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Models of competitive learning: Complex dynamics, intermittent conversions,
and oscillatory coarsening
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We present two models of competitive learning, which are respectively interfaeialwhere the interiors
of domains are unaffected by the rules of the mp@eld cooperativei.e., where the bulk as well as the
interface of an individual domain is governed by the rules of the mddatning. This learning is outcome
related, so that spatially and temporally local environments influence the conversion of a given site between
one of two different types. We focus here on the behavior of the models at coexistence, which yields critical
behavior and the existence of a phase involving a type of coarsening whastilatory in nature. In the
discussion we speculate on, among other issues, the likely behavior of the models away from coexistence.
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I. INTRODUCTION Il. INTERFACIAL MODEL

A. Definition and generalities

The notion of an outcome is familiar in the social sci- \ve here introduce the first of our two modéighich we
ences, but less so in the physical sciences. It is used in th@rm the interfacial modgland set up definitions and nota-
former to describe the notion of a result following a coursetions. Individuals sit at the sitésr node$ of a regular lattice
of action, especially in the context of game-theoretic appli-with coordination number. We shall most often consider
cations[1]. In this paper we use this concept to devise mod-the d-dimensional hypercubic lattice, for which=2d. We
els which, while motivated by ideas in the social sciencesrepresent the efficiency of the individual at sites a(time-
are of interest to physicists both because they lead to phelependentlsing spin variable:
nomena such agscillatory coarseningas well as because,
via their connection with known physical models, they are ) —

. . . . . ﬂ.(t)
able to provide indications of new critical behavior.

The motivation for our model comes from the phenom- L ) . )
enon of competitive learning; imagine the existence of two! "€ efficiencies are dynamical variables, which are updated
species, distracte(D) and receptivdR). We postulate that according to the following dynamical rules.

the D species is slower to learn than tRespecies, but that, Step L. Majority rule for site typesn this step, we update
S ) i the efficiencies via a zero-temperatuferromagnetit ma-
on the other hand, the species is more quick to forget; that . > I
ority rule. In other words, where a site is surrounded by a

is, a tokernR site is more swayed by the short-term successe%1ajority of its own type, it stays the same, while if it is

of its neighbors to convert to their species. This could be A urrounded by a majority of the other type, it changes. In the

model of conservative versus radical societies, where tthsence of a majority, the site flips type with probabifity
former adapt relatively slowly to change, but are more stable \;4re formally, this rule consists of aligning the efficiency

once changed,.wherea_s the Qpposite appli.es to thg Iatter._ 7|7i with the local field acting upon it, according to
We shall define and investigate successively an interfacial

+1 if i is of type R at timet,

—1 if i is of type D at time t. 2D

version of our model in Sec. Il, and a cooperative version in +1 if hi(t)>0,

Sec. lll. The emphasis will be put on the phase diagram of - _

the model at coexistence, i.e., when neither of the species is pi(t+r)= 1 wp. 3 if (=0, (2.2
favoured over the other; we will there examine the types of -1 if h;(t)<O.

order present in the model, and the universal characteristics
of the transition points between these phases. In Sec. IV, w&he local field
will discuss our results.

hi<t>=j(2i) (1), 2.3

*Present and permanent address: S. N. Bose National Centre fig defined as the sum of the efficiencies of #eighboring
Basic Sciences, Salt Lake, Block JD, Sector Ill, Calcutta 700091sitesj of sitei, and r; is the associated time step.

India. Step 2: Association of outcomes with sitesthis step, we
"Electronic address: anita@boson.bose.res.in assign to each sitean outcomer;, which also takes Ising-
*Electronic address: luck@spht.saclay.cea.fr like values+1 and—1, corresponding, respectively, to suc-
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cess or failure. Thétime-dependentoutcomeso; are ran- The above rule is meant to hold only if the individual at
dom but correlated with the efficiencieg, namely, sitei is able to compare the outcomes of both types of its
neighbors, namely, folN; (t) and N; (t)#0, i.e., N;"(t)
it m(D=+1, then o:(t+7,)= +1 wp. py, #+0 andz This is why we call this model the “interfacial”
K ' : 2 -1 w.p. 1-p,, model, since dynamical evolution occurs only for interfacial
sitesi whose neighbors are thust all of the same type. Put
+1 w.p. p_, another way, the interiors of clusters of any type do not

if 7(H)=-1, thenoj(t+m)=1 _, evolve according to its rules. Then, . >p_ and ¢
- w.p. 1-p_, .
>¢_, we note that even though tiesites are globally more

2.4 . :
24 successful than thB sites, they are more susceptible to local

with 7, being the associated time step. The performance pgerformance-based conversions than are the latter.
rametersp.. characterize the strength of correlation between So far we have only defined three elementary steps of the
efficiency and outcome for each species. dynamics of the interfacial model, whose time scales
This step is meant to model tiperformanceof a particu- 71,79, T3 are arbitrary. We shall consider the realistic regime
lar site, according to its type. Thus according to our rules, itvhere the time scale over which individuals change type,
p.>p_, the sites of typeR are more likely to succeed at i-., 71 Or 73, is much larger than the characteristic time
learning some new proce$ﬂqus adapting more quickly to scale of their activity over which their outcomes are Updated,
new patternsthan sites of type. i.e., 7». Throughout the following, we thus set for simplicity
Step 3: Conversion of sites according to performanaes
this step, we model the “fickleness” of the sites where, as
mentioned above, we assume that Bisites are more vul-
nerable to the performances of their neighbors than ar®the lar ina” of th
sites. We denote biX;" (t) the number ofR-type neighbors a r:agu ar “sweeping" of the system.

