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Calculation of ground states of four-dimensional+J Ising spin glasses
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Ground states of four-dimensional £ 4) Edwards-Anderson Ising spin glasses are calculated for sizes up
to 7X7X7X7 using a combination of a genetic algorithm and cluster-exact approximation. The ground-state
energy of the infinite system is extrapolatedegs= —2.0951). Theground-state stiffnesr domain wall
energyA is calculated. AA|~L®s behavior with® = 0.64(5) is found which confirms that thie=4 model
has an equilibrium spin-glass-paramagnet transition for nontgrgS1063-651X99)13710-3

PACS numbeps): 05.50+q, 75.10.Nr, 75.40.Mg, 02.10.Jf

[. INTRODUCTION The question of whether finite-dimensional Ising spin
rflasses show an ordered phase below a nonzero transition

in computational physics. Among these the investigation o emperatureT; is of crum_a_l interest. By MC.S'mU|at.'0nS.
the low-temperature behavior of spin glas$és attracted around theexpectedl transition temperature _th|s question is
most of the attention within the statistical physics commu-nard to solve. Another way to address this question is to
nity. The reason is that despite its simple definitisre be- ~ calculate thestiffnessor domain wall energyA=E*~EP,
low) its behavior is far from being understood. From theWhich is the difference between the ground-state energies
computational point of view the calculation of spin-glassE* EP for antiperiodic and periodic boundary conditions in
ground states is very demanding, because it belongs to tH#ne direction12,13. Here the antiperiodic boundary condi-
class of computational-hard problerf]. This means that tions for calculating=? are realized by inverting one plane of
only algorithms are available for which the running time onbonds. For the other directions periodic boundary conditions
a computer increases exponentially with the system size. lare applied always. This treatment introduces a domain wall
this work a method recently proposed, ttlester-exact ap- into the system. If a model exhibits an ordered low-
proximation (CEA) [3] is applied to four-dimensional Ising temperature phase, the domain wall increases with growing

Optimization methods have found widespread applicatio

spin glasses. _ o _ _ system size, which becomes visible through the behavior of
The model under investigation here consistsNoBpins  A: the disorder-averaged stiffness energy shows a finite-size
H=-2, Jiioioj, 1 9
& v (141} ~Ls @

where(---) denotes a sum over a pair of nearest neighbors.
In this report simple 4D lattices are considered, iNs L*. A positive value of the stiffness expone@tg indicates the
The nearest neighbor interactiofimnds take independently existence of an ordered phase for nonzero temperature. For
Jij==1 with equal probability. Periodic boundary condi- example a simplel=2 Ising ferromagnet ha®s=1. For
tions are applied to the systems. No kind of external magspin glasses, the stiffness exponent additionally plays an im-
netic field is present here. portant role within the droplet-scaling thedid4—-18, where
Four-dimensional Ising spin glasses have been investit describes the finite-size behavior of the basic excitations
gated rather rarely. Most of the results were obtained vidthe droplets
Monte Carlo (MC) simulations at finite temperature; see, Using this kind of analysis it was proven that the 2D spin
e.g.,[4-10. Here theT=0 behavior is investigated, i.e., glass exhibits no ordering fof >0 [19]. For the three-
ground states are calculated. This has the advantage that odisnensional problem in a recent calculati@0], by apply-
does not encounter ergodicity problems or critical slowinging genetic CEA a value o®¢=0.19(2) was found, which
down like in algorithms which are based on MC methods.shows that indeed thé=3 model has a spin-glass phase for
Only one attempf11] to address the four-dimension@D) nonzero temperature. For=4 the existence of a finit&,
spin-glass ground-state problem is known to the author. Butz=2.1 was proven rather early even by MC simulatiph$],
as we will see later, the former results suffer from the prob-but the value for the stiffness-exponedt is of interest on
lem, that the true global minima of the energy were not ob-ts own. Recentlj10] a value of®s=0.82(6) was found by
tained. Furthermore, no analytic predictions of the groundperforming a MC simulation nedfr.. In the work presented
state energy have been noted by the author. here the value is obtained via ground-state calculations.
The paper is organized as follows. In the next section the
algorithm applied here is briefly presented. The main section
*Fax: +49-551-399631. Electronic address: contains the results for the ground-state energy and the stiff-
hartmann@theorie.physik.uni-goettingen.de ness exponent. A summary is given at the end.
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Il. ALGORITHM TABLE |. Simulation parametersL=system sizeM;=initial

. L . size of populationy=average number of offspring per configura-
The technique for the calculation is based on a speuajon, nym=number of CEA minimization steps per offspring,

genetic algorithni21,22 and on cluster-exact approximation ,_nical computer time per ground state on a 80 MHz PPC601,
[3], which is an optimization method designed especially fory, —number of realizations of the random variables.
spin glasses. Now a brief description of the method is given.

