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Models of competitive learning: Complex dynamics, intermittent conversions,
and oscillatory coarsening
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We present two models of competitive learning, which are respectively interfacial~i.e., where the interiors
of domains are unaffected by the rules of the model! and cooperative~i.e., where the bulk as well as the
interface of an individual domain is governed by the rules of the model! learning. This learning is outcome
related, so that spatially and temporally local environments influence the conversion of a given site between
one of two different types. We focus here on the behavior of the models at coexistence, which yields critical
behavior and the existence of a phase involving a type of coarsening which isoscillatory in nature. In the
discussion we speculate on, among other issues, the likely behavior of the models away from coexistence.
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I. INTRODUCTION

The notion of an outcome is familiar in the social sc
ences, but less so in the physical sciences. It is used in
former to describe the notion of a result following a cour
of action, especially in the context of game-theoretic ap
cations@1#. In this paper we use this concept to devise mo
els which, while motivated by ideas in the social scienc
are of interest to physicists both because they lead to p
nomena such asoscillatory coarsening, as well as because
via their connection with known physical models, they a
able to provide indications of new critical behavior.

The motivation for our model comes from the pheno
enon of competitive learning; imagine the existence of t
species, distracted~D! and receptive~R!. We postulate that
the D species is slower to learn than theR species, but that
on the other hand, theR species is more quick to forget; tha
is, a tokenR site is more swayed by the short-term succes
of its neighbors to convert to their species. This could b
model of conservative versus radical societies, where
former adapt relatively slowly to change, but are more sta
once changed, whereas the opposite applies to the latte

We shall define and investigate successively an interfa
version of our model in Sec. II, and a cooperative version
Sec. III. The emphasis will be put on the phase diagram
the model at coexistence, i.e., when neither of the specie
favoured over the other; we will there examine the types
order present in the model, and the universal characteris
of the transition points between these phases. In Sec. IV
will discuss our results.

*Present and permanent address: S. N. Bose National Centr
Basic Sciences, Salt Lake, Block JD, Sector III, Calcutta 7000
India.

†Electronic address: anita@boson.bose.res.in
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II. INTERFACIAL MODEL

A. Definition and generalities

We here introduce the first of our two models~which we
term the interfacial model! and set up definitions and nota
tions. Individuals sit at the sites~or nodes! of a regular lattice
with coordination numberz. We shall most often conside
the d-dimensional hypercubic lattice, for whichz52d. We
represent the efficiency of the individual at sitei as a~time-
dependent! Ising spin variable:

h i~ t !5 H 11 if i is of type R at time t,
21 if i is of type D at time t. ~2.1!

The efficiencies are dynamical variables, which are upda
according to the following dynamical rules.

Step 1: Majority rule for site types. In this step, we update
the efficiencies via a zero-temperature~ferromagnetic! ma-
jority rule. In other words, where a site is surrounded by
majority of its own type, it stays the same, while if it
surrounded by a majority of the other type, it changes. In
absence of a majority, the site flips type with probability1

2.
More formally, this rule consists of aligning the efficienc

h i with the local field acting upon it, according to

h i~ t1t1!5H 11 if hi~ t !.0,

61 w.p. 1
2 if hi~ t !50,

21 if hi~ t !,0.

~2.2!

The local field

hi~ t !5(
j ~ i !

h j~ t !, ~2.3!

is defined as the sum of the efficiencies of thez neighboring
sitesj of site i, andt1 is the associated time step.

Step 2: Association of outcomes with sites. In this step, we
assign to each sitei an outcomes i , which also takes Ising-
like values11 and21, corresponding, respectively, to su

for
,
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cess or failure. The~time-dependent! outcomess i are ran-
dom but correlated with the efficienciesh i , namely,

if h i~ t !511, then s i~ t1t2!5H 11 w.p. p1 ,

21 w.p. 12p1 ,

if h i~ t !521, then s i~ t1t2!5H 11 w.p. p2 ,

21 w.p. 12p2 ,
~2.4!

with t2 being the associated time step. The performance
rametersp6 characterize the strength of correlation betwe
efficiency and outcome for each species.

This step is meant to model theperformanceof a particu-
lar site, according to its type. Thus according to our rules
p1.p2 , the sites of typeR are more likely to succeed a
learning some new process~thus adapting more quickly to
new patterns! than sites of typeD.

Step 3: Conversion of sites according to performances. In
this step, we model the ‘‘fickleness’’ of the sites where,
mentioned above, we assume that theR sites are more vul-
nerable to the performances of their neighbors than are thD
sites. We denote byNi

1(t) the number ofR-type neighbors
of a given sitei, and byNi

2(t)5z2Ni
1(t) the number of its

D-type neighbors. We also denote byI i
1(t) @respectively,

I i
2(t)# the number of these which have a positive outcom

Ni
1~ t !5(

j ~ i !

11h j~ t !

2
5

z1hi~ t !

2
,

I i
1~ t !5(

j ~ i !

11h j~ t !

2

11s j~ t !

2
,

Ni
2~ t !5(

j ~ i !

12h j~ t !

2
5

z2hi~ t !

2
,

I i
2~ t !5(

j ~ i !

12h j~ t !

2

11s j~ t !

2
. ~2.5!

Then we postulate that the efficiencies are updated accor
to

if h i~ t !511 and
I i

1~ t !

Ni
1~ t !

,
I i

2~ t !

Ni
2~ t !

,

then h i~ t1t3!5H 21 w.p. «1 .

11 w.p. 12«1 ,

if h i~ t !521 and
I i

2~ t !

Ni
2~ t !

,
I i

1~ t !

Ni
1~ t !

,

then h i~ t1t3!5H 11 w.p. «2 ,

21 w.p. 12«2 ,

~2.6!

with t3 being the associated time step. The efficiencies
not updated, i.e., they are left unchanged, if none of
conditions given in Eq.~2.6! is satisfied. The convertibility
parameters«6 characterize the fickleness of each species
a-
n

if

s

:

ng

re
e

The above rule is meant to hold only if the individual
site i is able to compare the outcomes of both types of
neighbors, namely, forNi

1(t) and Ni
2(t)Þ0, i.e., Ni

1(t)
Þ0 andz. This is why we call this model the ‘‘interfacial’’
model, since dynamical evolution occurs only for interfac
sitesi whose neighbors are thusnot all of the same type. Pu
another way, the interiors of clusters of any type do n
evolve according to its rules. Then, ifp1.p2 and «1

.«2 , we note that even though theR sites are globally more
successful than theD sites, they are more susceptible to loc
performance-based conversions than are the latter.

