PHYSICAL REVIEW E VOLUME 60, NUMBER 5 NOVEMBER 1999

Metastable states of an Ising-like thermally bistable system
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The lifetimes of the metastable states are investigated in an Ising-like model associated with thermally
bistable systems. A discrete mesoscopic Markovian dynamic is established using an optimized version of the
previously presented Monte Carlo entropic sampling method. This is well suited to an extensive study of the
role of the physical parameters: temperature, interaction parameter, electronic energy gap. By combining a
discrete Markovian mesoscopic dynamic and the absorbing Markov chain technique, we obtain an analytical
access to the average lifetime of the metastable state. One-variable and two-variable approximations for the
original microscopic master equation are presented and discussed. A typical difference in the thermal depen-
dence of the lifetime of the low- and the high-temperature metastable states is found, and explained as a
consequence of the temperature-dependent field associated with the Ising-like model. The validity, the advan-
tages, and the limits of the method are discussed, as well as the possible consequences on the behavior of spin
transition systems. A prospective for a possible phenomenological finite-size scaling is presented.
[S1063-651%99)16010-0
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[. INTRODUCTION count for configurational entropy. The Langer theory pro-
vides correct analytical expressions for the nucleation rate of
Bistable systems are those that present two phases on esentinuous systems. Even though its validity is doubtful for
perimental time scales. From the strict thermodynamic pointliscrete systems, it was successfully tested for the square
of view, one of these phases is staf@guilibrium stateand lattice Ising system under a field at sufficiently high tempera-
the other one is metastahlguasiequilibrium stajethey are  tures[11].
associated respectively with an absolute and a secondary Recently, Leeet al. [12] adapted the standard formalism
minimum of the free energy in the configurational space. Thef projection operators to the microscopic Markovian master
most familiar examples are supercooled vapor, ferromagnetquation, in order to calculate the lifetime of metastable
with magnetization opposite to the applied field, or phasestates. Theprojection operator formalisni13—-15 reduces
separation of alloys. These phenomena may involve firstthe number of variables without loss of information, i.e., the
order transition with hysteresis. The system initially trappedreduced equation is an exact transformed form of the original
in a metastable state escap@sturns to the stable state one. But, in compensation, the initial Markovianity of the
through thermal by activated processes. In other words, thevolution is generally lost, i.e., the projected equation con-
energy fluctuations of the system highly govern the lifetimetains memory terms. However, L& al. suggested to drop
of the metastable state. the memory terms as long as the metastability of the system
The metastable states have been the object of many stuid strong. This approximation, which leads to a simple dis-
ies [1-4]. Indeed, their understanding represents a practicatrete time evolution equation for macroscopic distribution
interest, e.g., for the lifetimes of memory devices, as well agunctions, will be used and discussed in the present work.
a basic interest. In almost all real systems metastable statd@$ie choice and the number of the macroscopic variables will
have finite lifetimeg5], i.e., are essentially kinetic. Being a also be discussed.
nonequilibrium phenomenon, the time evolution of a micro- The success of this approach depends on the calculation
scopic system in a metastable state is described stochastif macroscopic probability distributions at equilibrium,
cally, in terms of master or Focker-Planck equations. In thevhich is already possible for small systems, thanks to the
general case, i.e., that of the interacting systems, there is rdevelopment of appropriate new Monte Carlo sampling
analytical solution for the above equations. Also, mean-fieldmethodg16-19. Indeed, we recently improved the original
Glauber-like approaches are not suited because they miss thMonte Carlo entropic sampling algorithm introduced by Lee
fluctuations needed for the escape from the metastable stafd.7], expressed in terms of density of states sampling. We
Finally, Monte Carlo simulations in principle provide an ex- optimized it in order to access to larger size syst¢ft—
act resolution of the microscopic equations, but the numeri19]. The sampled density of states provides the complete
cal procedure is obviously far too slow with respect to thedistribution functions at equilibrium; i.e., it implicitly con-
magnitude of lifetimes in most of real systems. tains the fluctuations needed for calculating the lifetimes of
Theories for the metastable lifetimes have been proposetihe metastable states. Once the density of states sampling has
on the basis of physical models, beginning from the classicabeen performed, in reduced macroscopic variables, then all
nucleation theory of Becker-Dimg, [6] up to the field theo- distribution probabilities, for any set of parameter values
retical theory of Lange{7-10. The classical nucleation (temperature, interaction parameter, energy) gam be de-
theory yields only qualitative results, because it cannot acrived analytically. This analytical character confers the den-
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sity of states method a great advantage with respect to otherll. ISING-LIKE MODEL FOR THERMALLY BISTABLE
sampling methodg¢see Ref[16]). SYSTEMS: STATIC ASPECTS

hlnthd|s \r/]vay,rl]‘or the examp!ei;arll Is!ng r(Tj10deI,_LegaI. The model we consider here was first introduced by
showed that the macroscopic Markovian dynamics IS Veryyqinfasz and Pick24] for molecular spin transition. It is an
successfuli.e., compares quite well with the simulations in |gjhq jike Hamiltonian, having the same expression as the
Metropolis dynamig in calculating the mean lifetime of |assic Ising model under a fielil However, the eigenstates

metastable states. This was implicitly supported by our preare degenerate and have different degeneracies. The Ising-
vious work[18], where the relaxation paths from the meta-|ike Hamiltonian is[24]

stable state were projected on the surface of a two-variable
macroscopic distribution. An excellent agreement between

the macroscopic Markovian path, the line of greater equilib- H= —JZ Sisj+ 1IAY s, 2.9
rium probability and the mean dynamic Metropolis path was (1) '
obtained.

wheres; ,s; have eigenvalues of 1,—1 with respective de-

‘generacieg . ,g_ . In terms of equilibrium probabilitiegor

rom the partition function formit is easily shown that this
stem is equivalent to a classic@ondegeneratedsing
odel under a temperature-dependent effective fi2fd

In the present work, we deal with the Ising-like case, i.e.
the general situation of the two-level systems, with an energ
gap and different degeneracies. It is worth remarking that th
relaxation from a metastable state has been widely studie
for non-temperature-driven, first-order transitions, such as
the classical Ising model under a fid@0—22,11,12 In the
present work we focus on thermally bistable systems, which heg=A—
undergo first-order transitions, and develop metastable states B
under the variation of temperature, the other external con- ) )
straints being kept constant. A common aspect that affect&ith 8=(1kT) and g=(g./g-). Then, the Ising-like
the metastability in these systems is that the temperaturd@miltonian is written as
plays a double role: it is both the “inner” driving mecha- 1
nism of the phase transitiofthrough its effects on the free — Cee ol = ‘
energy barriers and the source of the fluctuations which Ho gz” Jisis+ 22i (A' ﬁlng)s,. 23
activates the relaxation.