Genetic algorithms are biologically motivated. An opti- M, v Niin 7 (seg N,

mal solution is found by treating many instances of the prob-

lem in parallel, keeping only better instances and replacing 2 16 1 1 0.04 10000
bad ones by new ongsurvival of the fittest The genetic 3 16 4 4 3 9000
algorithm starts with an initial population d#; randomly 4 16 4 4 14 2000
initialized spin configurationé= individualg, which are lin- 5 256 6 10 4800 1000
early arranged in a ring. TherM; times two neighbors from 6 256 6 10 7300 1300
the population are takettalled parentg and two offspring 7 512 12 20 14000 400

are created using the so called triadic cross¢28t. Then a
mutation with a rate op,, is applied to each offspring, i.e., a

fraction p, of the spins s reversed. . gated. Finally, results for the stiffness energy are discussed.
Next, for both offspring the energy is reduced by applying - The simulation parameters were determined in the follow-

CEA. The algorithm is based on the conceptfrfstration ing way: For the system sizds=2,4,6,7 several different

[24]. The method constructs iteratively and randomly a non+qompinations of the parameteld; , v,N i, Py Were tested.

frustrated cluster of spins, whereas spins with many unsatis=q; the final parameter sets it is not possible to obtain lower
fied bonds are more likely to be added to the cluster. Thenergies even by using parameters where the calculation con-
noncluster spins act like local magnetic fields on the clusteg,mes four times the computational effort. For3,5 the
spins. For the spins o_f the cluster_ an e_nergetic mi_nimum Statﬁarameter sets fot+1 were used. Using parameter sets
can be calculated in polynomial time by using graph-chosen this way genetic CEA calculates true ground states,
theoretical methodg25-27: an equivalent network is con- 44 shown if20]. It should be pointed out that it is relatively
structed[28], the maximum flow is calculatef29,30, and gy 10 obtain states, which exhibit an energy slightly above

the spins of the cluster are set to the orientations leading 10 §e {rye ground-state energy. The hard task is to obtain really
minimum in energy. This minimization step is performed e giobal minimum of the energy.

Nmin times for each offspring. _ _ Here p,=0.1 andng=5 were used for all system sizes.
Afterwards each offspring is compared with one of itS tapje | summarizes the parameters. Also the typical com-

parents. The pairs are chosen in the way that the sum of trﬁhter time = per ground-state computation on a 80 MHz

phenotypic differences between them is minimal. The pheppcgo1 s given.

notypic difference is defined here as the number of spins Ground states were calculated for system sizes up to

yvhere the two configura_tions differ. Each parent is rep_laceq,x7x7x7 for N, independent realizatior(see Table)l of

if its energy is not lowefi.e., bettey than the corresponding 6 random variables. For each realization the ground states

offspring. _ o , with periodic and antiperiodic boundary condition in one di-
After this creation of offspring is performedM; times (o tion were calculated. The remaining three directions are

the population is halved. From each pair of neighbors the,,ays subjected to periodic boundary conditions. One can
configuration that has the higher energy is eliminated. If NOoLytract from the table that for small system sides 4

more than four individuals remain the process is stopped an&round states are rather easy to obtain, whilelthe? sys-

the best individual is taken as a result of the calculation. ;o< 2i0ne required 6560 CPU-days. Using these parameters

_ The whole algorithm is performen times and all con- g, averagen,>2.7 ground states were obtained for every
figurations that exhibit the lowest energy are stored, resultlng\;,ystem sizd usingng=>5 runs per realization

in ng statistical independen'g ground-stat_e conf_igur_ations. The” 1he average ground-state energyper spin is shown in
method was already applied for the investigation of theFig. 1 as a function of the system site Using a fit to

ground-state landscape of 3D Ising spin glags8ds. _ “b o ) )
The probability that a certain ground-state configuration iseO(L) €+al " the value for the infinite system is ex

