118 3.610 1.493 5 5

342.0 —2.423 3.916 1.494 6 6
70-40Ca 30.5 0.567 1.329 1.896 0 0
50.0 —-0.416 2.569 2.154 2 2

64.8 —-0.978 2.786 1.808 3 3

80.0 -1.371 2.982 1.611 3 3

115.5 -1.728 3.381 1.653 4 4

116.0 —1.698 3.376 1.677 4 4

130.0 —1.925 3.534 1.609 4 5

140.0 —2.166 3.662 1.496 5 5

160.0 -2.322 3.816 1.494 5 6

163.3 —2.226 3.801 1.575 5 6

180.0 —2.402 3.938 1.536 6 6

200.0 —2.509 4.051 1.542 6 7

230.0 —2.586 4.195 1.609 7 7

241.0 —2.591 4.238 1.647 7 7

292.5 —2.739 4.458 1.719 8 8
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FIG. 1. (a) The experimental entropieS, =S,+S_, calcu-
lated by using Eqg6) and(12) and the experimentat®-*He phase
shifts from Refs[20-24, are plotted as functions of pion kinetic
energyT. (b) The experimental entropiesy, =S,+ S, , calculated
by using Eqs(6) and(12) and the experimentat®-1°C phase shifts
from Refs.[20—24], are plotted as functions of pion kinetic energy
T. (c) The experimental entropi&, =S,+ S, , calculated by using
Egs. (6) and (12) and the experimentat®-1%0 phase shifts from
Refs.[20—-24, are plotted as functions of pion kinetic enerfy(d)
The experimental entropies, =S,+ S, , calculated by using Egs.
(6) and(12) and the experimentat’-4°Ca phase shifts from Refs.
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[20-24, are plotted as functions of pion kinetic enerfly

[1+(1-p)Sy(p)]"®

Yo (P)Y L o(p)=

for any 1/2<p=<1, andq is defined by (1/f@)+(1/2q)
=1, whereS, (p) andS,_(q) are given by relations of form
(17): Spu(r)=Sp(r) +S.(r) +(1—r)Sy(r)S.(r), r=p, and

geR.

Therefore, for the nonextensive case 1, in Figs. 2—4

2p

P In4]

[1+(1-q)Sy(q)]¥™

p[ 1
=ex

(79

n’ - *He =’ -0

I p=d.8

p=0.8

—

L= -

4 pMMAAAA A L. Op g o o
[—‘

i N

)
B i
B

FIG. 2. (@ The experimental tests of thée,L] state-
independent entropic lower boun(&3) and(74) for the nonexten-
sivity index p=0.8, calculated by using Eqé) and(12) and the
experimentakr®-*He phase shifts from Ref§20—-24. (b) The ex-
perimental tests of thg¢ #,L] state-independent entropic lower
bounds(73) and (74) for the nonextensivity index=0.8, calcu-
lated by using Eqg(6) and(12) and the experimentat®-1’C phase
shifts from Refs[20-24. (c) The experimental tests of the),L]
state-independent entropic lower bourid8) and(74) for the non-
extensivity indexp=0.8, calculated by using Eq&) and(12) and
the experimentalr®-1%0 phase shifts from Ref$20—24, respec-
tively. (d) The experimental tests of tHes,L] state-independent
entropic lower bound$68) and (69) for the nonextensivity index
p=0.8, calculated by using Eq&) and(12) and the experimental
m0-40Ca phase shifts from Ref§20—24. The hatched region is

we present the experimental values of the test functionsxcluded from the physical domain due to the entropic lower

Yo (p) and Y 4(p) for p=0.6 (g=3) and 0.8 (or q
=4/3), as well as forY 4 (p)Y 4(p), for p=0.7 (q=7/4)
and 0.9 =9/8), respectively, as functions of the pion ki-
netic energyT, for all the #°+*He— #°+*He, #°+1%C
—a%+2c,  #9+1%0— 70+160,
scatterings. Moreover, in Figs(®-5(d), the experimental
values of entropy5,, [Eq. (16)] as well as those of the test
functionsY 4 (p) and Y 4(p) and Y , (P) Y 4(p) are pre-
sented as functions of the optimal angular momentugn
which is obtained from the same phase shj2§—24 by
formula (46). From Figs. 1-5 we see that the,L] entropic
lower bound[Eq. (27)], as well as thg p,q] entropic in-
equalities(29) and(30) in their equivalent form$Eqs.(73)—

704+ 4Ca— 7°+40%Ca

bounds(68) and(69), respectively.