Among the multitude of such systems, going from the The mean-field treatment of the problem classically fol-
g-state Potts model, biquadratiBlume-Capel or BEG23]) lows and leads to the reduced Hamiltonian per site
models to glassy or disordered systems, we are interested in
a very simple case: the lIsing-like, short-range interactions Ho L
system. It is equivalently described as an Ising system under 3 - L=m+ 2 (d=rt]s; 2.9
an effective field, which varies linearly with temperature.

Such a model[24,29 successfully describes the Spin- i the dimensionless parametatsr, andt defined as
crossover phenomena, and is considered here to be represen-

1
—=Ing (2.2

tative of the thermally bistable systeni¥hese phenomena A

arise in molecular irorill) complexes at the solid state. Such d=—

a molecule presents two spin statbgh spin and low spin zJ

with different degeneracies, associated with different vibra- r=Ing;, (2.9
tional properties in the two spin states separated by a energy _ kgT

gap A. The cooperative interaction between the spin cross- T zd

over molecules leads to a first-order transition with hyster-
esis loopgsee Ref[26]).] It is taken here in the simple case where z is the number of first neighbors and=(s) the
of an isotropic nearest-neighbor Ising square lattice under averaged “magnetization” per spin, which in our problem
temperature-dependent effective field. only denotes the difference between the fractions of mol-

This paper is organized as follows. In Sec. Il the equilib-ecules in the high-spin and low-spin states.
rium properties of the Ising-like model are reviewed. Section The reduced free energy and the corresponding self-
[l contains a brief review of the works related to the dynam-consistent equations are then easily derived as follows:
ics near the first-order transitions, i.e., the dynamics of meta-
stable states; the validity of Langer’s field theoretical model
is reviewed in detail. In Sec. IV the projection operator 1
method is formulated and discussed; a comparison between f= NzJ~ Emz—t In| 2g cos t )
one-variable and two-variable approximations is made and (2.6
commented in Sec. IV C. In Sec. V some results obtained for
the metastable lifetimes of the short-ranged Ising-like system 1
are presented; in Sec. VC these results are commented in m+ = (—d+rt)
relation to their incidence on spin-transition systems. Section _ 2

; ; X i m=tanhf, — /. (2.7

VII contains a general discussion and some perspectives. t

1
m+§(—d+rt)
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ered here: that is, the temperature-driven, first-order transi-
tion should develop as long as the temperature where the
effective field vanishes stays below the exact critical tem-
perature of the system, i.e., the order-disorder transition tem-
peratureT o of the corresponding Ising model without field.
For a square-lattice first-neighbor Ising-like system, exactly
resolved, the condition isA/r=2.27J. For a one-
dimensional short-range interaction system the order-
disorder transition is located at 0 K; therefore no thermal
first-order transition is expected for the one-dimensional
(1D) Ising-like systems. Nonetheless the latter is a general
property of one-dimensional systems with short-range inter-
actions.

05 [
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0 03 06 08 12 15 lil. DYNAMICAL ASPECTS OF KINETIC ISING MODELS

FIG. 1. Hysteresis loops in then(t) plane where=kgT/zJ is The metastable state dynamics of the classical Ising sys-
the dimensionless reduced temperature. These curves are calculaiédn (temperature-independent figldas been widely studied
using Eq.(2.8) for r=2.5. The energy gap values, in reduced units,by dynamic Monte Carlo[21,20,22,11,3por by classical
are from left to right:d=0, 1, 1.5, 2.0, 2.5critical value:d,=r)  [6,21] or field-theoretical droplet theorid®]. We outline
and 3. The parts of the curves with a negative sldpgdt, corre-  here the main results of the nucleation theory in short-range
spond to unstable equilibrium states. The full line curve is the spininteraction systems; the involved assumptions are discussed
odal curve, i.e., the limit of instability are& is the critical point  in detail in Ref.[4].

(tc=1, m=0, dc=r). Both classical and field theoretical theories are based on
the picture of the nucleation of the stable phase up to a
This is immediately identified to the well-known self- “critical droplet” after which the growth proceeds without
consistent equation of spifsunder a field. Equatioi2.7)  cost in energy. At a coarse-grained level, the system is de-
can be inverted in temperature and then be written as folscribed by a set of variableg and next, dynamic equations
lows: are established for the distribution functional{;},t) as
continuity equations in the form of the Focker-Planck equa-

- tion:
t | rm: (2.9 )
r—In— ) dJ;
1-m (9—[:2— 0—¢II, (313
“~
The temperature dependence of the magnetization is I '
given by Eq.(2.8) for m restricted in thg0,1] interval. The  with J, the probability density current, given by
obtained curves are shown in Fig. 1. They exhibit first-order N
transitions which are explained by noting that the effective I=-S M, i Tk T‘?_P) (3.1b
field deg=d—rt, temperature-dependent, changes its sign at : = (wxjp B ;| '

teq=d/r, which is the transition temperature. This is similar o ) ) ]

to the classical Ising model under a field: the negatpsi- The underlying idea is that during nucleation, the metastable

tive) magnetization stable state is obtained at lbigh) tem- ~ duasiequilibrium states lie in the vicinity of configurations

peratures, due to the negatigeositive effective field. which minimize the equilibrium free energy. Then, the relax-
Different behaviors of the model in Fig. 1 are reviewed,ation from the metastable state occurs when the system

showing both first-order transitions and simple conversiondnoves from a local minimum oF{y; to another, passing

according to the values df, r, andJ, as well as a critical &by the lowest accessible saddle poinFof

temperaturd . =zJ. The spinodal curve is obtained by solv- ' n€ steady-state solution of E@.18 provides a constant

ing the equationit/dm=0. This illustrates the strong simili- nucleation ratd, i.e., the inverse lifetime of the metastable

tudes between the behaviors of this model and the phas%ate' The solution is obtained as follows:the calculations

diagram of the liquid-gas transition. For further analysis of@'® restricted to the vicinity of the saddle poifit) appro-
the Ising-like model, see Rell27]. priate boundary conditions are imposed assuming that the