: : trapolated, resulting in ej=—2.095(1) [a=7.1(7),
found by this method is not equal for all ground stdig2). - i . 0 | )
If one is interested in properties of the ground-state land- =—4.2(1)]. This value IS compatible with the lower bound
scape this bias has to be corrected by applying further mettff €= ~ v2din2~—2.35 given by the random energy model
ods[33]. However, here only the ground-state energy is mea 34]. The value calculated h_ere is substz_antlal_ly small_er than
sured. All ground states of a given configuration havethe resulteg=—2.0543), which was obtained if11] using
exactly the same energy. Thus, the distributions of theéd Pure genetic algorithm. This shows that[irl] the true

ground states is not relevant and the raw genetic CEA algd3lobal minima were not found, which can be concluded also
rithm is sufficient. from the fact that therey(L) increases with growing system

size. Because the periodic boundary conditions impose addi-
Il RESULTS tional constraints on the systems, the opposite behavior is
' expected, as found for the results presented here. For further
In this section, at first the values for the simulation pa-comparison additionally some calculations were performed
rameters, which are defined above, are presented. Then thyg the author by simply rapidly quenching from random cho-
finite-size behavior of the ground-state energy is investisen spin configurations. By executing an analogous fit, a
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FIG. 1. Average ground-state energyper spin as a function of . .
system size.. The line shows a fit tey(L) =ej +aL ~° resulting in ~ FIG. 3. Average stiffness energyA|) as function of system
e;=—2.095(1) as an estimate for the ground-state energy of théizeL on a log-log scale. The line represents the funcit(L)|
infinite system. =al% with ®5=0.654). Theincrease of |A|) with system size

indicates that for 4D Ising spin glasses an ordered phase exists

w . . . below a nonzero temperatuie .
value ofey=—2.04(2) is obtained. This shows that the re- W z peratule

sult from[11] seems to be only slightly better than the data

obtained by applying a very simple minimization method. the error bars are smaI'I enough, so we can pe pretty sure that
The distribution of the stiffness energy, which is obtained®s>0- It confirms earlier results from MC simulatiof,5]

from performing ground-state calculations for systems witht1at the 4D Edwards-Anderson spin glziss exhibits a nonzero

either periodic or antiperiodic boundary conditions in onelransition temperatur@.. The value®s=0.64(5) is com-

direction, are shown in Fig. 2 fot=5 andL=7. Witn Parable to a recent result from MC simulatior8s

increasing system size the distribution broadens. This mearis 0-82(6) [10], given the facts that the system sizes are

that larger domain walls become more and more likely. Tgather small and the othgr resu_lt was obtained at finite tem-

study this effect more quantitatively, in Fig. 3 the disorder-Perature near the transition poilt~2.1 whereas here the

averaged absolute valgfA|) of the stiffness energy is plot- system is tr_eated at=0. Additionally, the pr(_adlctu_)n from

ted as a function of the system sikze Also shown is a fit droplet-scaling theorf s<(d—1)/2=1.5[17] is fulfilled.

(JA(L)|)~L®s, which results inds=0.645). Here, the sys- It should be pointed out that the method described above

tem sized =2,3 were left out of the analysis, since they aredoes not guarantee finding exact ground states, although the

below the scaling regime. Because of the large sample sizdgethod for choosing the parameters makes it very likely. If
states with a slightly higher energy are obtained, the result

for e; is not affected very much. For the stiffness energy, it

04 ' ' ' ' ' ' ' was shown irf20] that the result is very reliable as well, as
long as the energies of the states are not too far away from
the true ground-state energies.

0.3 | ]

IV. CONCLUSION
Toot 1 Results have been presented from calculations of a large
= number of ground states of 4D Ising spin glasses. They were
obtained using a combination of cluster-exact approximation
and a genetic algorithm. Using a huge computational effort it

0.1 7 was ensured that true ground states have been obtained with
a high probability.

The finite-size behavior of the ground-state energy and
0 = éo the stiffness energy have been investigated. By performing a

40 L—o extrapolation, the ground-state energy per spin for the
infinite system is estimated to l&§ = —2.0951). Theabso-

FIG. 2. Distribution of the stiffness energy=E2—EP for sys- lute value of the stiffness energy increases with system size
tem sizes 55x5x5 and 7x7x7x7. E2 and EP are the total and shows &|A(L)[)~Ls behavior with® s=0.645). For
ground-state energies for periodic and antiperiodic boundary condsSystems with a Gaussian distribution of the bonds qualita-
tions in one direction, while for the other three directions alwaystively similar results are expected, since the ordering behav-
periodic boundary conditions are imposed. Lines are a guide to th#®r depends only on the sign of the interactions and not on
eyes only. their magnitudes.
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