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Scale invariance and invariant scaling in a mixed hierarchical system

M. G. Shnirman and E. M. Blanter
International Institute for Earthquake Prediction Theory and Mathematical Geophysics, Warshavskoye sh 79, korp 2,
Moscow 113556, Russia
(Received 12 May 1999

We consider a mixed hierarchical model with heterogeneous and monotone conditions of destruction. We
investigate how scaling properties of defects in the model are related with heterogeneity of rules of destruction,
determined by concentration of the mixture. The system demonstrates different kinds of criticality as a general
form of system behavior. The following forms of critical behavior are obtained: stability, catastrophe, scale
invariance, and invariant scaling. Different slopes of the magnitude-frequency relation are realized in areas of
critical stability and catastrophe. A simple relation between the slope of magnitude-frequency relation and
parameters of the mixture is establishE81063-651X99)08610-9

PACS numbgs): 05.65+b, 91.30--f, 05.90+m

[. INTRODUCTION sult was obtained if8]. When the self-organized criticality
appears as a result of a feedback relation which attracts the
Self-organized criticality, introduced by Bak, Tang, andtrajectory to a critical point, the slope of the magnitude-
Wiesenfeld, reflects a stable form of the self-similarity ob-frequency relation depends on parameters of hedlfig
served in the behavior of various multiscale systéfsin  Various slopes of the magnitude-frequency relation were ob-
seismology the power-law form of the magnitude-frequencytained in[10] because of complex interactions between dif-
relationship is well known as the Gutenberg-Richter lawferent kinds of movements. However, the model is very com-
[2,3], which characterizes scaling properties of seismicityplicated and it is difficult to see the origin of different
both for the world seismicity and for different seismic re- scalings in this system.
gions: To clarify the origin and conditions of different kinds of
scaling we consider a simple hierarchical model of destruc-
log;gN(M)=a—bM. tion, the has no temporal evolution and which behavior of
) which is governed by a small number of parameters. A simi-
Here N(M) denotes the number of earthquakes with thejar model was suggested [1], the unstable scale invari-
magnitudeM. The slope of the magnitude-frequency relationance was established in the single point of phase transition
b is close to unity for the world seismicity8], but it takes  from stability to catastrophic behavior. The stable scale in-
different values in various seismic regioj#. Recently, the  yariance(self-organized criticalitywas observed in a similar
Gutenberg-Richter law is usually associated with the selfyodel with nonmonotong6] or heterogeneouf?] condi-
organized criticality of the seismic proceldsd. ~ tions of destruction. Although simple static hierarchical
For any abstract or natural system the evolution of whichyodels are very abstract, they often demonstrate similar fea-
is characterized by events of different scales, the power-law,res as a complicated dynamical systeiemmpare, for ex-
form of the magnitude-frequency relation means the selfamp|e,[11] with [9] and[6] with [8]) but allow a clearer and

similarity of the distribution of events: simpler description. In the present investigation we consider
1+ 1) = ol a mixed hierarchical model suggested . It was shown in
p(I+1)=rp(), [7] that stable scale invariandeelf-organized criticalityin

. this model is a result of strong heterogeneity of destruction
wherep(l) denotes the density of events at sdaknd factor conditions. Now we shall demonstrate that the self-organized

\ is determined by the slope of the magnitude-frequency .. . G . 1
relation. A special case of the unity slope=1 defines the criticality with different scaling\ is a general form of be-

. : havior of such systems.
scale invariance of events: N Sy o : )
The description of the model is given in Sec. IlI; elemen-

p(1)=const tary kinds of system behavior are described in Sec. lll. In
Secs. IV-VI we show the relation between the observed
for all scales of the system. scaling and the involved heterogeneity for elementary kinds

In the avalanche sandpile moddlk] the self-organized ©Of system behavior; more complicated and more general
criticality is characterized by a linear magnitude-frequencycases are considered in Secs. VIl and VIII. Results and pos-
relation with the slope equal to unity. When the self- sible application are discussed in Sec. IX.
organized criticality appears as a result of a stable fixed point
of the transition functioni6,7] it means the scale invariance
of the system and the slope of the magnitude-frequency re-
lation in this case is close to unity. Deviations from the unity We consider a hierarchical system of elements with
slope exist only for a few low scale levels, when the systenbranching numben (Fig. 1). Each element at leveéH-1 is
is far enough from the attractive critical state. A similar re-relevant to a group oh elements of the previous levél

Il. GENERAL DESCRIPTION OF THE MODEL
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tone conditions of destruction.