B. Experimental tests of principle of minimum distance
in space of states

The analytic expressions of the optimal probability distri-
butionsP°Y(x) [Eq. (59)], corresponding to the optimal state
(43), are presented in Table Il. The values of optimal
(SOl,Sﬁl) entropies for the scattering of spinless particles
are obtained by numerical integration and direct from Egs.
(57) and (60), respectively. These values are presented in
Table Il for 0<L,=<25. In Figs. 6 and 7, the experimental
values of entropieS, andS; as functions of the pion kinetic
energy are compared with the predicticﬁ%ﬁé and Sfl of the

(75)] are clearly experimentally verified with high accuracy. principle of minimum distance in the space of stafi&§].
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FIG. 3. (@ The experimental tests of th¢f,L] state-
independent entropic lower boun@&3) and(74) for the nonexten-
sivity index p=0.6, calculated by using Eq&) and (12) and the
experimentalr®-*He phase shifts from Ref§20—24. (b) The ex-
perimental tests of thd 6,L] state-independent entropic lower
bounds(73) and (74) for the nonextensivity indey=0.6, calcu-
lated by using Eq(6) and(12) and the experimentat®-1°C phase
shifts from Refs[20-24. (c) The experimental tests of the,L ]
state-independent entropic lower bouri@3) and (74) for the non-
extensivity indexp=0.6, calculated by using Eg&) and(12) and
the experimentair®-10 phase shifts from Ref$20—24. (d) The
experimental tests of thpd,L] state-independent entropic lower
bounds(73) and (74) for the nonextensivity indey=0.6, calcu-
lated by using Eqgs(6) and (12) and the experimentat®-°Ca
phase shifts from Ref$20-24.
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FIG. 4. () The experimental tests of the state-independent en-
tropic lower bound475) for nonextensivity indexep=0.9 and 0.7,
calculated by using Eq$6) and(12) and the experimentat®-*He
phase shifts from Ref$20—-24. (b) The experimental tests of the
state-independent entropic lower bouridS) for nonextensivity in-
dexesp=0.9 and 0.7, calculated by using E8) and(12) and the
experimentalr®-1%C phase shifts from Ref§20—24. (c) The ex-
perimental tests of the state-independent entropic lower bdusls
for nonextensivity indexep=0.9 and 0.7, calculated by using Egs.
(6) and (12) and the experimentat®-1%0 phase shifts from Refs.
[20-24. (d) The experimental tests of the state-independent en-
tropic lower bound$75) for nonextensivity indexep=0.9 and 0.7,
calculated by using Eq$6) and(12) and the experimentat®-#°Ca
phase shifts from Ref$20-24].

the Boltzmann entropy with a maximum value given by the

From Figs. 6 and 7 we see that the experimental scatteriniggarithm of the number of optimal states. Indeed, from Eg.

entropies §,,S,) for the 7% *He, #%-1%C, and #°-1°0,
m0-40Ca scatterings are well describétie full and dotted
curves by the optimal entropie&s7) and(60). These entro-
pies correspond to the optimal scattering stidEg. (43)].

(64) we haveS < S"1 InN[2K(1,1)], where K(1,1)=2(2I
+1)=(L,+1)? is the number of optimal scattering states
participating at the scattering process. This result allows us
to conclude that the optimal stafg&q. (43)] is the state of

Clearly, the fact that the experimental entropies do not deequilibrium of the angular-momenta channels considered as

pend significantly on the atomic humb&iis a direct conse-

a quantum statistical ensemble. Hence, the optimal angular

quence of the optimal state dominance, since in this case thaistribution P°Y(x) [Eq. (59)] can be considered as a signa-

entropies of all hadron nuclei as a function of variahlg
must be concentrated around the optimal val(&8—(60)
given in Table .

ture of this equilibrium distribution of thé channels. Also,
from Figs. 6 and 7, we see that the experimental values of
(Sy,S.) entropies for the pion-nucleus scatterings are sys-

Now, in order to see why the experimental entropies argematically described by the optimal entropieS)(,S)

well described by the optimals*,SP) entropies(57) and
(60), we observe that the entroig; [Eq. (12)] is similar to

practically at all available pion kinetic energies. In thls sense
the results obtained here can also be considered as experi-
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TABLE II. The optimal angular distribution®y,(x) for the
scattering of spinless particles, calculated by using(E9).

o od b
&

:' K(x,1)]?
POl = [ K((x1 1))]

To(P)
.