So far we have only defined three elementary steps of
dynamics of the interfacial model, whose time sca
t1 ,t2 ,t3 are arbitrary. We shall consider the realistic regim
where the time scale over which individuals change ty
i.e., t1 or t3 , is much larger than the characteristic tim
scale of their activity over which their outcomes are updat
i.e., t2 . Throughout the following, we thus set for simplicit

t2→0, t15t351, ~2.7!

and we consider an ordered sequential dynamics, obtaine
a regular ‘‘sweeping’’ of the system.

In the regime~2.7! a given realization of the outcome
s j (t) will enter the rules~2.6! only once. Hence steps 2 an
3 can be recast as effective dynamical rules involving
efficienciesh i(t) and the associated local fieldshi(t) alone.
Obviously, these rules only hold for the sitesi which are
interfacial at timet, i.e., whenhi(t) is different from its
extremal values6z. They are of the form

if h i~ t !511, then h i~ t11!

5H 11 w.p. w1@hi~ t !#,

21 w.p. 12w1@hi~ t !#,

if h i~ t !521, then h i~ t11!

5H 11 w.p. w2@hi~ t !#,

21 w.p. 12w2@hi~ t !#.
~2.8!

The effective transition probabilitiesw6(h) can be evaluated
explicitly, by enumerating the 2z possible realizations of the
outcomess j of the sitesj neighbouring sitei, and weighting
them appropriately. Consider for definiteness the exampl
the square lattice. We havez54, so that the extremal value
of the local field areh564, while its values at interfacia
sites are 0 and62. The corresponding transition probabilitie
read

w1~12!512«1p2~12p1
3 !,

w2~12!5«2~12p2!@12~12p1!3#,

w1~0!512«1p2~12p1!~22p222p113p2p1!,

w2~0!5«2p1~12p2!~22p122p213p2p1!,

w1~22!512«1~12p1!@12~12p2!3#,

w2~22!5«2p1~12p2
3 !. ~2.9!
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In order to predict the behavior of the interfacial mod
for general values of the performance parametersp6 and the
convertibility parameters«6 , it is advantageous to examin
in great detail the symmetric situation

p5p15p2 , «5«15«2 , ~2.10!

and then to investigate the influence of the two biasing fie

H5p12p2 , B5«22«1 . ~2.11!

Indeed in the symmetric case~2.10!, neither of the typesR or
D is favored. In other words, the rules of the symmet
model are invariant under a global flip of all the spins.

The possible dynamical phase transitions between var
kinds of collective behavior are therefore expected to t
place in this symmetric situation, in analogy with the pha
transition in the ferromagnetic Ising model, which tak
place at zero magnetic field~symmetric situation! and low
enough temperature. We will discuss at a qualitative le
the implications of this phase diagram for the generic sit
tion of nonzero biasing fieldsB or H, in Sec. IV.

This symmetric situation models the case when the
species, despite being identical in all their properties,
nevertheless distinguishable as being of two distinct typ
The parametersp and« then control the intensity of surfac
noise. We attach the label ‘‘surface’’ to them because,
mentioned above, all discernible effects of these parame
are restricted to the interfaces separating clusters of indiv
als belonging to either of the two species.

In the rest of this section we shall explore the behavior
the symmetric interfacial model in the regime~2.7!, via an
approximate analytical treatment~known as the pair approxi
mation! and then by means of numerical simulations. T
basic quantities to be considered hereafter are the mag
zationM and the energyE. These quantities are defined for
finite sample ofN individuals, i.e.,N sites ~or nodes! and
Nz/2 bonds~or links!, as

M5
1

N (
i

h i , E5
1

Nz(~ i j !
~12h ih j !. ~2.12!

In the following we shall usually consider the mean valu
^M& and ^E&, where the brackets represent an average o
the random initial configuration of efficiencies$h i(0)% and
over the stochastic dynamical rules~2.2!, ~2.4!, and ~2.6!—
i.e., the whole ‘‘thermal history’’ of the system. The magn
tization^M& is the mean efficiency of an individual, while th
energy^E& is the proportion of ‘‘disparate’’ bonds~ij !, such
that h iÞh j . In the case of the cooperative model in thr
dimensions~to be presented later!, we shall be led to con-
sider also the dimensionless specific heatC. In analogy with
equilibrium systems, this quantity is defined as the varia
of the energyE per bond, namely,

C5
Nz

2
~^E2&2^E&2!5

1

2Nz (
~ i j !~kl !

@^~12h ih j !~12hkh l !&

2^12h ih j&^12hkh l&#. ~2.13!

It will be advantageous to put the present model in p
spective with the kinetic Ising model investigated in Re
l

s

us
e
e

l
-

o
e
s.

s
rs

u-

f

e
ti-

s
er

e

-
.

@2#, @3#. This is a dynamical model for Ising spinsh i(t) on
the square lattice, defined by a stochastic rule of the fo
~2.8!, namely,

h i~ t11!5H 11 w.p. W@hi~ t !#,

21 w.p. 12W@hi~ t !#.
~2.14!

The transition ratesW@hi(t)# depend only on the local field
hi(t) defined in Eq.~2.3!. They assume the most gener
form compatible with spin-flip symmetry, i.e.,W(h)1W
(2h)51. This form involves two parameters (0<p1 , p2
<1):

W~14!5p2 ,

W~12!5p1 ,

W~0!5 1
2 ,

W~22!512p1 ,

W~24!512p2 . ~2.15!

On the ferromagnetic side (1
2 <p1 , p2<1), this model con-

tains several special cases, including the Ising model w
Glauber dynamics, the~noisy! voter model, and the majority
vote model. Introduced by de Oliveiraet al. @2# in the con-
text of a general investigation of nonequilibrium spin mo
els, it was subsequently treated by Drouffe and Godre`che@3#
who interpreted the parametersp1 and p2 as two effective
temperatures, linked respectively to an interfacial and a b
noise. As our symmetric model only contains interfac
noise, it should correspond to the above model along
p251 line, with 1/2<p1<1 being a measure of the streng
of interfacial noise. On this line, the model is paramagne

for a large enough surface noise (1
2 <p1, 3

4 ), while it exhib-
its a frozen, i.e., totally ordered, ferromagnetic phase fo

weak enough noise (3
4 ,p1<1). The transition point (p1

5 3
4 , p251) corresponds to the voter model. This model h

been investigated extensively, both by mathematicians@4#
and by physicists@5#, and is known to be critical in two
dimensions.