A. Critical numbers and concentrations of the mixture

The numberk of defects in a group of elements suffi-
cient to bring forth a defect at the superior level is referred to

as a critical number. Thus, an element of levell is a
O O defect if the relevant group of levélcontains the critical
numberk or more defects. Any configuration withor more
/I\ /I\ defects in a group oh elements is referred to as a critical
configuration.

In the homogeneous hierarchical model considerddjn
the critical number is the same for all elements of the system.
The heterogeneous model suggesteldirmay be performed
as a mixture of elements whose destruction is governed by
different critical number& (k=1, . .. n). In[7] the simplest

ase ofn=3 was considered; here we investigate this model
for arbitraryn.

The fraction of elements determined by the critical num-
berk is denoted as, ; the sum of concentratiores, is equal

to unity (a;+ - - - +a,=1). It is assumed that fractiog do
§ not change with level. Concentrations, determine the het-
erogeneity of the system. A homogeneous system with criti-
cal numbelik corresponds to the degenerated case of the mix-
ture, when only one concentratiap is equal to unity and all
other concentrations are zero.

FIG. 1. Hierarchical system with branching numimet 3.

Each element of the system may be in one of two possibl
states: broken or unbroken. An element in the broken state i
referred to as a defect.

The state of an element at level 1 is determined by
numberk of defects in the relevant group ofelements of
the inferior levell. The rule which defines how the state o
an element at levdl+1 depends on the numbkiof defects
on the relevant group of the previous leVés referred to as
a condition of destruction. As usual, we assume that condi
tions of destruction are independent on lelyelhich means
self-similarity of the model structure. However, this restric-
tion does not determine self-similarity in the distribution of B. Densities of defects
defects, but allows different kinds of system behavior, de- \We denote ap(l) the density of defects at levél The
pending on concrete conditions of destructi®-11,13.  density of defects at the first levp(1) is a parameter of the
The system behavior is described by concentrations of demodel and densities of defects at higher levels may be cal-

fectsp(l) atlevell (I1=1,... L). Below we investigate sta- culated, when the densitg(1) and concentrations of the
tistical properties of densities of defeqt¢l), when levell  mixturea, are fixed. The density of defects at level1 can
grows for different conditions of destruction. be expressed from the density of defects at the previous level

HeterogeneityWhen the condition of destruction is the | a5 follows:
same for all elements of the system, the model is called
homogeneousA heterogeneousmodel generally has differ- p(l+1)=F[p()], (1)
ent conditions of destruction for different elements. Thus, the
homogeneous model is a degenerated case of a hetero
neous one.

Monotonicity. The model hasnonotoneconditions of de-
struction, when each number of defektskg in a group of

here F(p) denotes the probability to obtain critical con-
iguration of defects in a group af elements, if the prob-
ability of a defect is equal tp. We have assumed that con-
centrationsa, do not change with level, therefore the
level | corresponds to a defect of superior leVell, if kg transition fur_lctiorF Is _the same for all !eyels of the system.
defects in this group are relevant to the defect. When it is not The density of configurations, containing exadtigefects

true, the condition of destruction fnmonotone in a group ofn elements at level, is equal to

It follows from the definition that homogeneous and W, = CKpK(1—p)" K, )
monotone conditions of destruction may be defined by a low-
est numbeik, of defects in a group of elements which is wherep=p(l) is the density of defects at Ievblcﬁ denote
relevant to a defect of a superior level. Consequently, theréhe binomial coefficients, and is a branching number. In a
exist n (n is a branching numbgrdifferent monotone and homogeneous system with critical numlehe density of all
heterogeneous rules of destruction. In the case of nonmonatitical configurations is equal to the sum of all configura-
tone and homogeneous conditions it is necessary to definet®mns with k or more defects:
set of numberg; of defects relevant to the superior defect.
This was the case fdi6], where conditions of destruction
were homogeneous and nonmonotone.