From this mean-field treatment. the first-order transitionstationary distribution function coincides with the equilib-
develops only if the equilibrium te’mperatu'lr% is located rium solution on the metastable side and is zero on the stable
q

below the critical temperatur@. Even though this is a side (the latter condition means that droplets bigger than the

mean-field result, we think that it is not less than an exacfritical size are removed from the systenand (iii) an ex-
result, as long as the existence of a first-order transition in &ansion ofF{} is taken around the saddle poitit The
field h (located at theh=0) is rigorously proven for the Stationary currend is then derived from E¢(3.10), while the
Ising model, at subcritical temperatures. In fact, a mathnucleation rate is obtained by integrating the currdnt
ematical singularity of the free energy is observedhato,  through the surface in the vicinity of the saddle point. By
for the Ising model under a field, at subcritical temperaturegioting respectivelyyr. (r), and ¢_(r) the metastable and
[28,29. It seems evident that the above observation wouldstable states andg(r) the saddle point state, the resulting
be immediately transposed for the Ising-like model considnucleation rate can be written as
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I =1, exp — AF/KT), (3.2) IV. MEAN-FIELD-LIKE MESOSCOPIC DYNAMIC:
A DISCRETE MARKOVIAN DYNAMIC
where In the previous section we outlined that nucleation theory
is valid for small fields. Also, except for equilibrium soluble
AF = F{E}— F{y_}. (3.3 models, the theory requires the use of some phenomenologi-

cal mean-field free energy functional, which is not valid near

- . . . — the critical temperature. Moreover, for more complicated

For sufficiently smal! f|e|dsl_—|, the saddlg pomt. solutiogs systems, a correct free-energy functional would not be obvi-
leads to the expression &fF(R) for a d-dimensional drop-  ous to obtain, especially for disordered or diluted systems

let of the stable phase in the metastable medium: where it is difficult to account analytically for the spatial
distributions. Also, the continuous field theoretical approach
AF( R):di—l)/de—lg_m |A QO 4RY, (3.4  isnotvalid at low temperatures where the discreteness of the

lattice becomes important.

We make use here of the method introduced by éeeal.
[12] (see alsd18]). As shown in Ref[12] it applies to weak
and moderate fields, at any temperatiLi8,37).

whereQ " V9RI-1 and ) 4RY, respectively, are the surface
and the volume of the droplet; the surface energy at equi-
librium and Ay=¢,—«_. Maximizing this expression
with respectR yields the critical radius ) o
A. Master equations and projection operator method
(d=1)o The static version of the Ising model does not itself con-
RC:W (3.5 tain any internal dynamics; the Hamiltonian commutes with
the spin operators and therefore cannot provide any mecha-
nism for the dynamics. The underlying dynamics of a system
of spins comes for example from spin-phonon interactions
41 and the.s_e could be introd_uced in the Ising Ha_miltonian by
AE :( B ) Qo). (3.6 the addmon of correspondm_g quantum mechanlqal operators
¢ \|H|Ay [10]. In this case the Hamiltonian would contain its own
dynamics, and the evolution in time would be exactly pro-

and the corresponding free-energy barrier is

For kinetic Ising model§Glauber, Metropolis vided by the Liouville equation for the microscopic density
matrix p of the system. This is a highly complicated set of
Ag=Am=mg—m 3.7 equations and it is needed to simplify it in terms of a few

eq ms .

relevant mesoscopic or macroscopic variables. It is, however,
very difficult to obtain explicit equations for cooperative sys-
tems, from this first-principle approach. Zwanzig and Naka-
jima [13,14,3§ have introduced and developegmjection

\ i ) operator methodn order to provide exact, non-Markovian
nucleation rate Eq(3.2) can be written as inN31): 1o gquations for the distribution functions of the relevant ob-

_ b+ : : :
=A(T)[H|""¢. Here A(T) is a nonuniversal function de- seaples[The stochastic description of the dynamics is al-
pending only on the temperature and on the dynamic mode}y 5y s associated with an important reduction in the number

c is a purely dynamic constant, abds an universal constant ¢ e system’s degrees of freedom and, if, initially, tde-

terministio equations of motion are “Markovian,” the rig-
b (3—d)d/2 for 1<d<5, d#1 (3g Orous reduced description must contain memory effects, in
—7/3 for d=3. ' order to restore the lost information from the missing degrees
of freedom] In most cases, these exdbut forma) projec-

While, in general, the saddle-point calculations are based ofons cannot be put in an explicit equation form. They are
approximate free-energy functionals given by Ginzburg-useful as a structure upon which we can impose approxima-
Landau or renormalization-group theory, for the two- tions leading to Markovian microscopic equations; also, they
dimensional Ising model one may obtain very accurate calMay serve to know what has been left out and how to put it
culations thanks to the exact equilibrium Onsager’s solutionback in.