B. Analytical approach: Pair approximation

The pair approximation is a particular case of the clus
method, an analytical approach proposed long ago@6# as a
systematic improvement over mean-field theory to prov
approximate solutions of statistical mechanical models~see
Ref. @7# for a review!. Contrary to the standard mean-fie
approximation, or site approximation, the pair approximat
has the advantage of taking into account correlations
tween pairs of neighboring sites. A dynamical variant of t
pair approximation had been introduced by Dickman@8# in
the framework of a surface-reaction model. More recen
de Oliveiraet al. have also used a dynamical pair appro
mation to investigate their two-parameter kinetic Ising mo
@2#.

We propose the followingfully dynamical pair approxi-
mation, which leads to closed form coupled evolution equ
tions for the mean magnetizationM (t) and energyE(t) in
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our symmetric interfacial model; in the preceding, as well
in what follows, the angular brackets implying averagi
have been taken to be implicit. The basic object of the p
approximation is the configuration of the dynamical va
ables attached to a bond. In the present case of a spa
homogeneous system, with binary site variablesh i , an ~ori-
ented! bond ~ij ! can assume four configurations. We intr
duce the corresponding probabilities

P~11 !5Prob$h i511 and h j511%5x,

P~22 !5Prob$h i521 and h j521%5y,

P~12 !5Prob$h i511 and h j521%5
12x2y

2
,

P~21 !5Prob$h i521 and h j511%5
12x2y

2
.

~2.16!

The pair approximation consists of reducing any observa
i.e., the expectation of any function of the efficienciesh i , to
a function ofx andy, by systematically neglecting dynamic
correlations between the efficiencies of any two sites wh
are not first neighbors, as well as any higher-order corr
tions.

For instance, the probability law of the efficiency of an
given site reads

P~1 !5Prob$h i511%5P~11 !1P~12 !5
11x2y

2
,

P~2 !5Prob$h i521%5P~21 !1P~22 !5
12x1y

2
.

~2.17!

The mean magnetizationM and energyE hence read

M5x2y, E512x2y, i.e., x5
12E1M

2
,

y5
12E2M

2
. ~2.18!

Thus, knowingx andy is equivalent to knowingM andE.
As a second example, consider the conditional probab

P(sut), defined as being the probability thath i5s, given
that h j5t for one of the neighborsj of site i. We have

P~1u1 !5
P~11 !

P~1 !
5

2x

11x2y
,

P~2u1 !5
P~21 !

P~1 !
5

12x2y

11x2y
,

P~1u2 !5
P~12 !

P~2 !
5

12x2y

12x1y
,

P~2u2 !5
P~22 !

P~2 !
5

2y

12x1y
. ~2.19!
s

ir

lly

e,

h
a-
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The standard mean-field approximation corresponds
setting P(1us)5P(1)5(11M )/2 and P(2us)5P(2)
5(12M )/2 for s561. The variablesx and y are then re-
lated by (x2y)222(x1y)1150, i.e.,E5(12M2)/2.

Within the dynamical pair approximation, coupled evol
tion equations forx(t) and y(t) or, equivalently, forM (t)
and E(t), can be derived by enumerating all the configu
tions of efficiencies attached to a given bond and its nei
borhood, weighting each of them with the appropriate pro
ability, and by the appropriate transition rate for each step
the dynamics, as given in Eqs.~2.2!, ~2.4!, and~2.6!.

We shall give just one example of how our calculatio
go. Consider a11 bond~ij !, and apply step 1 of the dynam
ics to sitei at time t, say. The rule~2.2! involves the local
field hi(t) or, equivalently,Ni

1(t)5@z1hi(t)#/2, defined in
Eq. ~2.5!. Consider thez neighbors of sitei. We know that
the neighborj is such thath j (t)511. The efficiencieshk of
the (z21) other neighborsk are treated as independent ra
dom variables, each of them being distributed according
the conditional probabilitiesP(hku1). The random variable
Ni

1(t) is thus distributed according to the binomial law

Prob$Ni
15n%5S z21

n21D P~1u1 !n21P~2u1 !z2n

5S z21
n21D ~2x!n21~12x2y!z2n

~11x2y!z21 ~n51,...,z!.

~2.20!

The probabilities of occurrence of the various cases of
rule ~2.2! are thus known.

This procedure leads to coupled first-order different
equations, of the form

dM

dt
5S dM

dt D
1

1S dM

dt D
3

,
dE

dt
5S dE

dt D
1

1S dE

dt D
3

,

~2.21!

where the contributions of the various steps of the dynam
appear additively. The combinatorial analysis involved in t
expressions of these contributions depends strongly on
lattice under consideration.

Two-dimensional case. In the two-dimensional case, o
the square lattice, the various contributions to the differen
equations~2.21! read

S dM

dt D
1

5
2E2M

~12M2!2 @3~12M2!24E#,

S dM

dt D
3

5
4«p~12p!E2M

~12M2!3 @~5p225p22!~31M2!E2

24p~5p29!~12M2!E13p~p25!~12M2!2#,

S dE

dt D
1

5
2E3

~12M2!3 @22~12M4!13~11M2!E#,
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S dE

dt D
3

5
4«p~12p!E

~12M2!3 @22~2p21!~113M2!

3E312p~p13!~12M4!E223~p21p11!

3~12M2!2E1~p21p11!~12M2!3#. ~2.22!

Although these equations cannot be integrated explicitly,
dynamical phase diagram within the pair approximation c
be extracted from them as follows. The steady state value
the magnetization and of the energy are determined by eq
ing the right-hand side of Eqs.~2.22! to zero. The criterion
for the presence of collective behavior, i.e., long-range ord
is the instability of the fixed-point solution such thatM50.

A linear stability analysis thus allows us to predict t
existence of a transition line in thep-« plane, given by

«c~p!5
5

4p~12p!~117p13p2!
. ~2.23!

This line has two end points,pc150.47598 and pc2
50.83060, corresponding to transitions as a function ofp, if
we set «51. The intermediate phase@p1,p,p2 and
«c(p),«<1# is paramagnetic, i.e., disordered, while the r
of the parameter space is frozen, i.e., totally ferromagn
cally ordered.