The importance of heterogeneity in relation with critical
phenomena was previous|y notEtﬂ_]_ We have considered In the heterogeneous case the transition funckois a
in [7] a particular case of a monotone and heterogeneoud€ighted sum of¥',, where each term of the sum is taken
system in and have shown that the scale invariance is relatétfith the relevant concentration of the mixtuag:
with high heterogeneity of the system. Now we investigate a n
more general case of such a model and describe other kinds F(p)= E ad,.
of critical behavior obtained for heterogeneous and mono- k=1

n

(I)k: ]'Zk Wk .
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Thus, the transition functiof is completely determined by In the general case of the system, the transition fundtion
concentrationsy, : is defined by Eq.3) and the density of events at levkl
) ) <L is expressed as follows:
F(p)=2, Cip'(1-p)"* 2, a. 3

1 n k
P()=1 2, kCﬁpk<|>[1—p<l>]“k( 1-2, ai) .9
C. Magnitude-frequency relation At the highest level all defects are events:
In studies of seismicity the magnitude of an earthquake is
actually used as a measure of the energy of the earthquake. A P(L)=p(L). (10
linear relation between the magnitude of the earthquake and

. ) . . . Expressing the average number of events:
the linear size of its source is establisHa@]: P 9 9

log;0S~M + const. (4) v(h=Cn-""'P(I) (11)

the magnitude-frequency relationship takes the form, similar
A linear relation between the logarithm of the number of Eq.(g) a y P

earthquakes and its magnitude, known as a Gutenberg-
Richter law, is established for the world seismidi8] and logiov(1)=—M(l)+log;oP(l)+ const. (12
for particular seismic regiongt]:
If densities of defectp(l) tend to zero, when level
logygN=a—bM. (5)  grows[see for example, Fig.(B)], then it may be easily
obtained from Eq(9) that densities of events also tend to

We assume that the linear size of elements in the systeero[Fig. 2(c)] and have the same order as densities of de-
falls with level S(I)=Syn' and its number similarly grows, fects:

Ng(I)=Cn-~' (C denotes number of elements at the highest

level L of the system In seismology, the magnitude of P()~(1—ay)p(l). (13
earthquake is related with the linear size of the source area:

M ~log,S. Following [6—8,10, we consider the magnitude It follows from Egs.(8), (12), and(13) that in this case the

as a characteristic of the size of a defect at ldvel magnitude-frequency relationship has the same slope for
both numbers of defects and numbers of events.
M(I)=1log;gn (6) When densities of defectg(l) tend to a constant value

0<py<1, then densities of eveni(l) also tend to a con-
(we use a decimal logarithm in respect to the geophysicadtant value &P,<1, determined by taking=p, in the
tradition). Expressing the average number of defects at theight side of Eq.(9). Thus, the magnitude-frequency relation
levell, for events, Eq(12), is linear with a slope equal to unity,
L| exactly like the magnitude-frequency relation written for de-
N()=Cn""p(l), (M fects, Eq.(8).

It is really important to distinguish events from defects,
when densities of defectgl) increase with level and tend to
unity [Fig. 3(b)], because densities of everi®l) in this
case tend to zer@see Eq.(9) and 3c)], for all levels|,

logyN(1) = — M(1)+logyop(1) + const. ®) excepting the highest orj&q. (10) and Fig. 3b)].

we obtain from Egs(7) and (6) the magnitude-frequency
relation for our model, which is an analog of Ed) for
seismicity and reads

It is obvious that the form of the magnitude-frequency lll. HETEROGENEITY AND CRITICALITY
relation is completely determined by densities of defects
p(l) and by its evolution with level. If densities of defects
p(l) tend to a constant valyg >0, when level grows, then
the magnitude-frequency relatid8) is approximately linear
with a slope equal to unity. A power form convergence of
densitiesp(l) to zero determine nonunity slopes of the
magnitude-frequency relation. Both cases satisfy th
Gutenberg-Richter law(5) and perform general forms of
model behavior, as will be shown below.