. - a + . n the regime(2.7) a given realization of the outcomes
of a given ,S'te" and byN; ()=2-N,; (t)+ the number.of Its aj(t) will enter the ruleg2.6) only once. Hence steps 2 and
D-type neighbors. We also denote by(t) [respectively, 3'can pe recast as effective dynamical rules involving the
i (t)] the number of these which have a positive outcome:efficienciesy;(t) and the associated local fieltigt) alone.
1+ 7(1)  z+hi(D) vaiougly, the_se rulgs only hold for thg sitesvhich are
NiJr(t)ZE N Ay interfacial at timet, i.e., whenh;(t) is different from its

imn 2 2 extremal valuestz They are of the form

75—0, 71=713=1, 2.7

and we consider an ordered sequential dynamics, obtained by

|ﬁ(t)=% 1+;7j(t) 1+‘;j(t), if 7(t)=+1, then 7;(t+1)

+1 wp.  w[h(t)],
-1 w.p. 1-w,[hi(t)],

1—7i(t —h(t
Nf(t)=z ;7]():2 2(),
o if mi(t)=—1, then n(t+1)
+1 wp.  w_[h(t)],

-1 w.p. 1-w_[hi(t)].

|;(t)=j2i) 5 > (2.5 _ 2.9

Then we postulate that the efficiencies are updated accordingne effective transition probabilities., (h) can be evaluated

o explicitly, by enumerating the?possible realizations of the
L5 17t outcomeso; of the siteg neighbouring site, and weighting
if p(t)=+1 and —4—~<——, them appropriately. Consider for definiteness the example of
(O N (D) the square lattice. We hawe=4, so that the extremal values

of the local field areh= *4, while its values at interfacial

-1 wp. e,.
P i sites are 0 and:2. The corresponding transition probabilities

then 77|(t+ 7'3):{

+1 wp. l-e,, read
. o 17t 1) wo(+2)=1-e,p_(1-p}),
if pi(t)=—-1 and—Ni‘(t)<—Ni+(t)'

W_(+2)=g_(1-p_)[1-(1-p4)3],
+1 w.p. e_,

-1 wp. l-e_, Wi (0)=1-e,p-(1-p)(2—p-—2p,+3p_p.),
(2.6

then 77|(t+ 7'3):

w_(0)=e_p(1-p-)(2—p+—2p-+3p_p+),

with 73 being the associated time step. The efficiencies are 3

not updated, i.e., they are left unchanged, if none of the wi(=2)=1-e;(1-p)[1-(1=p-)7],
conditions given in Eq(2.6) is satisfied. The convertibility 3

parameters . characterize the fickleness of each species. w_(=2)=e_p:(1-pl). (2.9



5220 ANITA MEHTA AND J. M. LUCK PRE 60

In order to predict the behavior of the interfacial model[2], [3]. This is a dynamical model for Ising sping(t) on
for general values of the performance paramegperand the the square lattice, defined by a stochastic rule of the form
convertibility parameters ., it is advantageous to examine (2.8), namely,
in great detail the symmetric situation
+1 w.p. W[hi(t)],

p=p:=p-, e=e.=e_, (2.10 nt+1)=) _, wp. I-Wh(D)]. (2.14

and then to investigate the influence of the two biasing fieldspe transition rate$V[h.(t)] depend only on the local field
o _ h;(t) defined in Eq.(2.3). They assume the most general
H=p.=p-, B=e_—e.. (219 form compatible with spin-flip symmetry, i.e\W(h)+W

Indeed in the symmetric cag2. 10, neither of the type®or (1) =1. This form involves two parameters £(p;, p,

D is favored. In other words, the rules of the symmetricgl)'

model are invariant under a global flip of all the spins. W(+4)=p
The possible dynamical phase transitions between various 2
kinds of collective behavior are therefore expected to take W(+2)=p
place in this symmetric situation, in analogy with the phase b
transition in the ferromagnetic Ising model, which takes W(0)=1
place at zero magnetic fielgymmetric situationand low 2
enough temperature. We will discuss at a qualitative level W(—2)=1—p
the implications of this phase diagram for the generic situa- b
tion of nonzero biasing fieldB or H, in Sec. IV. W(—4)=1—p,. (2.15

This symmetric situation models the case when the two
species, despite being identical in all their properties, ar . .
nevertheless distinguishable as being of two distinct types(:%.)r1 the ferromagnepc S'dégpl’ p2§1), this 'model con--
The parameterp ande then control the intensity of surface tains several spemal cases, including the lsing moc.iell with
noise. We attach the label “surface” to them because, a$/@uPer dynamics, thenoisy) voter model, and the majority
mentioned above, all discernible effects of these paramete te model. Introqluced_by _de Oliveiet al._ [_2]_|n the con-
are restricted to the interfaces separating clusters of individ i€Xt Of & general investigation of nonequilibrium spin mod-
als belonging to either of the two species. els, it was subsequently treated by Drouffe and Golue¢3]

In the rest of this section we shall explore the behavior ofV0 interpreted the parameteps and p, as two effective
the symmetric interfacial model in the regini2.7), via an temperatures, linked respeciively to an interfacial and a bulk
approximate analytical treatmefknown as the pair approxi- noise. As our symmetric model only contains interfacial
mation and then by means of numerical simulations. ThenOIse, It sho_uld correspond to the above model along the
basic quantities to be considered hereafter are the magnefz=1 liné, with 1/2<p, <1 being a measure of the strength
zationM and the energf. These quantities are defined for a of interfacial noise. On this line, the model is paramagnetic

finite sample ofN individuals, i.e.,N sites (or node and  for a large enough surface noisk<tp;<3), while it exhib-

Nz/2 bonds(or links), as its a frozen, i.e., totally ordered, ferromagnetic phase for a
1 1 weak enough noise3(<p;<1). The transition point §;
3 .
M= — . E=— 1= mm). 21 =32, po=1) corresponds to the voter model. This model has
N Z 7 NZ(iEj) (L=mimy). (212 been investigated extensively, both by mathematiciafls

and by physicistd5], and is known to be critical in two
In the following we shall usually consider the mean valuesdimensions.
(M) and(E), where the brackets represent an average over
the random initial_ configur{ition of efficiencids;;(0)} and B. Analytical approach: Pair approximation
over the stochastic dynamical rul€s.2), (2.4), and (2.6)— ) o )
i.e., the whole “thermal history” of the system. The magne- The pair approximation is a particular case of the cluster
tization(M) is the mean efficiency of an individual, while the Method, an analytical approach proposed long [@cs a
energy(E) is the proportion of “disparate” bondéj), such ~ Systeématic improvement over mean—fleld th_eory to provide
that ,# 7; . In the case of the cooperative model in three@pproximate solu'tlons of statistical mechanical moo!eisg
dimensions(to be presented laterwe shall be led to con- Ref. [7]_ for_a rewey\). Contrary to_ the stand_ard mea_n-fle_ld
sider also the dimensionless specific heatn analogy with ~ @PProximation, or site approximation, the pair approximation

equilibrium systems, this quantity is defined as the variancd@s the advantage of taking into account correlations be-

of the energyE per bond, namely, tween pairs of neighboring sites. A dynamical variant of the
pair approximation had been introduced by Dicknj8hin
1 the framework of a surface-reaction model. More recently,