Three-dimensional case. In the three-dimensional case, o
the cubic lattice, the coupled differential equations forM (t)
andE(t) are much more lengthy than Eqs.~2.22!. We prefer

FIG. 1. Qualitative phase diagram of interfacial and coopera
models as a function ofp.
e
n
of
at-

r,

t
i-

not to write them down in full. Within this approximation
we predict the same phase diagram as for the square la
with

«c~p!5
292

3p~12p!~3211217p22243p212437p32245p4!
.

~2.24!

This line again has two endpoints,pc150.53047 andpc2
50.86908, if we set«51 as before. We contrast the abov
with the predictions of standard mean-field theory whi
doesnot predict a phase transition for the symmetric inter
cial model, in either two or three dimensions.

The qualitative phase diagram of the interfacial mode
shown in Fig. 1, together with that of the cooperative mo
investigated later on. Quantitative data concerning the lo
tion and the nature of the corresponding phase transitions
provided in Table I.

C. Numerical results

We have performed a numerical investigation of the
terfacial model throughout thep-e plane, both on the squar
and on the cubic lattice. The quantitative measurements h
been performed for«51, where the outcomes play a max
mal role in the ordering behavior of the model via step
The limiting situationsp50 andp51 both represent deter
ministic outcomes, where both species are restricted res
tively to being total failures and total successes; in this c
steps 2 and 3 are rendered essentially irrelevant, and
majority rule in step 1 lets the ordering proceed simply a
cording to the types of the sites.

We therefore discuss in the following the interfaci
model on the square and on the cubic lattice, for«51, as a
function of p. In both cases we see clear evidence of a d
ordered, paramagnetic phase forpc1,p,pc2 , between two
frozen phases. This global picture is in qualitative agreem
with the predictions of the pair approximation described
Sec. II B.

Two-dimensional case. We have already underlined th
analogy between our interfacial model on the square lat
and the two-parameter model investigated in Refs.@2,3#
along the p251 line, corresponding to interfacial nois
alone. The strength of noise is measured byp1 in that model,

e

oints
ics
TABLE I. Characterization of phase transitions shown in Fig. 1. Column 2: location of transition p
within the pair approximation~see Secs. II B and III B!. Columns 3 and 4: transition points and characterist
~exponents, universality classes! of transitions, obtained by means of numerical simulations~see Secs. II C
and III C!.

Model
Transition points

~pair approximation!
Transition points

~numerical!
Characteristics
of transitions

2D interfacial
~square lattice!

pc150.47598
pc250.83060

pc150.5660.01
pc250.7060.01%

voter-like

3D interfacial
~cubic lattice!

pc150.53047
pc250.86908

pc150.4560.01
pc250.86560.005%

V50.1060.04

2D cooperative
~square lattice! pc50.86805

p050.13660.003
pc50.87360.002

1/n050.4560.10
Ising-like

3D cooperative
~cubic lattice! pc50.87319

p050.4260.005
pc50.8260.01

1/n050.860.2
weakly Ising-like
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while it is measured byp and« in our model. This suggest
that the phase transitions atpc1 andpc2 , which separate the
disordered phase from both frozen phases, are critical po
which belong to the universality class of the voter model:
intermediate disordered phase (pc1,p,pc2) corresponds to
p1, 3

4 , while the two frozen phase (0,p,pc1 and pc2,p
,1) correspond top1. 3

4 .
Figure 2 shows snapshots of the dynamics of the mode

times t58, t564, andt5512, with a random initial condi-
tion. In anticipation of our numerical resultpc2'0.7 ~see
below!, we have chosen a value of the probabilityp50.7 so
that our snapshots represent the time evolution of our sys
at ~or very near! the critical point. Just as in Ref.@3#, the
plots show a portion~of size 2562) of a square sample~of
size 5122) with periodic boundary conditions. These plo
bear a strong resemblance to those corresponding to the
model ~see Fig. 5 of ref.@3#!, thus confirming our expecta
tions.

In order to provide quantitative confirmations of these o
servations, we have studied the decay of the mean en
E(t), starting with a random initial configuration. The two
dimensional voter model is known to exhibit unusual critic
behavior@4,5#; this phenomenon is closely linked to the fa
that d52 is the marginal dimensionality for Brownian mo
tion, which is known to be recurrent ford,2 and transient
for d.2. In particular, the mean energyE(t) of the two-
dimensional voter model falls off very slowly, as

E~ t !'
p/2

ln~ t/t0!
, ~2.25!

where the numeratorp/2 is universal~i.e., it is independent
of the microscopic details of the dynamics!, whereas the time
scalet0 is not.

We have plotted in Fig. 3 the inverse energy 1/E(t)
against lnt, for various values ofp in the vicinity of the

FIG. 2. Snapshots of the dynamics of the interfacial model
the square lattice, forp50.7'pc2 , at times~top! t58, ~bottom
left! t564, and~bottom right! t5512.
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phase transition atpc2'0.70, gleaned from our snapshots
the system. Each curve is an average over 200 indepen
samples of size 5002. The graphs curve downwards in th
disordered phase, where the energy converges to a non
equilibrium valueEeq(p), while they curve upwards in the
frozen phases, where the energy falls off asE(t);t21/2; the
latter is because of an underlying diffusive type of coars
ing behavior@9#. For p50.70, the data seem to become a
ymptotically parallel to the dashed line with slope 2/p @see
Eq. ~2.25!#, shown on the plot. This observation confirm
that our interfacial model belongs to the universality class
the voter model in a strong sense, i.e., including the prefa
of the law~2.25!. Moreover, we thus obtain a rather accura
estimate for the transition point:pc250.7060.01. A similar
analysis yieldspc150.5660.01. The numerical values o
both transition points are listed in Table I.

Three-dimensional case. In three dimensions, on the cub
lattice, we again find evidence of an intermediate disorde
phase forpc1,p,pc2 . Contrary to the two-dimensiona
case, we do not have anya priori knowledge of the phase
transitions atpc1 and pc2 . In fact we do not know ofany
three-dimensional critical phenomenon driven by interfac
noise alone. It is nevertheless to be expected that the cri
behavior at these phase transitions corresponds to a ge
fixed-point behavior, with finite, nontrivial values of th
various critical exponents. This is in sharp contrast to
two-dimensional case, which belongs to the very special u
versality class of the voter model, with its well-known log
rithmic behavior~2.25!. In particular, we expect a nontrivia
power-law decay of the mean energy at the transition poi
of the form

E~ t !;t2V. ~2.26!