In this section we consider all possible kinds of system
behavior and its relation with heterogeneity of the system
reflected in concentrations of the mixtuag. We are espe-
cially interested in the behavior characterized by a linear
form of the magnitude-frequency relation. Such system be-
havior is referred to as critical. We shall classify different
%inds of critical behavior observed in this system.

The form of the magnitude-frequency relati®8) is de-
termined by the behavior of densities of defep(s), when
levell grows. The transition functioR is monotone, Eq(3),
therefore there always exists a IimilsOimle p(l)<1, so

Some defects of levdlcorrespond to a defect of the su- there are only three possibilitiesl) p(l) tend to zero,2)
perior levell + 1. In real observations the defect entering in ap(l) tend to a constant value<Opy,<1, and(3) p(l) tend to
defect of the superior level cannot be detected. Only theinity.
defect of the highest range may be observed as an event. The rate of convergence is actual for the form of the
Therefore we define events as defects of léwehichdo not  magnitude-frequency relation, whew(l) tend to zero or
enterin a defect of the superior levéh1. unity [caseq1) and(3)]. When the limitp, is between 0 and

D. Events
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FIG. 2. Area of stability (=3): (a) Transi-
tion function in the homogeneous ca&tashed
line) and general heterogeneous césalid line)
are below the dash-dotted diagonal liifle} den-
sity of defects tends to zero for all values of
p(1): (1) 0.2, (2) 0.5, (3) 0.9; (c) density of
events tends to zero for al(D: (1) 0.2,(2) 0.2,
(3) 0.8; (d) magnitude-frequency relation in ho-
mogeneous cas@lashed ling has a downward
bend, in the heterogeneous cdselid line) it is
linear.

1 the magnitude-frequency relation is linear with a slope F(p)=p°. (14)
equal to unity and the rate of convergence has no influence

on the value of the slope. We call cade stability, because As is shown in Fig. 2a), the transition function lies below
there are no defects at high levels of the system; ¢3se the diagonal line, thereforgé(p)<p for all values ofp. The
means thescale invariancg case(3) is called catastrophe  mapF, defined by Eq(14), has two fixed points: 0 and 1,
because the top level of the system is completely destroyedhe first one p=0) is stable, the other on@ € 1) unstable
Below we consider these three cases and all possible kinds Fig. 2&), dashed ling Thus, for all values of initial density
convergence for different parameters of the system and def defectsp(1), densities of defectp(l) and densities of

scribe scaling properties of the system in each case. eventsP(l) tend to zero, when levelgrows[Figs. 2b) and
2(c) dashed linek The perturbation of the first level does not
V. STABILITY actually reach higher levels of the system, therefore this kind

of behavior is referred to as a stability.
Let us begin with a specific degenerated homogeneous The relation between the density of defep($) and the
case, when the branching numizer 3 and the critical num- level | may be easily obtained from Eq4) and(14):
ber k=n=3 for all elements of the system. The transition -
function F is then the following: p(H=p(1)% (15

0.8
Qo.s
Io.4 FIG. 3. Area of catastrophen& 3): (a) Tran-
sition function is above the dash-dotted diagonal
0.2 line in the homogeneous cagdashed ling de-
generated heterogeneous cadetted ling, and
Oo general heterogeneous cdselid line); (b) den-
sity of defects tends to unity for gfi(1): (1) 0.1,
(2) 0.9; (c) density of events tends to zero for all
0.05 p(1): (1) 0.1, (2) 0.9; (d) magnitude-frequency
0.04 relation has a jump for highest magnitude, it is
’ linear for M>3 in the general casésolid line)
0.03 and has a downward bend in the degenerated het-
s erogeneous cagéeotted ling.
0.02
0.01r,
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wherep(1) denotes the density of defects at the first level of ! ' ' ' ' - ' ' '
the system. ool
The logarithm of the total number of defects at lelvéd s
thus expressed from E7) as follows: o8 z
log,oN(1)= —1 log;gn+logyp(1) +const. (16 *F
0.6
So, we obtain from Eqg15) and(16) the exponential rela- ¢
tion between the logarithm of the number of defedtd) %9 1
and the scale levdl 04k
log;oN(1)=—1log;3+3' "tlog,op(1) +const. (17) 03f
It follows from Egs.(8) and (17) that the magnitude- o8
frequency relation has an exponential downward bidid. o1t
2(d), dashed ling , , , , . . . . ‘
00 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
log;oN(M)=—M+ B3~ *M+ const, (18 ¢