Nz
C= 7(<E2>—<E>2)= N2z > [{(1=7m5)(A=mm))  de Oliveiraet al. have also used a dynamical pair approxi-
(kD) mation to investigate their two-parameter kinetic Ising model
—(1=mim){1=mem)]. 213  [2]. . _ . _
We propose the followindully dynamical pair approxi-
It will be advantageous to put the present model in persmation which leads to closed form coupled evolution equa-

spective with the kinetic Ising model investigated in Refs.tions for the mean magnetizatiovi(t) and energyE(t) in
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our symmetric interfacial model; in the preceding, as well as The standard mean-field approximation corresponds to
in what follows, the angular brackets implying averagingsetting P(+|c)=P(+)=(1+M)/2 and P(—|o)=P(-)
have been taken to be implicit. The basic object of the pair=(1—M)/2 for o= = 1. The variables andy are then re-
approximation is the configuration of the dynamical vari-lated by k—y)2—2(x+y)+1=0, i.e.,E=(1—M?)/2.

ables attached to a bond. In the present case of a spatially Within the dynamical pair approximation, coupled evolu-

homogeneous system, with binary site variabjes an (ori-

tion equations fox(t) andy(t) or, equivalently, forM(t)

ented bond (ij) can assume four configurations. We intro- and E(t), can be derived by enumerating all the configura-

duce the corresponding probabilities
P(++)=Pro»=+1 and n»;=+1}=x,

P(——)=Prod»=-1 and »j=—1}=y,

1-x—y

Pﬁnﬁ:PmHm=+1emdm=—lkb—jr—,

1-x—-y

P(—+)=Prof»=-1 and »j=+1}= >
(2.16

tions of efficiencies attached to a given bond and its neigh-
borhood, weighting each of them with the appropriate prob-
ability, and by the appropriate transition rate for each step of
the dynamics, as given in EqR.2), (2.4), and(2.6).

We shall give just one example of how our calculations
go. Consider a-+ bond(ij), and apply step 1 of the dynam-
ics to sitei at timet, say. The rulg2.2) involves the local
field h;(t) or, equivalently N;" (t)=[z+h;(t)]/2, defined in
Eqg. (2.5). Consider thez neighbors of sita. We know that
the neighboi is such thaty;(t) = + 1. The efficienciesy of
the (z— 1) other neighbork are treated as independent ran-
dom variables, each of them being distributed according to
the conditional probabilitie®(#,|+). The random variable

The pair approximation consists of reducing any observabley.*(t) is thus distributed according to the binomial law

i.e., the expectation of any function of the efficiencigs to

a function ofx andy, by systematically neglecting dynamical
correlations between the efficiencies of any two sites whichpyop(N* =n}
are not first neighbors, as well as any higher-order correla-

tions.

For instance, the probability law of the efficiency of any

given site reads

1+x—y
P(+)=Prodn=+1}=P(++)+P(+—-)= 5
1-x+y
P(=)=Prot{7=—1}=P(—+)+P(-—)=——5—.
(2.17
The mean magnetizatiod and energ)E hence read
. 1-E+M
M=x-y, E=1-x-vy, ie, XZT,
1-E-M
y=—> (2.18

Thus, knowingx andy is equivalent to knowindgvl andE.

(Z_l n—1 z—n
n_1| PG IP(=]+)

(2—1) 2x)"H1—x—y)¥ "
n-1/  (1+x-y)**

(n=1,...,2).
(2.20

The probabilities of occurrence of the various cases of the
rule (2.2) are thus known.

This procedure leads to coupled first-order differential
equations, of the form

dM_(dM) +(dM> dE_(dE) +<dE)
dt \dt/, " \dt), dt ldt) ldt),;
(2.21)

where the contributions of the various steps of the dynamics
appear additively. The combinatorial analysis involved in the
expressions of these contributions depends strongly on the
lattice under consideration.

Two-dimensional casdn the two-dimensional case, on

As a second example, consider the conditional probabilitghe square lattice, the various contributions to the differential

P(o]|7), defined as being the probability that= o, given
that ;= 7 for one of the neighborgof sitei. We have

_P(++) 2%
P(F]+)= P(+) 1+x—y’
P(—+) 1-x-y
PEI= 50y = Ty
P(+|—):P(+_)—1_X_y

P(—) 1-x+y’

P(——-) 2%
P(—) 1-x+y’

P(—|-)= (2.19

equationg2.21) read

dM 2E2M )

(W ~(a-mzzt3 MO 4EL
1

dM\| 4ep(1-p)E’M

(W) :(gi)(l_—Mloz))s[(5p2—5p—2)(3+M2)E2

3

—4p(5p—9)(1-M?)E+3p(p—5)(1-M?)?],

dE 2E3 4 2
(E :m[—z(l—m )+3(1+MAE],
1
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not to write them down in full. Within this approximation,

Interfacial model : : .
we predict the same phase diagram as for the square lattice,

o frozen . disordered o frozen oD with
0 pcl pcz 1
B 292
ee(P) =351 p) (321 1217~ 22437+ 243 7p°— 2457)
Cooperative model (2.29
o Ocilatory o disordered Jerromagnelicy This line again has two endpointp.;=0.53047 andp.,
0 Py P 1 =0.86908, if we set =1 as before. We contrast the above

FIG. 1. Qualitative phase diagram of interfacial and cooperativeWlth the preQIctlonS of Stand"’}rd mean-field theqry. which

- doesnot predict a phase transition for the symmetric interfa-

models as a function gd. . o . .
cial model, in either two or three dimensions.

The qualitative phase diagram of the interfacial model is

(d_E _4ep(1- p)E[—z(Zp— 1)(1+3M2) shown in Fig. 1, together with that of the cooperative model
dt/,  (1— M?2)3 investigated later on. Quantitative data concerning the loca-
5 - X tion and the nature of the corresponding phase transitions are

XE*+2p(p+3)(1-M")E*=3(p°+p+1) provided in Table I.

X(1-M?)2E+ (p?+p+1)(1—-M?)3%]. (2.22
C. Numerical results

Although these equations cannot be integrated explicitly, the We have performed a numerical investigation of the in-
dynamical phase diagram within the pair approximation carierfacial model throughout thg-e plane, both on the square
be extracted from them as follows. The steady state values @nd on the cubic lattice. The quantitative measurements have
the magnetization and of the energy are determined by equateen performed foe =1, where the outcomes play a maxi-
ing the right-hand side of Eq$2.22 to zero. The criterion mal role in the ordering behavior of the model via step 3.
for the presence of collective behavior, i.e., long-range orderThe limiting situationgp=0 andp=1 both represent deter-
is the instability of the fixed-point solution such thet=0. ministic outcomes, where both species are restricted respec-

A linear stability analysis thus allows us to predict thetively to being total failures and total successes; in this case

existence of a transition line in thee plane, given by steps 2 and 3 are rendered essentially irrelevant, and the
majority rule in step 1 lets the ordering proceed simply ac-
5 cording to the types of the sites.