This expectation is corroborated by our numerical resu
Figure 4 shows a log-log plot of the energyE(t), for various
values ofp in the vicinity of pc1 . Each curve is an averag
over 50 independent samples of size 1003. The two extremal
dashed lines show the expected behavior in the frozen
disordered phases, while the intermediate one correspon
the critical law~2.26!, with an exponentV'0.1. This picture
is confirmed by a more refined analysis whose results

n

FIG. 3. Plot of the inverse energy 1/E(t) of the interfacial model
on the square lattice, against lnt, for various values ofp, indicated
on the curves, in the vicinity ofpc2'0.70. The dashed straight lin
has slope 2/p @see Eq.~2.25!#.
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plotted in Fig. 5. This graph shows a log-log plot of th
effective exponentVeff(t) ~defined as being the negative
the slope of the least-square fit to the data shown in Fig
over the ranget/2,t8,2t). The different kinds of behavio
corresponding to the frozen and disordered phases and t
critical point appear more clearly. The data forp50.40,
0.42, and possibly 0.44, curve upwards and eventually t
toward the value1

2, characteristic of the frozen phase. Co
versely, the data forp50.48 and 0.50 curve downwards an
eventually tend toward the value 0, characteristic of the d
ordered phase. The data forp50.45 and 0.46 seem to con
verge to a nontrivial critical exponentV. We thus obtain the
estimatespc150.4560.01 and V50.1060.04. A similar
analysis leads topc250.86560.005, with an exponentV
compatible with the above value. Although our numeric
data do not allow us to rule out logarithmic behavior of t
mean energy, they definitely point towards critical behav
characterized by a power law of the form~2.26!, with a finite
exponentV. The numerical values of the transition poin
and of the exponentV are listed in Table I.

FIG. 4. Log-log plot of the energyE(t) of the interfacial model
on the cubic lattice, against timet, for various values ofp, indicated
on the curves, in the vicinity ofpc1'0.45. The dashed lines, mea
as guides to the eye, have slopes 0~disordered!, 2

1
2 ~ordered!, and

20.1 ~critical!.

FIG. 5. Log-log plot of the effective exponentVeff(t) of the
energy of the interfacial model on the cubic lattice, against timt,
for the same values ofp as in Fig. 4. The symbol to the right with
an error bar corresponds to the estimateV50.1060.04 for the
critical exponent.
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III. COOPERATIVE MODEL

A. Definition

One of the most interesting features of the model that
have investigated in Sec. II is its totally interfacial behavi
However, from the viewpoint of the sociological behavi
that we are trying to model, it lacks an important featu
having to do with learning from the failures of neighbo
when all the sites concerned are of thesame type. Thus,
consider a site of typeD surrounded by others of its ow
kind in the region of phase space wherep1.p2 : it is then
plausible that a majority of the surrounding sites could fail
any given iteration. However, according to the rules of t
interfacial model defined in the preceding section, the eff
of this would be ephemeral; in step 3 the central site wo
be converted to a site of typeR, but at the very next time
step, the majority rule of step 1 would ensure that it w
converted back to aD site. Thus there would be no long-term
learning of the central site from the failures of sites of
own kind, to mirror the sociological phenomenon of ‘‘lear
ing from one’s own mistakes.’’

To incorporate such long-term learning, we introduce
modification to our earlier model. In essence this ensures
the learning from failure in step 3 has a cooperative asp
that is the central siteas well asits neighbors learn from
their failures and convert collectively to the other speci
This in turn ensures that the majority rule of step 1 does
interfere with the conversion based on learning in step
since the central site and its neighbors are now all of
same kind, i.e.,R, in the case of the above example. This ru
~hard cooperative rule! is embodied in step 3a below.

A modification of the above would be to say that on
those sites which had failed, as well as the central site, wo
convert to the other species: then if a majority of surround
sites fail, those sites as well as the central sites would con
at the next iteration to the other type. This rule~soft coop-
erative rule! is embodied in step 3b below. It is indeed a
‘‘softer’’ version of step 3a; an alternative way of framing
such a rule would be to have a stochastic formulation wh
a noise would control the conversion of sites in step 3,
proportion to the original number of failures.

In contrast with the interfacial model studied so far, the
variants of our cooperative model incorporate both surf
noise and bulk noise. In this respect, the cooperative mo
is a generic dynamical model: in two dimensions, and a
qualitative level, it can be mapped onto the phase diagram
the two-parameter kinetic Ising model described above
will turn out, however, that our cooperative model posses
a much greater diversity of behavior than the two-parame
model, since in addition to the conventional ferromagne
and paramagnetic phases, it manifests a novel phase w
the coarsening isoscillatory.

In the following we focus on step 3a. We speculate tha
the soft version of step 3b would only lead to a crossove
behavior from the pure interfacial model of Sec. II, to t
hard cooperative model defined by steps 1 to 3a. The rules
discussed above are formulated, respectively, by the foll
ing.

Step 3a: Cooperative conversion of sites according
performance (hard). We add to step 3 by considering th
case when a sitei is surrounded by neighbors which are all
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the same kind, either allR, i.e., Ni
1(t)5z, or all D, i.e.,

Ni
2(t)5z, with the notation of Eq.~2.5!. Then we postulate

that

if Ni
1~ t !5z and I i

1~ t !,z/2,

then h i~ t1t3!5h j~ t1t3!521,

if Ni
2~ t !5z and I i

2~ t !,z/2,

then h i~ t1t3!5h j~ t1t3!511, ~3.1!

wherej denotes all thez neighbors of the central sitei. This
step of hard cooperative conversion always involves
maximal numberz11 of individuals in a cluster made up o
any central site and its neighbors.

Step 3b: Cooperative conversion of sites according
performance (soft). In this case we postulate that the coo
erative rearrangement described by the rule~3.1! only ap-
plies to the central sitei, and to thez2I i

6(t) neighborsj of
site i who failed at timet. Hence this step of soft cooperativ
conversion involves a variable numberz112I i

6(t) of indi-
viduals.

In the following, we analyze this cooperative model wi
the hard rule~step 3a), along previous lines, and find tha
although it is more generic in some respects, in other way
exhibits some very novel behavior to do with theintermittent
conversionsof sites. We notice that, in the regime defined
Eq. ~2.7!, steps 2 and 3a can be recast as effective dynamic
rules involving the efficienciesh i(t) alone, in analogy with
Eq. ~2.8!. These rules are valid only for sitesi which are bulk
sites at timet @i.e., whenhi(t)56z#, and are of the form

if hi~ t !51z, then h i~ t11!5h j~ t11!521 w.p. P,

if hi~ t !52z, then h i~ t11!5h j~ t11!511 w.p. P,
~3.2!

where it is understood that the efficiencies are not update
the complementary cases. The probabilityP can be evalu-
ated by enumerating the 2z possible realizations of the ou
comess j and weighting them appropriately. We thus obta

P5H ~12p!3~113p! for d52,

~12p!4~114p110p2! for d53.
~3.3!