-]
(/] ov 4,
+ 2% . v
wo . %@Mgvv
1' |nz'

02468101214

(@) —— L

1/2

(1+3x)?/8
(—1+2x+5x%)%/8
(—3—15x+ 15x%+ 35x%) /128
(3— 12x—42x>+28x3+ 63x*)2/128
(5+ 35x— 70x?— 2103+ 105¢* + 231x%)?/512
(— 5+ 30x+ 135¢%— 1803 — 495¢* + 1985 + 42%K6)?/512
(— 35— 315¢+ 945¢*+ 3465¢ — 3465¢* — 900%>
+3003°%6435¢7)2/32768
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FIG. 5. (a) The scaling property of the entropi€, =S,+S_
[Eg. (16)] as a function of the optimal angular momentuggiven
by Eq.(42). (b) The scaling properties of the test functiong [Eq.  Therefore, an experimental consistent test of the principle of
(73] andY |, [Eq.(74)] as functions of optimal angular momentum maximum entropy can be obtained not only by testing the
L, [Eg. (42)] for the nonextensivity indep=0.8. (c) The scaling  entropic upper bound77), as is shown in Fig. @), but also
properties of the test function$, [Eq.(73)]andY ,[Eq.(74]as by a test of the equality
functions of optimal angular momentuly, [Eqg. (42)] for the non-
extensivity indexp=0.6. (d) The scaling properties of the test func-
tionsY 5. Y 4 [Eq. (75)] as functions of optimal angular momentum Lme=Lo=integerx
L, [EQ. (42)] for nonextensivity indexep=0.9 and 0.7, respec-
tively.

In (78)

A

Indeed, using the experimental valuesSpffrom Table I,

mental signatures for the validity of the principle of mini- We calculate the values of the angular momentug.

mum distance in the space of scattering states, even in a
crude form[15]. The extension of the optimal state analysis
to the generalized nonextensive statistics case X) (see
Refs.[11-13), as well as a test of the entropic inequalities
(29) and (30) and (64)—(66) for q#1, can be obtained in
similar way by using the following nonextensive optimal en-
tropies(58) and (61).

TABLE lIl. The optimal entropiess™*, SJ!, andS™*+ S)*, cor-
responding to different optimal angular momehtg, for the scat-
tering of spinless particles.

Lo s s s L s s

0.693 O 0.693 13 -2.970 5.278 2.308

0.128 1.386 1.514 14—-3.098 5.416 2.318
—0.385 2.197 1.812 15-3.219 5.545 2.326
—0.806 2.773 1.966 16 -3.334 5.666 2.333
—1.158 3.219 2.061 17-3.442 5.781 2.339
—1.460 3.584 2124 18—-3.544 5.889 2.345
—1.722 3.892 2.170 19-3.641 5.992 2.351
—1.955 4.159 2.204 20—-3.734 6.089 2.355
—2.164 4.394 2.231 21-3.823 6.182 2.360
—2.353 4.605 2.253 22—-3.908 6.271 2.363
On the other hand, in Sec. IV we proved the general stringenig —2526 4.796 2270 23-3.989 6.356 2.367

upper boundEg. (65)] from which, forg=1, we obtain 11 —2.685 4.970 2.285 24-4.068 6.438 2.370
12 -2.832 5130 2298 25-4.143 6516 2.373
S <IN{(Lpet 1)Z=St=In{(L,+1)2}=5">. (77)

C. Experimental test of the principle of maximum entropy

Now let us return to the maximum entropy distribution
(26), and let us define and calculatg,. according to the
principle of the maximum(Boltzman-like entropy S, [Eq.
(12)]. If we considerS, = S"=In{(Lme+1)%}, we have

L me=integerx{expy(S /2)—1}. (76)

© 0o ~NO OO~ WNPEO
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3 T WG mental pion-nucleus phase shift80—24, are compared with the
. C T o AL r optimal state prediction&7) (dotted curve and (60) (full curve),
6r SL v 6r 3,_ ] respectively.(b) The scaling properties of the experimental entro-
4t ¥ r13 piesS,+ S, , calculated by using Eq$6) and(12) and the experi-
2 i | mental pion-nucleus phase shift80—24, are compared with the
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2 2F
0 of Therefore, within the limit of AL=L .~ L,=0,=1, LciS
2 a0 600800 2 00 200 300 described with a high accuracy ly,. Hence, by using the
(b) T(MeV) (q) T (MeV) available experimental pion-nucleus phase shift analyses