(2.23 We therefore discuss in the following the interfacial
model on the square and on the cubic lattice,derl, as a
function of p. In both cases we see clear evidence of a dis-

This line has two end pointsp.;=0.47598 andp., ordered, paramagnetic phase iy <p<p., between two

=0.83060, corresponding to transitions as a functiop,af  frozen phases. This global picture is in qualitative agreement

we set e=1. The intermediate phasgp;<p<p, and with the predictions of the pair approximation described in

e.(p)<e=<1]is paramagnetic, i.e., disordered, while the restSec. Il B.

of the parameter space is frozen, i.e., totally ferromagneti- Two-dimensional caséNe have already underlined the

cally ordered. analogy between our interfacial model on the square lattice

Three-dimensional casé the three-dimensional case, on and the two-parameter model investigated in Ré¢&53]

the cubic lattice, the coupled differential equations Nbft) along thep,=1 line, corresponding to interfacial noise

andE(t) are much more lengthy than Ed8.22. We prefer  alone. The strength of noise is measurechyn that model,

e(P)= 2= p) (15 7p+ 30D

TABLE |. Characterization of phase transitions shown in Fig. 1. Column 2: location of transition points
within the pair approximatiofsee Secs. Il B and Il B Columns 3 and 4: transition points and characteristics
(exponents, universality clasgesd transitions, obtained by means of numerical simulati@ee Secs. IIC

and 1l C).
Transition points Transition points Characteristics

Model (pair approximatioh (numerica) of transitions
2D interfacial pPc1=0.47598 p.1=0.56+0.01 voter-like
(square lattice Pc2=0.83060 P.2=0.70+0.01
3D interfacial pc1=0.53047 p.1=0.45+0.01 (1=0.10+:0.04
(cubic lattice p.>=0.86908 pc=0.865*¢ 0.005}
2D cooperative po=0.136+0.003 1/v4=0.45+0.10
(square latticg p.=0.86805 p.=0.873+0.002 Ising-like
3D cooperative po=0.42+0.005 1/vy=0.8+0.2

(cubic lattice p.=0.87319 p.=0.82+0.01 weakly Ising-like
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Int

FIG. 3. Plot of the inverse energyHE(ft) of the interfacial model
on the square lattice, againstt|rfor various values op, indicated
on the curves, in the vicinity gb.,~0.70. The dashed straight line
has slope 2f [see Eq(2.29].

phase transition gi.,~0.70, gleaned from our snapshots of
. . _ the system. Each curve is an average over 200 independent
FIG. 2. Snapshots o_f the dynamlcs_ of the mteifaual model Onsamples of size 560 The graphs curve downwards in the
the square lattice, fop=0.7~p,, at times(top) t=8, (bottom .

o . - disordered phase, where the energy converges to a nonzero
left) t=64, and(bottom righ} t=512. e . .

equilibrium valueE.{p), while they curve upwards in the

frozen phases, where the energy falls offE{$) ~t 2 the

while it is measured_by) ande in our m°d9'- This suggests latter is because of an underlying diffusive type of coarsen-
that the phase transitions pg; andpc,, which separate the ing behavior{9]. For p=0.70, the data seem to become as-

diﬁ.orﬁireld phasehfrom_ both }c.r ozeln pha:csehs, are criticgl IPOLH ptotically parallel to the dashed line with sloperZsee
which belong to the universality class of the voter model: t g. (2.25], shown on the plot. This observation confirms

intermediate disordered phasg.{<p<pcz) cOMesponds 10 ¢ oy interfacial model belongs to the universality class of

3 :
P1<3, while the two ff;’ze“ phase (0p<Pc andPc<P  the voter model in a strong sense, i.e., including the prefactor
<1)_ correspond ;> 3. . of the law(2.25. Moreover, we thus obtain a rather accurate

_ Figure 2 shows snapshots of the dynamics of the model glgtimate for the transition poinp.,=0.70=0.01. A similar
t!mest=8, t.:.64’. andt=512, with a random initial condi- analysis yieldsp.;=0.56=0.01. The numerical values of
tion. In anticipation of our numerical resuﬂiczf 0.7 (see both transition points are listed in Table .

below), we have chosen a value of the probabifity 0.7 so Three-dimensional casé three dimensions, on the cubic
that our snapshots represent the time evolution of our systefiice we again find evidence of an intermediate disordered
at (or very near the cr|t|(?al point. Just as in Ref3], the phase forp,;<p<p,. Contrary to the two-dimensional
plots show a portior(of size 256) of a square sampléof 556 we do not have amypriori knowledge of the phase

size 512) with periodic boundary conditions. These plots fransitions atp,, and pg,. In fact we do not know ofny

bear a strong resemblance to those corresponding to the VOigfree_dimensional critical phenomenon driven by interfacial

model (see Fig. 5 of ref[3]), thus confirming our expecta- pise alone. It is nevertheless to be expected that the critical

tions. , o o behavior at these phase transitions corresponds to a generic
In order to provide quantitative confirmations of these ob-yeq-point behavior, with finite, nontrivial values of the

servations, we have studied the decay of the mean energ)yioys critical exponents. This is in sharp contrast to the
E(t), starting with a random initial configuration. The two- +o-dimensional case, which belongs to the very special uni-

dimen§ional voter model is known to exhibi.t unusual critical versality class of the voter model, with its well-known loga-
behavior{4,5]; this phenomenon is closely linked to the fact (jthmic behavior(2.25. In particular, we expect a nontrivial

thatd=2 is the marginal dimensionality for Brownian mo- ,q\yer-law decay of the mean energy at the transition points,
tion, which is known to be recurrent fal<<2 and transient  f the form

for d>2. In particular, the mean enerdy(t) of the two-

dimensional voter model falls off very slowly, as E(t)~t 2. (2.26)
/2 : L .
E(t)~ Nt (2.25 This expectation is corroborated by our numerical results.
0

Figure 4 shows a log-log plot of the energyt), for various
values ofp in the vicinity of p.;. Each curve is an average
where the numerator/2 is universal(i.e., it is independent over 50 independent samples of size 100he two extremal
of the microscopic details of the dynamice/hereas the time dashed lines show the expected behavior in the frozen and
scalety is not. disordered phases, while the intermediate one corresponds to
We have plotted in Fig. 3 the inverse energ\E(t) the critical law(2.26), with an exponenf)~0.1. This picture
against Irt, for various values op in the vicinity of the is confirmed by a more refined analysis whose results are
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-0.5 I1l. COOPERATIVE MODEL
A. Definition