B. Analytical approach: pair approximation

In order to analyze the cooperative model with the h
rule ~3.1! within the pair approximation, we have to dete
mine the extra contribution of step 3a of the dynamics to the
differential equations~2.21!. The combinatorial analysis in
volved again depends on the lattice under consideration

Two-dimensional case. In the case of the square lattic
the analysis is as follows. Consider for concreteness the
line of Eq. ~3.1!. If the central spin ish i511, the move
takes place with probabilityPP(1)P(1u1)4; it changes
the total magnetization byNDM5210, while it leaves the
energy unchanged. If the central spin ish i521, the move
takes place with probabilityPP(2)P(1u2)4; it changes
the total magnetization byNDM528 and the total energy
by 2NDE524.
e

o
-

it

l

in

d

st

We thus obtain after some algebra

S dM

dt D
3a

5
2~12p!3~3p11!M

~12M2!3 @~31M2!E4240~12M2!

3E3130~12M2!2E225~12M2!3#.

S dE

dt D
3a

52
2~12p!3~3p11!E4~113M2!

~12M2!3 . ~3.4!

A linear stability analysis of the disordered solutionM50 of
Eqs.~2.21!, including the contribution~3.4!, leads to the fol-
lowing prediction. Within the pair approximation, the mod
has a unique transition atpc50.86805, between a disordere
phase atp,pc and a ferromagnetically ordered one atp
.pc . This prediction for the transition point is listed i
Table I.

Three-dimensional case. The case of the cubic lattice i
very similar to that of the square lattice. The pair appro
mation again predicts the existence of a unique phase tra
tion, at pc50.87319.

C. Numerical results

For the cooperative model, updated in an ordered sequ
tial way with rule 3a, either on the square lattice or on th
cubic lattice, we see clear evidence of an intermediate di
dered, paramagnetic phase forp0,p,pc ~Fig. 1!. The phase
for pc,p,1 is ferromagnetically ordered, while the pha
for 0,p,p0 exhibits a kind of dynamical order that we ca
‘‘oscillatory.’’ These observations are illustrated in the tw
dimensional case in Figs. 6 and 7, which show snapshot
the model forp50.1 ~oscillatory phase! and p50.9 ~ferro-
magnetic phase!, respectively.

FIG. 6. Snapshots of the dynamics of the cooperative mode
the square lattice, forp50.1, at times~top! t58, ~bottom left! t
564, and~bottom right! t5512.
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1. Ferromagnetic phase transition

The phase transition atp5pc might be expected to be in
the universality class of the ferromagnetic Ising model, sin
it demarcates a disordered phase from a ferromagnetic
ordered one. We have investigated this ferromagnetic ph
transition in two and three dimensions, by means of num
cal simulations.

Two-dimensional case. On the square lattice, the situatio
is very clearly seen from Fig. 8, which shows a plot of t
mean-magnetization̂M& againstp. The samples used, o
sizes 1002 and 2002, were large enough to prevent the sy
tem from flipping between one ordered phase and ano
during the simulations. We have also checked that the d
shown in Fig. 8 are not affected by finite-size effects; inde
the data for the two system sizes mentioned above canno
distinguished from one another on the plot. The dashed
shows a fit of the form̂ M &'A(p2pc)

1/8. with the well-
known magnetization exponentb5 1

8 of the two-dimensional

FIG. 7. Snapshots of the dynamics of the cooperative mode
the square lattice, forp50.9, at times~top! t58, ~bottom left! t
564, and~bottom right! t5512.

FIG. 8. Plot of the mean magnetization^M& of the cooperative
model on the square lattice, againstp, in the ferromagnetic phase
The fit shown as a dashed line~see text! yields pc50.87360.002.
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Ising model. The quality of the plotted fit confirms our e
pectation: the ferromagnetic transition we observe does
deed belong to the universality class of the ferromagn
Ising model. We also obtain an accurate evaluation of
transition point, pc50.87360.002, i.e., Pc
5(7.460.3)1023, which is listed in Table I.

Three-dimensional case. On the cubic lattice, the situatio
is less clear cut as a consequence of huge finite-size eff
An analysis of the mean magnetization, analogous to tha
Fig. 8, is totally inefficient, even for the purpose of locatin
the transition. We have instead considered the specific
C, defined in Eq.~2.13!. Figure 9 shows a plot of the specifi
heatC ~multiplied by the transition probabilityP!, againstp,
for cubic samples of sizeL3, with various values ofL. Each
data point corresponds to an average over at least 100
time steps. It is natural to consider the productPC, instead
of C alone, because the specific heat is due to bulk fluct
tions, whose driving force is the cooperative conversion e
bodied in step 3a; these take place, as mentioned before
each time step with probabilityP @cf. Eq. ~3.3!#. We antici-
pate that the transition probabilityP will be very small
throughout the ferromagnetic phase, just as in the tw
dimensional case.

The data forPC exhibit a peak, whose position, heigh
and width depend onL. The critical exponentsa andn can in
principle be extracted from these data by means of the fin
size scaling law@10#

C'La/nF@~p2pc!L
1/n#, ~3.5!

which implies that the height of the peak scales asLa/n,
while its relative positionpmax(L)2pc with respect to the
genuine transition point as well as its width, both scale
L21/n. Figure 10 shows a plot of the peak positionpmax(L)
againstL21/n. The fit shown as a dashed line incorporate
linear correction to scaling, of the formpmax(L)5pc
1L21/n(A1BL2v), and uses the recent estimatesn50.630
andv50.80 @11# corresponding to the universality class
the three-dimensional Ising model. Reasonable agreeme
found, although the amplitude for corrections to scaling
unexpectedly large. We thus obtain the estimatepc50.82
60.01 for the critical ferromagnetic transition, i.e.,Pc
5(1162)1023. We conclude therefore that the transition

n

FIG. 9. Plot of the specific heatC of the cooperative model on
the cubic lattice~multiplied by the transition probabilityP!, against
p near the ferromagnetic transition, for several sample sizes.
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most probably weakly Ising-like, by which we mean th
corrections to scaling are very large, or else that the crit
region is anomalously small.