Concretely, as indicated by various works both analytical For some particular systems, it is possible to establish
[31,32 and numerica33], the free-energy cost of the criti- explicitly the Markovian master equation for the relevant
cal droplet can be very well approximated by zero-field equivariables, by introducing various approximations at the level
librium quantities: (i) Am is substituted by its zero field Of Zwanzig equatior{39]. But generally this remains very
value, i.e.,Am=2m.(h=0) given by the Onsager solution difficult, and the master or Focker-Planck equations are in-
[34,35; (i) the surface energy is obtained by combining troduced phenomenologically

wherem,andm,,; are the mean values of the one dimension
order parametefthe magnetizationrespectively at equilib-
rium and in the metastable state. The prefadiprof the

the Wulff construction of the droplet surface shape with the 5P N
anisotropic zero-field surface tensifs6]. _ —==> PiW, ;= P;W;_; 4.1
An important feature of these results on the nucleation ot i=1

rate for short-range models is that the exponential term is
independent of the system size. This means that the lifetime The dynamics is introduced only at the stochastic level,
does not divergdor macroscopic sizes. through the transition probabilitied/ as an artificial substi-
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tute of the real underlying dynamics. Often, there are prob- Ph(t+1)= B(t+1)=PWP(t). (4.6)
abilities through an arbitrary choice from the detailed bal-
ance, which they must satisfy at equilibrij0]: Here the vectoP(t) belong to a ?-dimension space but has

only N+ 1 nonzero elements corresponding to the number of
values of the remaining variable. Thus Eq.(4.6) is an
equation for the distributio(n,t) of the macroscopic vari-
able n. The projectionPV of the microscopic stochastic
Mhatrix W onto the subspace spanned by the coordinates of
Ythe order parameter reduces to anN+ 1) X (N+ 1) matrix,

as the nonzero elemen®V correspond to thé&l+1 coor-

Pieq\Ni_”: P?O\NJ_” . (42)

Despite its drastic reduction with respect to the initial
Liouville equation, the phenomenological master equatio
[Eqg. (4.1)] cannot be handled for a system of interactin
spins: it represents a system of 2quations for an Ising

g?dgrgém;pégss'egf] oir;Iy :;%?églésbwa&(sgtzogae”g’ ri)éiﬁf)t dinates of the order parametar This projection will be
odsp However this cor;es %nds to anyinte ration in time an noted aswW. We will not calculate here the matrix elements
j P 9 %rovided by the projection. Indeed, as the choice of the mi-

becomes totally unsuitable for long-lived metastable states. roscopic stochastic dynamics is arbitrary, it is made as well

is, therefore, tempting to apply projection operator teCh'at the level of the macroscopic equation, once the Markov

niques at this level too, in order to reduce the dimensionality roperty is justified. A natural choice for the elementsnéf

of the master equation. The_beneflt (.)f such a reduction i ollows from the macroscopic detailed balance given by Eq.
easier to see in the discrete time version of the master equ?A-r 2

tion:

N PE(n)W(n;—ny) =P*(ny)W(np—ny). (4.7
Pi(tz)=j21 Wijpj(t1) (4.3 |norder to keep the local dynamics, identical to microscopic
dynamics, we take,=n;*+ 1, i.e., we assign the rate zero to
the transition between configurations differing by more than
one spin state. Next, as for the rate transitions obeying Eq.
F(t+1)=Wp(t), (4.4) (4.7): we take Metropplis-like transition rat'es,.while the di-
agonal element is derived from the normalization of the tran-
sition probabilities:

or in the vectorial notation

where W, the stochastic matrix, is aVx 2N matrix for an
N-spin Ising system. Leet al. [12] have adapted the stan-

el
dard projecting approach at the level of a microscopic Mar- W(n—>n+1)=min[o,w 7 (4.9
kov process described by E(.4). That is, for a macro- Pqn)
scopic variable as the total magnetization the projected .
exact equation onto the subspace spannethby W(n—n—1)=min| 0 P{n—1) 4.9
) Pe%n) ’ .
t
Ph(t+1)=P(t+ 1) =PWR(1) + PWZ, [QW]'P(t-1) W(n—n)=1-W(n—n+1)—W(n—n—1). (4.10
+PW OW]'5(0). (4.5 Of course, manipulating theN(+ 1) X (N+ 1) stochastic

matrix elements requires knowledge of macroscopic equilib-

. S ;
[Note thatm=NX the reduced magnetization used in Sec.Um probabilitiesP*{(n) given by

II.] P makes a projection of the microscopic distribution

p(t), from a 2N-dimension space over a subspace of dimen- P&(n)= E Pri= z D(E,n)exp— BE  (4.11)
sionN+1 (the number of discrete components of the mag- (im (E.n)
netization m). Q is the operator which projects in the

. - .., where(i,n) ((E,n)) denotes a sum over configurations

complementary subspace, i.¢5+Q=1. This “motion éenergiesf) at fixedn. D(E,n) the density of states stands
or the number of states at the energyand “magnetiza-

tion” n. Thanks to the recent developments in the Monte

Carlo sampling of the free ener$2,18,19,42,3]] the mac-

equation contains non-Markovian contributions, representin
the memory of the values of variabfe[n is the number of
spin up given byn=(1+m)/2] at earlier times, and infor-
mation about the initial state of the other variablescond roscopic canonical distributiorsr the density of statesan

and thlrd_terms, respectwélyﬂ\leglectmg the non-Markovian be obtained for systems of more tharf &pins. We use here
contributions, at this level, would lead to a Markov process

. : . the entropic sampling, in an optimized version developed by
desquibed by &NXN stochastic matrix that can be handled one of us[42]: through a unique procedure it furnishes the
for finite systems.

density of states in a dimensionless parameter space, which
is relevant for any value of the model parameter set.

B. The macroscopic master equation_ for the order parameter: In the dynamics defined by the upper stochastic matrix,
how to solve it the time evolution of the macroscopic probability distribu-
In this section we give some technical details concerningion 5(T)={P(0,7-),P(1,7-), ...,P(n,7), ... ,P(N,7)} is

the derivation of the lifetime distribution moments, deduceddetermined by the simple equation
from the macroscopic master equation resulting from Eq. ) )
(4.5 after the Markovian approximation. That is, P(7,)=WT"P(0), (4.12
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which follows recurrently from Eq(4.4) and by using of the T e microdynamic —
stationarity of W, as it appears in Eq$4.8). This is an es- 1000 |

sential property of a stationary Markov process. Then the
metastable lifetimes are calculated by the absorbing Markov
chains techniqu§43,44] as in Ref.[12]. A boundary is de-
fined for the metastable phase, which determines the tran-
sient metastable states. Therefore a submatmt W corre-
sponding to them defines the dynamics during the metastable
lifetime. We denote the probability of existing and the prob-
ability of being absorbed at time, Pgy(7,) and P,pd 7.),
respectively. They are related by the following equation:

Pod T )= Ped7e) + Pad 7). (413 e

. . . . 0 5 10 15 20 25 30 35 40 45
while P, (7,) is simply given by External field h (K)

Macrodynamic 1D ===- <

3
A

i

E Macrodynamic 2D =
[}

2

10

Average lifetime <t> (MCSS)

FIG. 2. The average lifetime of the metastable stedtaxation
Pex Ta)ZE Pa(7,). (4.14  time fromm=—N to m=0) of the classical square lattice Ising
n model plotted as a function of the applied field, for a2 lattice,
atT=0.88T-. We compare the results obtained by the microscopic
Metropolis dynamic(full line) with those from the macroscopic
dynamic approximation with one variable (crosses-dashed lipe
and two variablesn ands (dotted ling, with m,s=magnetization
Pmi( 7a) = Pand Ta)ZE [(TTafl—TTa)IS(O)]n_ (4.15 and energy, respectively. The field varies in the stochastic region.
n All values are calculated by averaging over 1000 independent paths.
.. The time scales are rescaled at the lower field value and are ex-
In a fur_ther step, the moments of the metastable lifetimeyressed in Monte Carlo steps per sgMCSS: the field is ex-
distribution are obtained as: pressed in temperature unifse., energy. The straight lines ap-
proximate the stochastigveak field$ and the deterministi¢strong
fields) regimes for both the one-variable and the two-variable dy-
namics; the pointd1 andD2 correspond, schematically, to the
crossover pointsdynamical spinodal pointgor the one- and two-
Then, using the properties of power series, the moments argriable dynamics, respectively.
simply expressed in terms of the fundamental malitix (|

—T)~*. For example, the first and second moments are  memory effects are lost at time intervals which are large with
respect to the spin correlation times, but remain small with
(T>=E [NIS(O)]n, (4.1 respect to the metastable lifetime. The calculations of Lee
n et al.[12] are highly convincing: they compared the depen-
dences of the metastable lifetimes on the applied field, ob-
<Tz>:2 [(2N2—N)I5(O)]n. (4.18 tained either by the microscopi®onte Carlg dynamic, or
n by the projected macroscopic dynamic. They also give an

) o . excellent agreement at weak and moderate fields. For stron-
The calculation of the average metastable lifetime only im-q; fie|ds, the metastable lifetime became shorter, i.e., it is
plies a matrix inversion, irrespective of the order of magni-

de of the lifeti not large enough with respect to correlation times.
tude of the lifetime. We now consider the number of macroscopic variables in
the reduced Markovian dynamic. It is expected that the
larger the number, the closer the result to the true micro-
The question remains: what are the errors introduced bgcopic (N-variable dynamic. Following our previous work
neglecting the non-Markovian contributions, when we only[18] a two-variable dynamic is obtained by the projection
seek to obtain the metastable lifetime distribution? There arento a subspace spanned by total magnetization and total
theoretical argumentgt5,46 to convince that the memory energy. Energy is also a slow variable for the metastable
effects may be neglected on a time scale much larger thastate relaxation. In Fig. 2 we compare the metastable life-
the characteristic time of the eliminated, rapid variables. Thigimes, obtained by the Monte Carlo microscopic dynamic, by
means the variables, involved in the reduced equationthe one-variable and the two-variable Markovian dynamic,
should slowly varywith respect to those, which are elimi- calculated in function of the applied field. Technical details
nated by the projection technique. In the present work, th@n the calculations are given in the next section. The calcu-
variables eliminated in the projected equatisae Eq(4.5)] lations are made for a 2424 square lattice, af=0.88Tc.
are the spin state of each site and, i.e., the complete spifihe three dynamics have different time scales but we re-
configuration has been replaced by the total magnetizatiorscaled them in such a way that the lifetimes coincide at the
However, in the metastable state, the spin configurationsmallest field value, where the dynamics are quite equiva-
have changed several times during a time interval where thkent. Surprisingly, the two-variable dynamic does not fit bet-
magnetization practically does not varies. In other termster the Monte Carlo curve than the one-variable dynamics.

Pand 7,) Can be understood d%,,(7,); the metastable life-
time distribution is easily derived as

<rk>=; ;1 [(7,)(T7a-1=T)P(0)],. (4.16

C. One-variable and two-variable macroscopic dynamics
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From the point of view of the Markovian approximations, tage that the sampling be performed only once for a system
the differences in the time-scales between the three dynamisize, allowing for a continuous variation of the model param-
can be interpreted as due to the time coarse-graining which isters: coupling constadt energy gap for the two spin states
implicitly involved in the Markovian approximation. The A, degeneracy ratig and, of course, temperatuiie[18].
size of “time grain” depend on the physical detailsorre- The initial state distribution is taken in a particular meta-
lation timeg; in this case it depends on the field value. Thisstable configuration, where all the spins are opposite to the
explains the deviations which are observed between the thresffective field. Due to the temperature dependence of the
lifetimes curves as the field is increased. field, for T<T,, the metastable state im=+1 and, forT
The paradoxical situation of a two-variable approximation>T., m= — 1. The transient metastable states are chosen be-