FIG. 4. Different parametric areas of system behavior rior
=3. The mixture is parametrized by two free parametersa;
andd=a; +a,. There are four areas of system behavior: 1 stability;
Critical stability 2 catastrophe; 3 unstable scale invariance; 4 stable scale invariance.

Now we consider a nondegenerate case of the mixture,
close to the homogeneous case of stability. Let us consider

the system with a branching number3, when elements | et us always begin with a specific degenerated homoge-
with critical numbersk=1, k=2, andk=3 are mixed with  neous case, when the branching nune and the critical

concentrations, , &,, andag, respectively. The concentra- numberk=n=1 for all elements of the system. The transi-
tion a3 is close to unity, and concentratioas anda, are  tion functionF is then the following:

close, but not exactly equal to zero.

Similarly to the previous case, the transition functfors F(p)=1—(1-p). (21
posited below the diagonal line and has two fixed points: the
stable poin{p=0 and the unstable onp=1 [Fig. 2@), solid  As is shown in Fig. 8a) (dashed ling the transition function
line]. Thus, densities of defectgl) and event$(l) tend to  is posited above the diagonal line, theref&ig) > p for all
zero, when level grows, for all values of initial densitg(1) values ofp. The mapF, defined by Eq(21), has two fixed
[Figs. 2b) and Zc) solid lined. From Egs(1) and(3) inthe  points: 0 and 1, the first ongp&0) is unstable, the other

where8 and « are positive.

V. CATASTROPHE

first order ofp(l) we obtain one (p=1) is stable. Thus, for all values of initial density of
defectsp(1), densities of defectp(l) tend to unity, when
p(l+1) ~3a, (19) level I grows [Fig. (b), dashed linek High levels of the

p(l) system are almost destroyed, therefore this kind of behavior
is referred to as a catastrophe. Densities of events are all

It follows from Egs. (7), (6), (8), and (19) that the equal to zeroP(l)=0 [see Eq(9)], excepting the density of

magnitude-frequency relation has a linear form with a slopeyents of the highest levél(L)=p(L)~1. Thus, the cata-

log; pa; /10903 [Fig. 2(d), solid line]: strophic behavior in the homogenous case is equivalent to a

single event of the highest level.

log; 021

l0g;03

logioN(M) = M + const. (20

A. Delocalization

The linear form of the magnitude-frequency relation Let us consider a heterogeneous degenerated case of the
means the critical behavior of the system, therefore this kindystem with branching number=3 when concentration of
of behavior is referred to as eritical stability. It follows  the mixtureas; is equal to zero. Concentrati@q is close to
from Egs.(19) and (20) that in the area of stability the sys- unity and concentratioa, is not far from zero. It is also a
tem demonstrate critical behavior, whenr>0. Thus, the case of catastrophic behavior: densities of defe¢ty tend
critical stability is a general case of system behavior ando unity [Fig. 3(b), dotted line, when levell grows, and
noncritical stability is a degenerate case. densities of eventP(l) tend to zerdFig. 3(c), dotted lines.

In the simplest case of branching numimer 3 the para- The magnitude-frequency relation, considered for events,
metric area of critical stability may be easily described. Twodemonstrates a strong downward bend and a peak at the
conditions must be fulfilled by the transition functién in  highest leve[Fig. 3(d), dotted lind. Such behavior produces
order to obtain stability behavior: no fixed points exist insidea gap in the interval of magnitudes before the highest ones
the interval (0,1), excepting O and 1; the fixed point O isthat is similar to the delocalization phenomenon, observed in
stable. It was shown ifi7] that forn=3 concentrations of the Burridge-Knopoff moddl15], in lattice modelg16], and
the mixture satisfy two conditionsa;<1/3 and @;+ay) in a generalized dynamical hierarchical moftes], and as-
<2/3 (Fig. 4). sociated with characteristic earthquak&g].
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FIG. 5. Unstable scale invarianc@) Transi-
tion function forn=3 (a; =0, a,=1); (b) den-
sity of defects; (c) density of events;(d)
magnitude-frequency relation for events. Differ-
ent lines correspond to different values of initial
density of defectsp(1)=0.45, solid line;p(1)
=po=0.5, dotted linep(1)=0.55, dashed line.