2. Oscillatory phase transition

For small values of the parameterp, i.e., values of the
probabilityP close to unity, the cooperative system exhib
an oscillatory phase, already mentioned in the context of
7. This phase in unusual in several respects, and we wer
to formulate its phenomenology as a result of various
merical investigations. First, sinceP is close to unity, the ne
outcome of every time step is approximately to change
the efficiencies into their ‘‘opposites.’’ This feature of th
microscopic dynamics will be ignored hereafter either
only looking at the system at even times, or by consider
quantities such as the skew magnetization

M skew~ t !5~21! tM ~ t !. ~3.6!

Second, and more importantly, we see that after a trans
period, the system is filled with clusters which keep evolvi
forever. This perpetual motion is illustrated in Fig. 11, whi
shows a plot of the evolution of the skew magnetizat
against t, for a square sample of size 1002, with p50.1
~hence P50.990711). The skew magnetization exhib

FIG. 10. Plot of the positionpmax(L) of the peak in the data o
Fig. 9, againstL21/n. Dashed line: fit discussed in the text, inco
porating a linear correction to scaling.

FIG. 11. Plot of the skew magnetizationM skew(t), of the coop-
erative model on the square lattice, against timet, for a single
history of a sample of size 1002, with p50.1.
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slow, irregular oscillations, with a rather well-defined amp
tude ~roughly independent of size! and period ~scaling
roughly asL!. This collective oscillatory behavior remain
noisy in thep→0 limit, because of the presence of ‘‘floppy
interfacial sites, whose local field vanishes. In order to inv
tigate the transition atp5p0 between this unusual oscillator
phase and the usual disordered~paramagnetic! phase, we
have used the order parameter^M2&5^M skew

2 &, which is
clearly nonzero in the oscillatory phase.

Two-dimensional case. Figure 12 shows a plot of the or
der parameter̂M2& againstp, for square samples of variou
sizes. Each data point corresponds to an average over at
100 000 time steps. The curves clearly exhibit a comm
point, corresponding to the transition. In the oscillato
phase, the order parameter has a nonzero thermodynam
value ^M2&0'0.16, with little or no dependence onp. It is
discontinuous at the transition point, equaling^M2& tr'0.06
at the transition point itself, and vanishing in the disorder
phase. In the vicinity of the transition point, the order para
eter is found to obey a finite-size scaling law of the form

^M2&'F@~p2p0!L1/n0#, ~3.7!

illustrated in Fig. 13. The best data collapse is obtained
p050.13660.003 and 1/n050.4560.10.

FIG. 12. Plot of the order parameter^M2& of the cooperative
model on the square lattice againstp, for several sample sizes.

FIG. 13. Scaling plot of the data shown in Fig. 12, illustratin
the finite-size scaling law~3.7! at the transition between the osci
latory and disordered phases, withp050.136 and 1/n050.45.
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5228 PRE 60ANITA MEHTA AND J. M. LUCK
Three-dimensional case. On the cubic lattice, the situatio
is qualitatively similar. The order parameter is still disco
tinuous, with a thermodynamical value around^M2&0
'0.16 in the oscillatory phase. The values of the transit
point, p050.4260.005, of the associated exponent char
terizing the size dependence, 1/n050.860.2, and of the or-
der parameter at the transition point,^M2& tr'0.0017~with a
large error bar!, have been read off from Fig. 14. Each da
point again corresponds to an average over at least 100
time steps.

IV. DISCUSSION

Starting from simple and intuitive ideas about the nat
of experiential learning, we have devised two models invo
ing competitive dynamics. The ideas are based on every
experience: individuals who are quick to learn are of
those who are also quick to adapt to changing circumstan
~R type!, while those who are slow to learn~D type! tend to
be more conservative about what they know, adapting r
tively slowly to changes in their environment. Our mode
embody these ideas, and emphasise the fact that adap
may occasionally lead to an overly quick change of behav
~known colloquially as ‘‘knee-jerk reactions’’!, and that in
this sense slow and steady learners can occasionally ge
better of their quick counterparts.

Both models have the same essential features: firs
zero-temperature majority rule involving species, whose
fect is to ‘‘convince’’ the central site to convert to~or stay
the same as! the types of its neighbors. Next, outcomes f
some process representing success or failure are assign
each of these sites in proportion to their type, and last, ba
on these outcomes, the central site could decide to switc
another type or stay the same. This last step is rather su
as it involves the comparison of two ratiosI i

1(t)/Ni
1(t) and

I i
2(t)/Ni

2(t), so that, for example, even one individual wh
is successful can have a greater impact on his/her neig
than say two individuals who are successful in a trio of
same type. It is also in this last step that our interfacial a
cooperative models differ, in that the latter allows for lon
term changes even within a sea of the same species, dep
ing on local outcomes.

FIG. 14. Scaling plot of the order parameter^M2& of the coop-
erative model on the cubic lattice, illustrating the finite-size scal
law ~3.7! at the oscillatory transition, withp050.422 and 1/n0
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This diversity of behavioral modeling is, however, on
one aspect of our work. The resulting rich and novel colle
tive behavior is what, for the most part, our paper is co
cerned with. We have focused on the symmetric situati
where none of the species is favored. In particular, the tw
dimensional case of our interfacial model turned out to b
physically motivated analog of the kinetic Ising model d
cussed in a more abstract fashion in the literature@2,3#. In
three dimensions, the coarsening behavior of the same in
facial model has been characterized by a dynamical crit
exponentV'0.10. The latter exponent can be expected
describe the relaxation of the energy of generic critical thr
dimensional kinetic Ising models, whose rules involve on
surface noise. The exponentV certainly deserves to receiv
more attention in the future, in either three or higher dime
sions. In the cooperative model, our phase diagram involv
in addition to regions of more conventional behavior, a ph
whose coarsening behavior we term ‘‘oscillatory.’’ This
the first example to our knowledge of such a nonstation
coarsening phenomenon, where domain walls~whose interi-
ors flash between one species and another! appear to
‘‘breathe,’’ contracting and expanding forever in a more
less regular way.