which is not really improved with respect to the one-variabletween all configurations corresponding to the same sign of
approximation, is not rare in statistical mechanics, e.qg., it ishe order parameter, i.e; 1<=m<0 for T>Teqand O<m
also present in the Kikuchi cluster variational method<1 for T<Teq. This defines the absorbing boundary for the
(CVM) for the order-disorder transitions in solif$7,48. It metastable state an=0. It is well known for short-ranged
is an entropic approximation at equilibrium, which treatsinteraction model§1,50,7 that there is no unique way to
clusters of a cell in the mean-field approximation, but cor-define the metastable region of the configuration space, i.e.,
rectly includes all the spatial correlations between sites in théne metastable lifetimes will finally depend on the arbitrary
cluster. It is well known that increasing the cluster size doe$ocation of the boundary. However, as it was shown in dif-
not lead always to an improvement of the approximation, agerent studies concerning the Ising model in Monte Carlo
would be expected; it is specially the case for frustrated sysqynamics[22,11], the results are not really sensitive to the
tems[49]. The explanation here should sought in terms Ofjgcation of the boundary, as long as the boundary is far from
the additional correlations associated with the second macrqne metastable quasiequilibrium value. Therefore the ab-
scopic variable[ There are cases where including only a Partsorhing boundary is fixed here at the simple vatae 0.
of the correlations may be followed by a lack of the con-ajso, we always initialize the metastable state in a saturated
straints serving as boundary conditions for the 1alt8so,  state; indeed we have checked that the results did not depend
although a macroscopic dynamic based upon the magnetizgy, e initial distributions in the metastable region.
tion and energy conserves an important part of the micro- The ayerage valuér) of the lifetime (i.e., first-passage
scopic information, there is an essential quantity in nucleyime) calculated as described in Sec. IV B, has been divided
ation phenomena which we miss here, that is the droplet sizg;,, the number of spink? in order to give the times in units
We think that a macroscopic dynamic including the dropletyt ponte Carlo step by spiiMCSS. It corresponds to the
size would be very close to the microscopic one. dynamical assumptions that each spin interacts with the heat

_For relatively strong fieldsH{=25K, for the sizes con- path independently of the other spins, and that the magnitude
sidered herg the one-variable dynamic approximation iS of the fluctuation energy per spin, transmitted by the heat
clearly less appropriate than the two-variable case becausgggp only depends on temperature but not on the system size
as it has been argued in Reffl8], they have different (e approximation of an “infinite” heat bath
“mean-field-like” spinodals, i.e., the field values at which — \ye shall first investigate the specific role of temperature
the “saddle point” vanishes are different. This leads to thefor the dynamic of this model. Next we analyze the results

collapse of the barrier in one dimension prior to the collapsgn, the |ifetime in relation with the behavior of spin-crossover
of the barrier in two or more dimension distributions. How- ¢ stems[26], for different values of coupling constast

ever, for these fields, the metastable lifetimes are short angsg k< 3<150K) and energy gap(crystal field A.
the above arguments have little practical impact, all the MOr¢>00 K<A<1000K). All the calculations were performed in

so that the Markovian approximation is less valid at thesgy o op NN Ising-like model, for the system sizesX66
fields. We will use therefore the macroscopic one-variable, 4 o4 and 3% 32 spins. ' ’

Markovian dynamic to the Ising-like model with a tempera-
ture dependent field, as it involves much smaller matrices.
A. The ambiguous role of temperature
V. THE ISING-LIKE MODEL IN THE ONE-VARIABLE

DYNAMIC In Fig. 3(a) we show the lifetime of the metastable states

on each side of the thermal first-order transition<(Tqq;

We apply here the one-variable mesoscopic approach tm=+1; T=T,,: m=—1), as a function of temperature.
the calculation of the metastable lifetimes for the two-The peak in the lifetime corresponds to the first-order tran-
dimensional (2D) lIsing-like model, expressed with a sition atTe,=(A/InT).
temperature-dependent effective field. We consider only the A striking property displayed by Fig. 3 is the net asym-
nearest-neighbofNN) ferromagnetic interactions. We use metry in the metastable lifetimes for the high temperatures
the dynamic defined in the previous section, with the matrixand low temperatures. While the high-temperature meta-
coefficients given in terms of macroscopic canonical distri-stable state vanishes rapidly as temperature is increased
butions; they are calculated semi-numerically, for each sysabove the transition temperatufig,, the low-temperature
tem size, through the density of state§M,E), which is  metastable lifetime decreases less rapidly when temperature
sampled by Monte Carlo entropic sampling. As our densityis decreased beloW.,, goes to a minimum, and finally in-
of states P[M,S]=D[M,E(M,9)]) is a function of dimen-  creases at low temperatures. Obviously the temperature plays
sionless variablesS=X; iys;s; and M=%;s;,—s0 asE a double role here: it is both the driving force of the equilib-
=hM—JS—(see Ref[18]), there is a considerable advan- rium phase transition through the variation of the effective
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. As in Ref.[11], this is established by considering the limit
temperature for which the critical droplet occupies the whole
. system. In these temperatuteffective field regions, the
lifetime increases exponentially with the system size, as for
stable equilibrium states. Asn(T) varies very slowly
around our transition temperatufe=0.44T; [35], while
E(T) (the surface tension of the nucleating dropleging a
decreasing function of temperatuigee Ref[51]) then, the
“thermodynamic spinodal” temperature will rapidly con-

] verge to the transition temperatufe when the size of the
system increases. Next, for larger temperature differences
|T—T, (the effective unfavorable field for the metastable
state increaseghe Ising system is in the “stochastic” re-

t (MCSS)

Lifetime
=
=
¥

0 20 40 60 80 100 120 140 160 180

@ Temperature (£ gion, according to the definitions given in R¢22] for the
1.2 standard Ising system. It follows from Fig(a3 that the life-
1.1 | times are decreasing functions of the size in a large range of
c 1 temperatures. In this temperatufield) region, according to
;(%; 09 droplet theory, the lifetime should be inversely proportional
T 08} to the size, as given bisee Ref[11]):
2 o7}
8 06 11 AF
S o5 (ry=[A(T)] "N "H “ex Pl (5.2
e 04t
3 03 where AF= (E(T)/|H|). Therefore, the behavior is some-
0.2 - what different for the present Ising-like system, because of
01 Doy the temperature dependence of the prefaét6r) and of
0 0 20 40 60 80 100 120 140 160 180 AF(T), but the vgriatio.n with size. is the same.
(b) temperature (K) In the stochastic region of the fieltiere the temperature

- o the growth of the stable phase occurs through only one drop-
FI_G. 3. The metastabl_e lifetime for a 2D Ising-like model_ as ajet (very small probability for other droplets to appear for
function of temperature witd=100K, A=500K, g=150 and size  nege fieldsand the life times are very large. Hence, it is a