One of the most interesting features of the model that we
have investigated in Sec. Il is its totally interfacial behavior.
However, from the viewpoint of the sociological behavior
that we are trying to model, it lacks an important feature
having to do with learning from the failures of neighbors
when all the sites concerned are of tkemetype. Thus,
consider a site of typ® surrounded by others of its own
kind in the region of phase space where>p_: it is then
plausible that a majority of the surrounding sites could fail at

Int any given iteration. However, according to the rules of the
interfacial model defined in the preceding section, the effect

FIG. 4. Log-log plot of the energk(t) of the interfacial model  of this would be ephemeral; in step 3 the central site would
on the cubic lattice, against tintefor various values op, indicated  pe converted to a site of typ® but at the very next time
on thg curves, in the vicinity gb.,;~0.45. The dafhed lines, meant step, the majority rule of step 1 would ensure that it was
as guides to the eye, have slope&iBorderegl —3 (ordered, and  4nyerted back to B site. Thus there would be no long-term
—0.1 (critical). learning of the central site from the failures of sites of its

own kind, to mirror the sociological phenomenon of “learn-

plotted in Fig. 5. This graph shows a log-log plot of the ing from one’s own mistakes.”
effective exponenf)«(t) (defined as being the negative of ~ To incorporate such long-term learning, we introduce a
the slope of the least-square fit to the data shown in Fig. 4nodification to our earlier model. In essence this ensures that
over the rangeé/2<t’<2t). The different kinds of behavior the learning from failure in step 3 has a cooperative aspect,
corresponding to the frozen and disordered phases and to tHat is the central sites well asits neighbors learn from
critical point appear more clearly. The data for=0.40, thglr .fa|lures and convert colleqtlvgly to the other species.
0.42, and possibly 0.44, curve upwards and eventually tend S In trn ensures that the majority rule of step 1 does not
toward the value;, characteristic of the frozen phase. Con_lnterfere with the conversion ba.SEd on learning in step 3,
versely, the data fop=0.48 and 0.50 curve downwards and since the cgntra[ site and Iits neighbors are now aII_of the

- ._same kind, i.e.R, in the case of the above example. This rule
eventually tend toward the value 0, characteristic of the d'sﬁhard cooperative rujés embodied in step 8 below
ordered phase. The data fpr=0.45 and 0.46 seem to con- ;

vial critical 61 We th btain th A modification of the above would be to say that only
verge to a nontrivial critical exponetiL. We thus obtain the ;¢ sjtes which had failed, as well as the central site, would
estimatesp.;=0.45£0.01 and(2=0.10+0.04. A similar

: ; convert to the other species: then if a majority of surrounding
analysis leads t@.,=0.865-0.005, with an exponenf) e fail, those sites as well as the central sites would convert
compatible with the above value. Although our numericals; the next iteration to the other type. This ré@ft coop-
data do not allow us to rule out logarithmic behavior of the o 4tive rulg is embodied in step I8 below. It is indeed a

mean energy, they definitely point towards critical behavior..
characterized by a power law of the fo@126), with a finite
exponent(). The numerical values of the transition points
and of the exponer® are listed in Table I.

softer” version of step &; an alternative way of framing
such a rule would be to have a stochastic formulation where
a noise would control the conversion of sites in step 3, in
proportion to the original number of failures.

In contrast with the interfacial model studied so far, these

-05 ; variants of our cooperative model incorporate both surface
| 0.40 noise and bulk noise. In this respect, the cooperative model
~o //’——//042 | is a generic dynamical model: in two dimensions, and at a
15 //,—/ b gualitative level, it can be mapped onto the phase diagram of
. NW the two-parameter kinetic Ising model described above. It
g RO ——————— s ] will turn out, however, that our cooperative model possesses
i sl T s | a much greater diversity of behavior than the two-parameter
= model, since in addition to the conventional ferromagnetic
-3.0 i—\o,w . and paramagnetic phases, it manifests a novel phase where
_\ the coarsening isscillatory.
i 050 ’ In the following we focus on stepe3 We speculate that
_40 ‘ . : the soft version of stept8would only lead to a crossover
R 3 1n4t 5 6 behavior from the pure interfacial model of Sec. Il, to the

hard cooperative model defined by steps 1 & 3he rules
FIG. 5. Log-log plot of the effective exponemfqq(t) of the _discussed above are formulated, respectively, by the follow-

energy of the interfacial model on the cubic lattice, against time NQ.

for the same values qf as in Fig. 4. The symbol to the right with Step 3a: Cooperative conversion of sites according to

an error bar corresponds to the estimfte-0.10+0.04 for the  performance (hard)We add to step 3 by considering the

critical exponent. case when a siteis surrounded by neighbors which are all of
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the same kind, either aR, i.e., N;"(t)=z, or all D, i.e.,
N; (t) =z, with the notation of Eq(2.5). Then we postulate
that

it N*()=z and I (t)<z/2,

then #;(t+ 73)=n;(t+73)=—1,

if N/ (t)=z and I (1)<z/2,
then 7;(t+73)=7n;(t+73)=+1, (3.1

wherej denotes all the neighbors of the central sife This :
step of hard cooperative conversion always involves the
maximal number+1 of individuals in a cluster made up of
any central site and its neighbors.

Step 3b: Cooperative conversion of sites according to
performance (soft)In this case we postulate that the coop-
erative rearrangement described by the ri@el) only ap-
plies to the central sitg and to thez—I;"(t) neighborg of
sitei who failed at time. Hence this step of soft cooperative
conversion involves a variable numbet 1—1 ii(t) of indi- FIG. 6. Snapshots of the dynamics of the cooperative model on
viduals. the square lattice, fop=0.1, at times(top) t=38, (bottom lef} t

In the following, we analyze this cooperative model with =64, and(bottom righ} t=512.
the hard rule(step 3), along previous lines, and find that
although it is more generic in some respects, in other ways it \ve thus obtain after some algebra
exhibits some very novel behavior to do with tihéermittent
conversionf sites. We notice that, in the regime defined in
Eq.(2.7), steps 2 and & can be recast as effective dynamical
rules involving the efficiencies;(t) alone, in analogy with
Eq.(2.8). These rules are valid only for sitesvhich are bulk XE3+30(1-M?)2E2—5(1-M?)3].
sites at timet [i.e., whenh;(t) = *=z], and are of the form

[(3+M?)E*—40(1—M?)

dM) _2(1-p)¥Bp+ 1M
dt (1-M?)3

3a

B 2(1-p)3(3p+1)E*1+3M?)