We now come back to the effect of the dimensionalityd
on the phase diagram of both our models. This question is
from being trivial, as some steps of the dynamics are rat
subtle, so that their net effect is hard to predicta priori. We
can, however, make some educated guesses about the b
ior of our models. Starting with the interfacial model, we s
that its one-dimensional version is frozen for any value
the parametersp and «. Indeed, the dynamics of step 1 a
equivalent to the zero-temperature Glauber dynamics for
ferromagnetic Ising chain, while the only effect of the oth
steps is to reinforce the intensity of surface noise, and
mobility of the kinks between the growing ordered domain
This prediction is corroborated by numerical simulation
which clearly show a fall-off of the mean energy of the for
^E&'A(p)t21/2, again because of an underlying diffusiv
coarsening behavior@9#. The amplitudeA(p) is inversely
proportional to the mobility of the point defects discuss
above. We indeed find thatA(p) is a maximum atA(0)
'A(1)'(8p)21/250.1995~the exact result for the Glauber
Ising chain!, while its minimum lies aroundA(0.5)
'0.1751. As the dimensionality increases, the intermed
disordered phase is expected to open up as soon asd.1, to
get larger and larger~we have indeedpc22pc1'0.14 for d
52 and 0.41 ford53), and to invade the whole phase di
gram asd→`. This increase of the disordered phase w
dimension is not quantitatively reproduced by the pair a
proximation. The latter approach is, however, far more po
erful than the standard mean-field theory, which does
predict any sort of critical point in the interfacial model. Th
situation of the cooperative model, with the hard rule of s
3a, is opposite to that of the interfacial model, and rath
similar to that of standard equilibrium statistical-mechani
models. The one-dimensional model is always disordered
its dynamics is equivalent to that of the Ising chain at hi
temperature. As dimension increases, the sizespo of the os-
cillatory phase and 12pc of the ferromagnetically ordered
phase are observed to increase slowly.

We now mention the many avenues we have left un
plored, speculating on the likely behavior of some of the
based on our understanding of the phase diagram of

g
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models in the symmetric case. First, we relegate to fut
works a more detailed investigation of the interfaces in
interfacial model. This issue has geometrical aspects, suc
the surface tension and its critical behavior, roughening p
nomena, the cluster size distribution, and so on, as wel
purely dynamical aspects, such as persistence and aging
other subject suitable for further development is the comp
son of various kinds of dynamics. For a given model, i.
given~stochastic! dynamical rules to be applied at every sit
one can use either a parallel or a sequential updating pr
dure. Sequential dynamics can be ordered~the lattice is
swept in a given ordered fashion!, disordered~lattice sites are
chosen at random!, or more complex, such as the sublatti
dynamics, which consists in successively sweeping the e
and the odd sublattices. In the case of equilibrium statist
mechanical models, these features affect neither the p
diagram nor critical properties. In the present situati
changing the microscopic dynamical rules~inside a reason-
able class! could have a mild but nonzero net effect on t
phase diagram and on critical properties.

Although we have restricted the investigations presen
in this paper to the symmetric case when the performa
parameters are identical~because our main interest in th
problem has largely to do with the critical behavior at coe
istence!, the model is really meaningful from a sociologic
point of view only whenp1.p2 , with the possibility also
of varying the convertibility parameters«2 and«1 . In other
words, we are led to consider the generic situation, where
biasing fieldsH and B, defined in Eq.~2.11!, are nonzero.
The casep1.p2 and«1.«2 , i.e.,B,0,H, corresponds
to the R species being more ‘‘genetically’’ successful, b
more fickle than theD species, while forp1.p2 and «1

,«2 , i.e., bothH andB positive, theR species is both more
‘‘genetically’’ successful and more retentive than theD spe-
cies. We would expect that in the latter case, theR species
would usually be globally more successful in the long ter
but that in the former case the final state of an initially ra
dom population may depend on the ratioH/uBu. There would
be rather interesting conclusions from the point of view
societal evolution to be drawn from these investigations.

Using the language of statistical mechanics, each of
biasing fieldsH and B is equivalent to a uniform magneti
field, favoring theR phase if it is positive. We expect tha
there is a nontrivial coexistence line in the~H,B! plane,
above which theR phase is favored~the case of sociologica
interest!, and below which theD phase is favored~its coun-
terpart by symmetry!. The fate of theD phase, whenever it is
unfavored, is dictated by the ‘‘equation of state’’ of th
model, relating the mean magnetizationM to the applied
fieldsH andB. In the regime where both fields are small, t
phase diagram of the symmetric situation investigated in
work allows us to make the following qualitative prediction

In a disordered or paramagnetic phase, we haveM
'x1H1x2B in the thermodynamic limit, with both suscep
y
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tibilities being finite and positive. The mean population
the unfavored species,P5(12M )/2, thus diminishes gradu
ally, in proportion to the intensity of the biasing fields. In th
regime, the coexistence line is linear:H5(x2 /x1)uBu.

In an ordered or ferromagnetic phase, there is a nonz
spontaneous magnetizationM0 . This means that the fraction
of individuals in the unfavored species, which is1

2 in the
symmetric case, decreases discontinuously to (12M0)/2
whenever an ‘‘infinitesimal’’ biasing field is switched on
For a large but finite sample of linear sizeL, with N;Ld

individuals, fields of orderH;B;1/N are sufficient to bring
on the decay of the unfavored species. The latter phen
enon is again driven by diffusion. It thus lasts a time of ord
t;L2;N2/d.

In a totally ordered or frozen phase, the spontaneous m
netization assumes its maximal allowed valueM051. In
other words, all the individuals eventually belong to the
vored species, in the presence of an ‘‘infinitesimal’’ biasi
field. The finite-size estimates of the previous point still ho
true.

Less can be saida priori in the case where the symmetr
model is in the oscillatory phase, since this kind of ord
where the growth of clusters is modulated by intermitte
conversions, is not one where the usual phenomenolog
equilibrium phase transitions can be readily invoked. W
nevertheless speculate that the behavior of mean popula
~possibly averaged over some intermediate time scale!, will
be qualitatively similar to that observed in a ferromagne
cally ordered phase.

To close, we have presented in the above two model
competitive learning that are respectively interfacial and
operative in their behavior. We have focused on their pr
erties in the symmetric situation where neither of the spec
is favored over the other one, with emphasis on the ph
diagram and on critical behavior. While many sociologic
consequences of our models remain to be explored for
case when the species involved are unequally biased,
believe that the behavior at coexistence has already reve
a great deal of the underlying physics. The prediction
nontrivial critical behavior entirely driven by surface noise
our interfacial model, or of the phase of oscillatory coarse
ing in the case of our cooperative model, are possibly
most outstanding examples of this. We believe that furt
investigations of the issues sketched in the discussion c
also yield phenomena, hitherto unknown, that are both no
in themselves and completely natural to the evolution of s
truly complex systems.
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