[20-24, we illustrated the exact saturation of the entropic

FIG. 6. (a) The experimental entropi€¥ andS_ andS,— S, as
functions of pion kinetic energy, calculated by using Eq$6) and
(12) and the experimental pion-nucleus phase shifts from Refs.
[20-24. The experimental results are compared with the optimal
state prediction57) (dotted curve and (60) (full curve), respec-
tively. (b) The experimental entropieS, and S, and S,—S, as o
functions of pion kinetic energy, calculated by using Eq$6) and
(12) and the experimental pion-nucleus phase shifts from Refs.
[20-24. The experimental results are compared with the optimal
state predictiong57) (dotted curve and (60) (full curve), respec-
tively. (c) The experimental entropieS, and S, and S,— S, as (a) - L,
functions of pion kinetic energy, calculated by using Eq$6) and
(12) and the experimental pion-nucleus phase shifts from Refs.
[20—24. The experimental results are compared with the optimal
state predictiongdotted curvel (d) The experimental entropies;,
andS_ andS,— S, as functions of pion kinetic energl; calculated
by using Eqs(6) and(12) and the experimental pion-nucleus phase
shifts from Refs[20-24. The experimental results are compared
with the optimal state predictionslotted curves

Ao anmMweaoo
»
.

These values are compared in Table | with the experimenta 00 2 4 & 8 10 12 14
values of the optimal angular momentury calculated from (© —— L,
the pion-nucleus phase shift20—-24. As we can see from

Table I, from a total number of 49 pion-nucleus experiments, FIG. 8. (a) Experimental tests of the entropic boundss§
ssfl. The experimental data are taken from Tables | and(ii)l.

Experimental tests of the entropic bounds: 182=<S,<S)*. The
experimental data are taken from the Tables | and(&)l.Experi-
mental tests of the entropic bounds: K8+ <S'+S". The
Lne=Lo—1 inten(or 20.4% experiments, (80) experimental data are taken from Tables | and III.

Lme=Lo, in34(or69.4% experiments, (79



PRE 60 ANGLE-ANGULAR-MOMENTUM ENTROPIC BOUNDS AND . .. 5273

upper boundEg. (77)] [see Fig. 8)]. Now in Fig. 8b) we  amplitude[Eg. (10)] [by adding the Coulombian amplitude
present an experimental test of the principle of maximumf.(x) as well as by replacing each partial amplituijeby

entropyS,. Then, we see that the upper bound f| explioi}, where o, are the electromagnetic phase shjfts
. the methods and results obtained in this paper can be ex-
Si<Sy . (82 tended to the general case when electromagnetic scattering

L . contributions are not substracted. Moreover, in the case of
which is the particular case of the general upper bdl@l 5 jications to hadron-nucleuith atomic numberZ and

(67)], is also verified experimentally with high accuracy.  mass numbea) scattering and nucleus-nucleus scattering, a
Z dependence of the experimental entrodi@sand (12) is

D. Experimental tests of the[ §,L ] entropic uncertainty expected to be observed only as a consequence of a violation
relations of the charge independence of the nuclear forces, whil&the
If each of the probability entropieS,, S., and S, , dependence of these entropies can observed explicitly or is

defined by Eqs(6), (12), and(16), is interpreted as natural implicitly included via the optimal cutoff parametér, [see
measure of the uncertainty in the realization of the probabilEds.(21) and(42)]. The main results obtained in this paper
ity distributions {P(x),xe[—1,+1]} [Eq. (7)], {p,]  can be summarized as follows. .
e[0L]} [Eq. (13] and joint probability distribution (i) The information entropieS,, S, , andS_, defined
{P(X)p,, xe[—1,+1], 1e[0,L]}, respectively, then the by Eqs.(_6), (12), _and(16), are_ln\_/estlgated_ln a more general
[6,L] entropic lower boundEq. (27)] can be interpreted as form by introducing the Tsallis-like entropigS$(q), S.(q),
state-independent[ #,L] entropic uncertainty relations. @ndSe () for e R] for the quantum scattering of spinless
Hence, using this bound and the general entropic uppeq>art|cles[see definitions in Sec. Il, and Eg®), (14), and

bounds[Eq. (69)], in the limit g=1, we obtain (17)]. The values of these entropies can be calculated by
numerical integration or directly from the available model-
IN2<S,+S <SY'+S*. (83)  independent amplitude analyses. Here numerical experimen-

tal values of the $,,S) entropies for the quantum

In Fig. 8(c) we present an experimental verification of this (#%-*He, #°-1°C, #°-1%0, and#°-4°Ca) scatterings, calcu-
important result in pion-nucleus scatterings. According to thdated on basis of the pion-nucleus phase si#3-24, are

inequality (83), the uncertainty in the realization of the joint presented in Table Ill in both extensige=1 and nonexten-

probability distribution{P(x)p,, xe[—1,1] andl €[OL]}  siveq+#0 cases.

is strongly limited by (i) The general state-independef#,L] entropic in-
) . . equalities(29) and (30) for the Tsallis-like entropieS,(q),