éle' with L=16,24,32. The timescale Ilf ponvirted in Monte poisson process a macroscopic characteristic of which is that
arlo steps per spifsee text (a) average lifetimesfirst moment 0 andard deviation of the lifetime distribution is of the

of the lifetime distribution; (b) relative standard deviatiofsecond same order as its first moment. For larger fields., larger

moment of the lifetimes distribution |T—T, here the growth occurs via several droplets, the

. o . standard deviation is much smaller tha and the
field and it is also the source of the thermal ﬂ“Ctuat'O”SIatter is given by of7) {

energy, which induces the crossing of the energy barrier.
Above T, the two driving forces change in the same way. BE(T)

Below'Teq the two driving forc;gs_ of the rel.axatl'on change in 7(h,T)~|h| = brerddtix ex;{—d_l}_ (5.3
opposite ways: the destabilizing effective field increases (d+1)|h

while the fluctuation energy decreases. The minimum at low

temperatures occurs because at these temperatures the flés follows from Sec. lli(see also Ref49, 31] and[22,11),
tuation energykgT decreases more rapidly than does theb+c=3 in two dimensions and, then we have for the aver-

energy barrier. age lifetime of the square lattice Ising-like model:
B. The identifications of different regimes 7(h,T)y~|A—rT| 5/3ex;{ 3BA ( 3_ . (5.4
In the following, our interpretation will be partially [A=rT|

helped by the known results from the simple Ising system

under an external field. First, at weak effective fields the The crossover field between the two regimes, as discussed
lifetime increases with the number of spins, just as at zerdn Ref.[11], is determined by considering the field for which
field. The crossover effective field, the thermodynamicalthe distance between droplets is equal to the critical droplet
spinodal poin( THSP [11] depends on the temperature and Siz€; this field was called the dynamical spinodal poD&P)

the corresponding crossovers for the present model when orié Ref. [22] and is given by

varies the temperaturghe effective field and the tempera-

ture vary simultaneously the two temperature$,,sp and [ BE(T) 55
TH,sp Obeying DSA™ 3 |nL - '
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FIG. 4. The average lifetime of the two metastable states as a FIG. 5. The average lifetime of the two metastable states as a
function of the temperature for the 3382 system, forJ function of temperature for the 3232 system at different values of
=0.44T-, g= 150 and for different values of the separation fiald the coupling constant. A=500 K, g=150 and]=50K, 70 K and
from 250 K (full square$ to 750 K (crosses 90 K.

The corresponding spinodal for the temperature in the Isingtemperature and the strong reduction of the fluctuatioiith

like model remains as energykgT) at low temperatures. Indeed, qualitatively, we
can just observe that there is no longer a minimum in the
BE(Tpsp lifetime, if the energy barrier vanishes before the fluctuations
|A=TTpsd = " 3InL (5.6 begin to decrease faster. This can occur either for weak cou-

pling constant] (weak, rapidly vanishing barrigor for high

It follows from Egs.(5.6) that the DSP in temperature, as a first-order transition temperatures. In this case, the effective
solution of Eq.(5.6), does not have a monotonic behavior field de is located in thestrong field region [11], which
with the temperaturdin contrast with the standard Ising corresponds here to low temperatufg2].
CaSQ. |ndeed, thd—'DSP is a decreasing function of tempera_ NeXt, it follows from F|gS 4 and 5 that the lifetime of the
ture, which indicates a complex behavior of the dynamiclow-temperature metastable state may be very important,
spinodal temperaturéDST), for the high-spin metastable €ven far from the first-order transition region; especially if
state. the transition is located at low temperatures, as happens for a

As an illustration, we have calculated the standard deviarelatively weak energy gap. For estimating the orders of
tion by the macroscopic dynamics method, which is showrmagnitude expected in spin-transition systems, it should be
in Fig. 3b). As argued in Ref[22], the relative standard noted that the typical spin state relaxation rates in these sys-
deviationa, of () is of the order of ) in the stochastic zone tems[53] are between f0and 16 s™* at high temperatures.
and the crossover regime from stochastic to deterministic id his can be considered as typical spin-flip frequency. It turns
observed as soon as is less than 1. In F|g(®) the cross- out that, while A varies from 300 to 250 K, the lifetime
over appears twice: at high temperatures, and around tH®inimum of the low-temperaturehigh-spin metastable
minimum of the lifetime at low temperatures, while around State varies from a few hours to millions of years for the
the first order transition and at low temperatures the relaxsizes considered here. This means that the low spin state
ation of the metastable state is entirely a stochastic processé¥ould hardly (or nevej be observed for, relatively, weak
As it appears in both Fig.(B) and Eq.(5.6) the dynamical ~Values of the energy gap (200-300 K or strong values of
spinodal temperature is size dependent. the interaction parametdr in systems of the size considered
here (~300 up to 1024 spins

The cooperative effects investigated here seem able to
increase the lifetime of the metastable high-sglow-

In Fig. 4, the temperature dependence of the lifetime isemperature state by up to a factor-10 orders of magni-
shown for different values of the ratid/r. The variation of  tude, compared to the intrinsic lifetime, i.e., the inverse of
A'in spin-crossover compounds can be physically realized byhe intrinsic spin-flip frequency.

C. On the spin-crossover systems

applying an external pressufsee Ref[26]). A and T, are Of course the present results correspond to a first step in
increasing functions of pressure because the low-spin statBe study of spin-transition systems. A more realistic ap-
has a smaller volume. proach should include some additional considerations about

The effect ofd is shown in Fig. 5. As is illustrated in Figs. the nature of spin-transition molecules and their interactions.
4 and 5, the lifetime minimum of the low-temperature meta-We will mention here two of them.
stable state disappears for strong gamr weak coupling (i) There is experimental eviden¢g6] for an intramo-
constant]. In fact the relevant quantity to be considered islecular energy barrier between both spin states. As a possible
the ratio J/T¢, because of the competition between theextension of the model, this energy barrier might be ac-
monotonic decrease of the effective fieddy=A—rT with  counted for explicitly and should lead to an Arrhenius-type
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thermal dependence for the individual spin-flip frequencies.
Such an easy extension would result in increasing the life- 1+
times for both spin states, especially at low temperatures, as
suggested by the experiments. However the height of the
energy barrier should be specific of each type of molecular
unit.