if hi(t)=+2z, then 7(t+1)=7n;(t+1)=-1 w.p. I, (dE
0

if hi(t)=—2z then n(t+1)=n(t+1)=+1 w.p. II, 3a
(3.2)

where it is understood that the efficiencies are not updated iA linear stability analysis of the disordered solutilgh=0 of
the complementary cases. The probabilitycan be evalu- EQs.(2.21), including the contributiort3.4), leads to the fol-
ated by enumerating the? possible realizations of the out- lowing prediction. Within the pair approximation, the model
comeso; and weighting them appropriately. We thus obtainhas a unique transition at=0.86805, between a disordered
phase atp<p. and a ferromagnetically ordered one @t
(1-p)3(1+3p) for d=2, 3.3 >p.. This prediction for the transition point is listed in
= 4 2 _ . Table I.
(1=p)(1+4p+10p7%) for d=3. Three-dimensional cas@he case of the cubic lattice is
very similar to that of the square lattice. The pair approxi-
B. Analytical approach: pair approximation mation again predicts the existence of a unique phase transi-

In order to analyze the cooperative model with the harcfion, atp,=0.87319.
rule (3.1) within the pair approximation, we have to deter-
mine the extra contribution of ste@3f the dynamics to the
differential equation$2.21). The combinatorial analysis in-
volved again depends on the lattice under consideration. For the cooperative model, updated in an ordered sequen-

Two-dimensional casdn the case of the square lattice, tial way with rule 3a, either on the square lattice or on the
the analysis is as follows. Consider for concreteness the firgtubic lattice, we see clear evidence of an intermediate disor-
line of Eq. (3.1. If the central spin isp;=+1, the move dered, paramagnetic phase i< p<p. (Fig. 1). The phase
takes place with probabilitf)IP(+)P(+]|+)% it changes for p.<p<1 is ferromagnetically ordered, while the phase
the total magnetization bNAM = — 10, while it leaves the for 0<p<p, exhibits a kind of dynamical order that we call
energy unchanged. If the central spinjjis=—1, the move “oscillatory.” These observations are illustrated in the two-
takes place with probabilitf)IP(—)P(+|—)*; it changes dimensional case in Figs. 6 and 7, which show snapshots of
the total magnetization bNAM = —8 and the total energy the model forp=0.1 (oscillatory phaseand p=0.9 (ferro-
by 2NAE=—4. magnetic phaserespectively.

C. Numerical results
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FIG. 9. Plot of the specific he& of the cooperative model on
the cubic latticgmultiplied by the transition probabilitjl), against
p near the ferromagnetic transition, for several sample sizes.

Ising model. The quality of the plotted fit confirms our ex-
pectation: the ferromagnetic transition we observe does in-
FIG. 7. Snapshots of the dynamics of the cooperative model ofleed belong to the universality class of the ferromagnetic
the square lattice, fop=0.9, at times(top) t=8, (bottom lefy t Ising model. We also obtain an accurate evaluation of the
=64, and(bottom righ} t=512. transition point, p.=0.873:0.002, i.e., IT,
=(7.4+0.3)10 3, which is listed in Table I.
Three-dimensional cas®n the cubic lattice, the situation
. _ . . is less clear cut as a consequence of huge finite-size effects.
Thg phas‘? transition ait=p, might be _expfacted to be N An analysis of the mean magnetization, analogous to that of
Fhe universality cla_ss of the ferromagnetic Ising model, S.'ncq:ig. 8, is totally inefficient, even for the purpose of locating
it demarcates a dlsordered phase frqm a ferromagnetlcal%e transition. We have instead considered the specific heat
order_e_d one. We have |nve§t|gate_d this ferromagnetic pha_s& defined in Eq(2.13. Figure 9 shows a plot of the specific
ransiion i two and three dimensions, by means of numerip ..~y itiplied by the transition probabilityl), againsi,
Two-dimensional cas®n the square lattice, the situation for cubic samples of size”, with various values of. Each
. : qua ' data point corresponds to an average over at least 100 000
IS very clearly_ seen from F|g. 8, which shows a plot of thetime steps. It is natural to consider the prodLicE, instead
g:ze::'{?)%g:neé'zggmwér:ﬁ];nset En;—uheh Stgm?éiznlﬁﬁg’sog_ of C alone, because the specific heat is due to bulk fluctua-
L 9 9 P YS" tions, whose driving force is the cooperative conversion em-
tem from fllpplng petween one ordered phase and anoth Jodied in step &; these take place, as mentioned before, at
during the simulations. We have also checked that the dat ach time step v(/ith probabiliti [cf’ Eq. (3.3)]. We antici- '
shown in Fig. 8 are not affect_ed by f|n|t_e-S|ze effects; indee ate that the transition probabilitf[ Will .be.very small
the data for the two system sizes mentioned above cannot Erouahout the ferromaanetic hase. iust as in the two-
distinguished from one another on the plot. The dashed "n%imer?sional case 9 P =
- ~ 018 } .
shows a fit of _the_ formM) A(pl Po) ™ W'th. the well The data forlIC exhibit a peak, whose position, height
known magnetization exponefit=z of the two-dimensional and width depend oh. The critical exponenta andv can in
principle be extracted from these data by means of the finite-

1. Ferromagnetic phase transition

10 ' R size scaling law10]
0 h | C~L*"F[(p—poL"], (3.9
,/' which implies that the height of the peak scaleslL#¢’,
A / while its relative positionp,,,,(L)—p; with respect to the
=os8} b . . " . . .
N / genuine transition point as well as its width, both scale as
# LY. Figure 10 shows a plot of the peak positipp{(L)
o7k ! i againstL ~ . The fit shown as a dashed line incorporates a
‘ linear correction to scaling, of the formp,.{L)=p;
' +L"Y(A+BL™“), and uses the recent estimaies 0.630
08 = "0 oo oo 0bi 0s6 oos 100 and w= 0.8_0 [11] _corresp_onding to the universality class of _
' ' ' ' ' ‘ ’ ' the three-dimensional Ising model. Reasonable agreement is
P found, although the amplitude for corrections to scaling is

unexpectedly large. We thus obtain the estimpge-0.82
+0.01 for the critical ferromagnetic transition, i.dl,
=(11+2)10 3. We conclude therefore that the transition is

FIG. 8. Plot of the mean magnetizatidhl) of the cooperative
model on the square lattice, agaipstin the ferromagnetic phase.
The fit shown as a dashed lifsee text yields p.=0.873t0.002.
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FIG. 10. Plot of the positiom, (L) of the peak in the data of FIG. 12. Plot of the order paramet¢M?) of the cooperative
Fig. 9, againsL~Y*. Dashed line: fit discussed in the text, incor- model on the square lattice agaipstfor several sample sizes.
porating a linear correction to scaling.