(optimal entropic uncertainfy=Sg' + ', (84) S.(q), andS,, (q), for ge R, are proved in Sec. Ill by using
the Riesz theorernfsee theorem 2.8 in Rdf19], p.102. Re-
sults of numerical tests of state-independefilL] entropic

=In[(87loy) (do/dQ)(1)]. | : . :
. . . ower bounds are presented in Sec. V in Figs. 1-4, while the
The entropic uncertainty relatiogsee Refs[1,9,10) rep- scaling properties of the test functions are illustrated in Fig.

resent no generalization of the standard relation but, in pring
ciple, a formulation using the entropy as a natural measure of’
the uncertainty of probability distributions. If we define the
statistical entropic variances as

which cannot be higher than a value given bi2lh,+1)?]

(i) The optimal entropiesS;’(q) and S¥(q), corre-
sponding to the optimal stat&6), are expressed in terms of
reproducing kernels in Sec. I\see Eqs(44)—(49)]. In par-
Ab=expS,), Al=expS). (85 ticular (casey=1), the entropiesy'(q) andSP(q), corre-
sponding to solutior{43) of the principle of minimum dis-
Ax andAl, the entropid 6,11 uncertainty relations, can be tance in the space of states in the form of Exf) (see Ref.
written in the form [15]), are given by Eqs(57)—(63) and in numerical form in
Table Ill. In Figs. 6 and 7, we show that the experimental
—— — 1y 07T do values of §,,S,) entropies for pion-nucleus scatterings are
2<A0AI<A6>Al SU_I aaD- (86)  systematically described by the optimal entropig%!(S°t)
¢ practical at all available pion kinetic energies. Hence these
Practical applications of the entropic uncertainty relations aréesults can be considered as experimental confirmations of
considerably difficult for the reason that the entropy cannothe validity of the principle of minimum distance in the
be easily estimated in experimental practice. However, wittspace of scattering states even in a crude fotsj. More-
the aid of the upper bounldEq. (86)], we can obtain a rela- over, in Table I, we also illustrated numerically that
tively good estimation of the uncertainty of joint experimen-
tal [ 4,L] probability distributions. Lo=Lme=exp(S/2)—1 within AL=0,+1. (87)

In this sense, we can claim that by the validity of E&j/) we
established a close connection between the principle of
The results presented in this paper are valid for strongnaximum entropy and the principle of minimum distance in

hadron-hadron, hadron-nucleus, or nucleus-nucleus scatteghe space of states in the form of E§6).

ings for spinless hadrons and only when the electromagnetic (iv) By using the Lagrange multiplier method, in Sec. IV
scattering contributions are subtracted from the experimentale proved the most stringent optimal entropic bou(@s—
data. However, with specific modifications of the scattering(70) which are expressed in terms of optimal entropie®

VI. DISCUSSIONS AND CONCLUSIONS
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and(61). In the limiting caseg=1, these results allow us to clearly based on the following important fact&) The
obtain the bound$77) and (82), which are experimentally spaces of physical states are in general normed linear spaces.
investigated in Figs. @) and 8b), respectively. (b) The solutions of the minimum constrained no(RMD-

(v) We proved not only the state-independent entropicSQS problems are expressible in terms of reproducing ker-
uncertainty{Eq. (27)], but also a general upper bound on thenels of the RKHS of the system interacting states.The
entropic uncertainty of the angle—angular-momentum joinoptimal states, obtained via the PMD-SQS, allow us to intro-
distribution of the quantum scattering of spinless particles. Irduce the optimal distributions of forn(x)=[K(x,y)]%
the particular casg=1, we obtain, the upper boun@3), K(y,y) and{py’} optimal distributions for the corresponding
which is expressed in terms of the optimal entropic uncerfourier components. All such results can be used for the
tainty [Eq. (84)]. This important result is experimentally definition of specific Tsallis-like entropies, and to obtain the
verified with high accuracy in Fig.(6). entropic lower and upper bounds in terms of the optimal

It is important to note that all results of this paper can bestates derived via the principle of minimum distance in the
extended to the scattering of particles with arbitrary spins byspace of statePMD-SQS. Finally, we believe that the re-
using the results of Ref$10,16—18. Moreover, using the sults obtained here are encouraging for further investigations
RKHS methods and basic ideas contained in this paper, simaf entropic uncertainty relations as well as the principle of
lar results can also be obtained for the particle productiomminimum distance in the space of states, not only in elemen-
phenomena including all kinds dbtrong, electromagnetic, tary particle physics but also in other domains of science
weak, gravitational, etf.interactions. This statement is such as in genetics, biologgee, e.g., Ref35]), etc.
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