B. Critical catastrophe VI. SCALE INVARIANCE

Let us now consider a nondegenerate case of the mixture | et us suppose that transition functibrhas a fixed point
close to the catastrophic one. In the system with branching, inside the interva(0,1) and different from zero and unity:
numbern=3, concentrations of the mixture are taken as fol-0<p,<1. When the initial intensity of defecfs(1) is equal
lows: a, is close to unitya, andas are not far from zero. g the value of the fixed poimi(1)= p,, then all densities of

The transition functiorF is posited above the diagonal defects take the same Vahp}ﬂ):po for all levels of the
line and has two fixed points: the unstable pgit0 and  system. Thus, the system demonstrates the scale invariance.
the stable onep=1 [Fig. 3(a), solid line]. Thus, densities of |t follows from Eq.(8) that the magnitude-frequency relation
defectsp(l) tend to unity and densities of everigl) tend  for the case of scale invariance is linear with a slope equal to
to zero, when level grows, for all values of initial density unity, which means the critical behavior of the system. It
p(1) [Fig. 3b), solid lined. From Egs.(1), (3), and(9) in  follows from Egs.(9) and (12) that the linear form with a
the first order of I-p(l) we obtain unity slope of the magnitude-frequency relation exists also

when events instead of defects are considered. Thus, the
P(+1) (22) scale invariance represents a specific form of critical behav-
P(1) ior, characterized by a unity slope of the magnitude-
frequency relation. In both cases of critical stability and ca-
tastrophe, considered above, the slope of the magnitude-
It follows from Egs. (11), (6), (12, and (22) that the frequency relation was greater than urfigge Egs(20) and
magnitude-frequency relation has a linear form with a slopg23)].

log;a3/10g; 43 [Fig. 3(d), solid linel:

~3a3.

A. Unstable scale invariance

l00; 083 In the simplest system with branching numbvet 3 the
l0gyov(M) = WM +const. (23 transition functiorF defined by Eq(3) always has two fixed
points,p=0 andp=1. It has a third fixed point € p=pg
<1, when one of two following pairs of conditions for con-
The linear form of the magnitude-frequency relation centrations of the mixture are fulfilleld]:
means the critical behavior of the system, therefore this kind
of behavior is referred to as a critical catastrophe. It follows
from Eqgs.(22) and(23), that in the area of catastrophe the
system demonstrates critical behavior, wrey>0. Thus, a;>1/3 and a;+a,<1/3. (25
similarly to stability, the critical catastrophe is a general case
of system behavior and noncritical catastrophe is a degeneln the first cas€24) the fixed pointp=pg is unstable; in the
ate case. second cas€25) it is stable. In this section we consider the
It was obtained if7] that for the simplest case of branch- case where the unstable fixed pomt p, exists.
ing numbern=3 the parametric area of critical catastrophe It follows from Egs.(3) and (24) that both fixed points
is determined by two conditions imposed on concentrationp=0 andp=1 of the transition functiorF are stablgFig.
a, of the mixture:a;>1/3 and @;+a,)>2/3 (Fig. 4). 5(a)]. Thus,F(p)<p for all p<py and densities of defects