slow, irregular oscillations, with a rather well-defined ampli-
most probably weakly Ising-like, by which we mean thattude (roughly independent of sixeand period (scaling
corrections to scaling are very large, or else that the criticatoughly asL). This collective oscillatory behavior remains

region is anomalously small. noisy in thep— 0 limit, because of the presence of “floppy”
_ 3 interfacial sites, whose local field vanishes. In order to inves-
2. Oscillatory phase transition tigate the transition gi= p, between this unusual oscillatory

For small values of the parametpr i.e., values of the Phase and the usual disorder@ﬂaramagr;etbc phase, we
probability IT close to unity, the cooperative system exhibitshave used the order parametv?®)=(Mg,), which is
an oscillatory phase, already mentioned in the context of Figclearly nonzero in the oscillatory phase.
7. This phase in unusual in several respects, and we were led Two-dimensional casd-igure 12 shows a plot of the or-
to formulate its phenomenology as a result of various nuder paramete¢M?) againstp, for square samples of various
merical investigations. First, sind&is close to unity, the net ~Sizes. Each data point corresponds to an average over at least
outcome of every time step is approximately to change all00000 time steps. The curves clearly exhibit a common
the efficiencies into their “opposites.” This feature of the point, corresponding to the transition. In the oscillatory
microscopic dynamics will be ignored hereafter either byphase, the order parameter has a nonzero thermodynamical
only looking at the system at even times, or by considering/alue (M?)=~0.16, with little or no dependence qm It is

quantities such as the skew magnetization discontinuous at the transition point, equalifig *),~0.06
at the transition point itself, and vanishing in the disordered
Mgen(t) =(—1)IM(t). (3.6 phase. In the vicinity of the transition point, the order param-

eter is found to obey a finite-size scaling law of the form
Second, and more importantly, we see that after a transient
period, the system is filled with clusters which keep evolving (M2)=~®[(p—po)LY70], 3.7)
forever. This perpetual motion is illustrated in Fig. 11, which
shows a plot of the evolution of the skew magnetization. - . .
againstt, for a square sample of size FQOwith p=0.1 illustrated in Fig. 13. The best data collapse is obtained for

(hence I1=0.990711). The skew magnetization exhibits Po=0.136+0.003 and 1=0.45+0.10.

‘0 . . . 0.16 ‘
05+ . i
oy AN
= = 0.08 1
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=
-05+ )
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“o 1000 2000 3000 4000 5000 -1o 05 o O '
¢ (p—p L7
FIG. 11. Plot of the skew magnetizatidhg,(t), of the coop- FIG. 13. Scaling plot of the data shown in Fig. 12, illustrating

erative model on the square lattice, against titndor a single  the finite-size scaling law3.7) at the transition between the oscil-
history of a sample of size 180with p=0.1. latory and disordered phases, wjth=0.136 and I#;=0.45.
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-3 , — This diversity of behavioral modeling is, however, only
one aspect of our work. The resulting rich and novel collec-
tive behavior is what, for the most part, our paper is con-
cerned with. We have focused on the symmetric situation,
where none of the species is favored. In particular, the two-
dimensional case of our interfacial model turned out to be a
physically motivated analog of the kinetic Ising model dis-
cussed in a more abstract fashion in the litera{@@g]. In
three dimensions, the coarsening behavior of the same inter-
facial model has been characterized by a dynamical critical
exponent()~0.10. The latter exponent can be expected to
describe the relaxation of the energy of generic critical three-

—9 1 | . L . L

4 3 2 1 0 1 o 3 dimensional kinetic Ising models, whose rules involve only
(p-p )Ll/"o surface noise. The exponefit certainly deserves to receive
© more attention in the future, in either three or higher dimen-
FIG. 14. Scaling plot of the order parametéd?) of the coop- ~ SIons. In the cooperative model, our phase diagram involves,
erative model on the cubic lattice, illustrating the finite-size scalingi 2ddition to regions of more conventional behavior, a phase
law (3.7) at the oscillatory transition, witlp,=0.422 and I, Whose coarsening behavior we term “oscillatory.” This is
=0.8. the first example to our knowledge of such a nonstationary
coarsening phenomenon, where domain wallsose interi-
Three-dimensional cas@n the cubic lattice, the situation Ors flash between one species and anottepear to
is qualitatively similar. The order parameter is still discon-  Preathe,” contracting and expanding forever in a more or
tinuous, with a thermodynamical value arourd1?), eSS regularway.

~0.16 in the oscillatory phase. The values of the transition We now come back to the effect of the dimensionaity

point, po=0.42+0.005, of the associated exponent characo” the phase diagram of both our models. This question is far

terizing the size dependenceyd# 0.8+ 0.2, and of the or- from being trivial, as some steps of the dynamics are rather

" S ; subtle, so that their net effect is hard to prediqtriori. We
der parameter at the transition poi(i1©),~0.0017(with a o "however, make some educated guesses about the behav-