(ii) From other viewpoints concerning the nature of the
interactions in spin transition systerf6], a realistic model
should contain both short- and long-range interactions. As a
consequence, the lifetimes would strongly increase. Also, the
size dependence of the lifetime time is very different be-
tween short and long range interactions. While for the
former, the lifetime, after being inversely proportional with 0.2
the size, becomes size independent at larger saesther
parameters kept constauffL1], for the later the lifetime ex- ! . ! ! ! ! . .
ponentially increases with the size. It suggests that experi- 80 120 160 20?em§:rgmre2%% 320 360 400
ments on the relaxation time on small systems might bring

new elements about the nature of interactions in spin- FiG. 6. Relative standard deviation of the average metastable
t_ranSItlon systems and about t_helr appllca_lt_lons for informatitetime for the 32<32 (lower curve and the 16 16 (upper curve

tion storage, strongly related with the stability of the phasessystems;3= 250K, A=1500K, andg=150. A relative standard

In addition, we think that it would be interesting to extend geviation close to one is typical of the single-droplet regime.

this kind of study to a similar photoexcitable system under

permanent light irradiation. temperature driven, first-order transitions. The method starts
from a sampled density of states which is used for calculat-
VI. A POSSIBLE FINITE-SIZE SCALING ing macroscopic probabilities at any temperature, in order to

Some qualitative arguments may be developed allowingStablish a macroscopic dynamics that can be solved semi-
to speculate for the large size behavior, using the resultgnalytically. Concretely, the important numerical effort—for
from smaller sizes. An essential point is the difference beobtaining the density of states—has to be made only once;
tween the one droplet and the multidroplet growth of thethen the resolution of the dynamics only involves algebraic
stable phase. In the former the lifetime is inversely proporimanipulations of matrices, irrespective of the dynamic char-
tional to the size while in the latter it is size independent.acteristics. Obviously, the amount of information included in
Consequently, the size scaling will not consist of a mono-+the density of states is huge and, indeed, requires much more
tonic extrapolation, but will involve a crossover between theCPU time than multicanonical samplifd6], which pro-
regimes, for a temperature-dependent size viéheedynami-  vides the free energyi.e., equilibrium distributioh at a
cal spinodal sizg as it appears in E45.6). Conversely, ata given temperature. However, the multicanonical sampling
given size, different temperatures will correspond to differentas to be made for each temperature, so as the entropic sam-
regimeS: while the mUItidrOplet nucleation regime is reaCher“ng appears as the most suitable method for temperature-
far from the first-order transition temperature, the pointsgependent problems and, more generally, for all investiga-
closer to the transition point have important lifetimes and argjons where several parameters have to be explored. The ad-
still in the single drqplet regimes. As an illustration, in Fig. 6 vantage is even greater, since we have proposed a version of
we show the relative standard deviation for-16 andL ¢ entropic sampling iterative procedure, which can save an
=32. . L . important amount of CPU time, making it possible to work

It suggests that_ for Iafger SIZ€s, the !n‘eume will be the, ;i systems larger than 1000 sitE37]. Also, we believe
same around the lifetime’s minimum region of the temperay, a1 frther improvements of the entropic sampling iterative
ture, while it will be lower in the region closer to the transi- ;e qyre are possible, specially by using more fundamental
tion, where they are very important for the sizes Cons'dere‘ﬁnathematical tools.

here. In pther quds, We can be sure to have .reached the The validity of the method, especially its accuracy for
asymptotic behavior at the points where the relative standar; rong metastable states[12]—weak field, low

deviation is lower than 05 An empirical finitg: Size'Scalingtemperature—is related to the specificity of the metastable
may, then, be developed simply by extrapolating the laws fogie5 relaxation, which can be represented as very slow,

the lifetimes at the two regimes, together with the law for thequasiequilibrium processes. From this point of view, the

dynamical spinodal temperatures, using the small size re
sults. However, a confident finite-size scaling requires reacl“ﬁ

08

0.6 [

relative standard deviation

dvantage of this method in studying metastable states/
laxationg, is that it can be used, in principle, for any
thodel. The method is obviously limited by the cost of the
procedure, but the cost is only related with the number of
macroscopic variables spanning the expression of energy’s
eigenvalues. Also, we think the method is especially suited
We firstly point out a major advantage of the presentfor side-disorder systems, where the spatial distribution of
method for studying the relaxation of metastable states ithe vacanciegimpurities is hardly accounted for analyti-

tative arguments can apply to other short or medium-range
models as long as the concepts of the droplet nucleatio
theory are valid.

VII. DISCUSSION AND PERSPECTIVES
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cally, while the sampling procedure works the same as in thguantitative criterias based upon correlation functions for the
pure system. distinction between equilibrium and nonequilibrium states.
At a more fundamental level, we think the present method In conclusion, we think that the present method is very
can offer a supplementary tool for theoretical studies on nonwell suited for the study of metastable states and the calcu-
equilibrium statistical physics and metastable states. Indeeghtion of their lifetimes around temperature-driven first-order
assuming the Markov property for the macroscopic variablegransitions. It should be preferred to other methods, espe-
is equivalent to neglecting the influence of a part of the mi-cja|ly for studying small systems like nanoparticles and, bet-
croscopic information relevant to the evolution of the mac-ter, diluted systems. For large size systems, the density of

roscopic variables. An interesting challenge should be th@tates calculation—on which is based the method—is, at the

gain of a deeper insight into the nature and the validity of theyresent, very expensive, but a phenomenological finite-size
Markovian approximation in the dynamics of the metastablescaling might be established.

states. Concretely, the validity of the Markov approximation

is related to the characteristic time scales in microscopic and
macroscopic dynamics with respect to the metastable life-
time. The access to the time scales should involve the calcu-
lations of time correlation functions in microscopic and 1D  The authors would like to thank Dr. A. Finel, Professor H.
and 2D macroscopic dynamics; their comparison might exbDiep, and Dr. H. Spiering for very stimulating discussions
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