large error bar have been read off from Fig. 14. Each datajoy of our models. Starting with the interfacial model, we see
point again corresponds to an average over at least 100 0QRat its one-dimensional version is frozen for any value of
time steps. the parameterp and e. Indeed, the dynamics of step 1 are
equivalent to the zero-temperature Glauber dynamics for the
IV. DISCUSSION ferromagnetic Ising chain, while the only effect of the other
. . o steps is to reinforce the intensity of surface noise, and the
Starting from simple and intuitive ideas about the naturemopility of the kinks between the growing ordered domains.
of experiential learning, we have devised two models involv-Thjs prediction is corroborated by numerical simulations,
ing competitive dynamics. The ideas are based on everydayhich clearly show a fall-off of the mean energy of the form
experience: individuals who are quick to learn are oftenE)~A(p)t~ 2 again because of an underlying diffusive
those who are also quick to adapt to changing circumstancesarsening behaviof9]. The amplitudeA(p) is inversely
(Rtype), while those who are slow to leafd type) tend to  proportional to the mobility of the point defects discussed
be more conservative about what they know, adapting relaabove. We indeed find thak(p) is a maximum atA(0)
tively slowly to changes in their environment. Our models~A(1)~(8) Y?=0.1995(the exact result for the Glauber-
embody these ideas, and emphasise the fact that adaptiviging chain, while its minimum lies aroundA(0.5)
may occasionally lead to an overly quick change of behaviok-0.1751. As the dimensionality increases, the intermediate
(known colloquially as “knee-jerk reactiong;’and that in  disordered phase is expected to open up as sooh>ds to
this sense slow and steady learners can occasionally get tet larger and largefwe have indeeg,,— p.;~0.14 ford
better of their quick counterparts. =2 and 0.41 fod=3), and to invade the whole phase dia-
Both models have the same essential features: first, gram asd—o. This increase of the disordered phase with
zero-temperature majority rule involving species, whose efdimension is not quantitatively reproduced by the pair ap-
fect is to “convince” the central site to convert {or stay  proximation. The latter approach is, however, far more pow-
the same asthe types of its neighbors. Next, outcomes for erful than the standard mean-field theory, which does not
some process representing success or failure are assignedpi@dict any sort of critical point in the interfacial model. The
each of these sites in proportion to their type, and last, basesjtuation of the cooperative model, with the hard rule of step
on these outcomes, the central site could decide to switch tga, is opposite to that of the interfacial model, and rather
another type or stay the same. This last step is rather subtlgimilar to that of standard equilibrium statistical-mechanical
as it involves the comparison of two ratib§(t)/N;" (t) and  models. The one-dimensional model is always disordered, as
I (t)/N; (1), so that, for example, even one individual who its dynamics is equivalent to that of the Ising chain at high
is successful can have a greater impact on his/her neighbtemperature. As dimension increases, the sigesf the os-
than say two individuals who are successful in a trio of thecillatory phase and % p. of the ferromagnetically ordered
same type. It is also in this last step that our interfacial angphase are observed to increase slowly.
cooperative models differ, in that the latter allows for long- We now mention the many avenues we have left unex-
term changes even within a sea of the same species, depemlered, speculating on the likely behavior of some of them,
ing on local outcomes. based on our understanding of the phase diagram of our




PRE 60 MODELS OF COMPETITIVE LEARNING: COMPLK . . . 5229

models in the symmetric case. First, we relegate to futureibilities being finite and positive. The mean population of
works a more detailed investigation of the interfaces in outhe unfavored specieB,=(1—M)/2, thus diminishes gradu-
interfacial model. This issue has geometrical aspects, such adly, in proportion to the intensity of the biasing fields. In this
the surface tension and its critical behavior, roughening pheregime, the coexistence line is line&t=(x,/x1)|B|.
nomena, the cluster size distribution, and so on, as well as In an ordered or ferromagnetic phase, there is a nonzero
purely dynamical aspects, such as persistence and aging. ABPontaneous magnetizatidy. This means that the fraction
other subject suitable for further development is the compariof individuals in the unfavored species, which 3sin the
son of various kinds of dynamics. For a given model, i.e.Symmetric case, decreases discontinuously te-N)/2
given (stochastiz dynamical rules to be applied at every site, Whenever an “infinitesimal” biasing field is switched 2on-
one can use either a parallel or a sequential updating proc&°r & large but finite sample of linear sizg with N~L
dure. Sequential dynamics can be ordeféte lattice is individuals, fields of ordeH ~B~1/N are sufficient to bring
swept in a given ordered fashipmlisorderedlattice sites are O the decay of the unfavored species. The latter phenom-
chosen at randomor more complex, such as the sublatticeenonz's a%%m driven by diffusion. It thus lasts a time of order
dynamics, which consists in successively sweeping the eveh ~ ~ N7
and the odd sublattices. In the case of equilibrium statistical !N @ totally ordered or frozen phase, the spontaneous mag-
mechanical models, these features affect neither the pha8gtization assumes its maximal allowed valMg=1. In
diagram nor critical properties. In the present situation,Other words, all the individuals eventl{‘:_;lll)_/ belong to the fa-
changing the microscopic dynamical rul@sside a reason- Vored species, in the presence of an “infinitesimal” biasing
able classcould have a mild but nonzero net effect on the field. The finite-size estimates of the previous point still hold
phase diagram and on critical properties. true. o _
Although we have restricted the investigations presented L|€SS can be said priori in the case where the symmetric

in this paper to the symmetric case when the performanc@Odel is in the oscillatory pha_se, since this kin_d of o.rder,
parameters are identicébecause our main interest in the where the growth of clusters is modulated by intermittent

problem has largely to do with the critical behavior at coex-CONVersions, is not one where the usual phenomenology of

istence, the model is really meaningful from a sociological €auilibrium phase transitions can be readily invoked. We
point of view only whenp, >p_, with the possibility also nevertheless speculate that the behavior of mean populations

of varying the convertibility parametees ands , . In other ~ (POSSibly averaged over some intermediate time scalid

words, we are led to consider the generic situation, where thB€ dualitatively similar to that observed in a ferromagneti-

biasing fieldsH and B, defined in Eq.(2.11), are nonzero. cally ordered phase. ,
The case, >p_ ande.>s_, i.e., B<O<H, corresponds To close, we have presented in the above two models of

to the R species being more “genetically” successful, but competitive learning that are respectively interfacial and co-
more fickle than theD species, while fop, >p ands, operative in their behavior. We have focused on their prop-
<& ie. bothH andB positivé theR spechres is_both mJEJre erties in the symmetric situation where neither of the species
“genetically” successful and more retentive than Despe- IS favored over the_ _other one, with emphasus on t'he phase
cies. We would expect that in the latter case, Ehspecies diagram and on critical behavior. Whlle many sociological
would usually be globally more successful in the long term'conseql;encer? of our mo_delsl re(rjnam to be ex|||olotr)¢d f%r the
but that in the former case the final state of an initially ran-C8S€ when the species involved are unequally biased, we
dom population may depend on the ratié|B|. There would believe that the behavior at coexistence has already revealed
be rather interesting conclusions from the point of view of? gre'a't de"?". of the ur'1derly|.ng thS'CS' The predlctl_on .Of
societal evolution to be drawn from these investigations. nont_nwal cr_ltlcal behavior entirely driven by s_urface noise in
Using the language of statistical mechanics, each of th@4" !nterfamal model, or of the phase of oscillatory coarsen-
biasing fieldsH and B is equivalent to a uniform magnetic Ing in the case of our cooperative model, are possibly the

field, favoring theR phase if it is positive. We expect that most putgtanding exgmples of this. We belie_ve tha_t further
theré is a nontrivial coexistence line in tiel,B) plane investigations of the issues sketched in the discussion could

above which theR phase is favoredhe case of sociological glso yield phenomena, hitherto unknown, that are_both novel

interes}, and below which th® phase is favoredts coun- " themselves and completely natural to the evolution of such

terpart by symmetry The fate of theD phase, whenever it is truly complex systems.
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