a;<1/3 and a;+a,>1/3, (24
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(a) (b)
1 0.7
7/ N
> N
0.8 . 0.6 Y
_ 06 P z 05 T
3 =
[T . o
0.4 7 0.4
02 S 03 FIG. 6. Stable scale invariance) Transition
/ ’ function forn=3 (a;=0.5, a,=0); (b) density
o 0.2 of defects;(c) density of events(d) magnitude-
0 O)'(S f 0 5 | 10 15 frequency relation for events. Different lines cor-
respond to different values of initial density of
0.2 © @ defects: p(1)=0.2, solid line; p(1)=py=0.5,
e m Tt ] 10" dotted line;p(1)=0.7, dashed line. For ap(1)
0.18} - the magnitude-frequency relation is linear with a
0.16 4 slope equal to unity.
= s
o 0.14 >
0.12 10°
0.1
0 5 10 2 0 2 4 6 8
[ M

p(1) defined by Eq(1) tend to zero, when levélgrows, for ~ Strong heterogeneity concentratiamsare far from unity. It

all values of initial densitiep(1)< p, [Fig. 50b), solid ling. ~ follows from conditions(25) that stable scale invariance can-
Densities of events also tend to zero fiffl)< p, [Fig. 5(c), not be achieved in the homogenous monotone model: con-
solid ling]. If p>p,, thenF(p)>p; thus, for allp(1)>p, Ccentrations of the mixture relevant to the most different criti-
densities of defectp(l) tend to unity and densities of events cal numbers &, and a; in the considered capenust be
P(l) tend to zero, when level grows[Figs. 5b) and 5c), greater than 1/3. Thus, the stable scale invariance in the be-
dashed lines The pointp=p, is fixed for the transition havior of the system indicates high heterogeneity, numeri-
functionF, thereforep(l) = py andP(l) =P, for all levelsl, cally described by corresponding conditions for concentra-
if p(1)=po [Figs. 5b) and 5c), dotted line$. This kind of  tionsa, of the mixture.

behavior is referred to as the unstable scale invaridhize

4). As was shown, in the simplest casersf 3, the unstable VII. FIXED POINTS AND THE SYSTEM BEHAVIOR:

scale invariance is related with the phase transition from sta- GENERAL CASE

bility [when p(1)<py] to catastrophic behaviofwhen

p(1)>poy). The scale invariance is obtained in the single Let us consider a general case of the transition function
point p(1)=p, and only this point is characterized by the F(p) defined by Eq(3). The transition functiorF(p) is a
unity slope of the magnitude-frequency relatidfig. 5(d)]. sum of monotone function® (p) with positive coefficients

a,, therefore it also monotonically increases wihthere-

fore the functionF monotonically increases, and the deriva-
tion F’(p) is positive inside the interval (0,1).

Let us consider the system with branching number3, Let us consider, the transition functiéi(p) with m fixed
when conditions(25) for concentration of the mixture are points p=p;, wherei=1, ... m. It follows from Eq. (3),
fulfilled. It follows from Egs.(3) and(25) that the transition thatp=0 andp=1 are the fixed points of the mdp thus
function F has two unstable fixed pointp=0 andp=1, p;=0 andp,=1. It is known that a fixed poinp; is stable
and the stable on@=p, [Fig. 6(@)]. Thus for all values of when the absolute value of the derivatiBh(p;) is less than
initial density of defectgp(1) densities of defectp(l) de-  unity, and it is unstable, whelfr’(p;)| is greater than unity.
fined by Eq.(1) tend to the valug,, when levell grows  The derivationF’ is positive, thereforep; is stable, when
[Fig. 6(b)]. Similarly, densities of eventg(l) tend to a con- F’(p;)<1 and it is unstable wheR'(p;)>1.
stant valueP [Fig. 6(c)]. Thus, the scale invariance may be  Let us consider two consequent fixed points of the fRap
observed for all values qf(1) and the magnitude-frequency p; andp;. ;. Fixed points of the mag (p) are zero points of
relation has the asymptotically linear form with a slope equathe mapF(p) —p. There is no zero of the map(p)—p
to unity [Fig. 6(d)]. This kind of behavior is referred to as the betweenp; and p; .1, therefore the derivatiohF(p)—p]’
stable scale invariance or the self-organized criticalflg. =F'(p)—1 has different signs irp; and p;, 1. Thus, if
4). In the area of stable scale invariance the slope of’(p;)<1, then F'(p;;1>1 and vice versa. Therefore
magnitude-frequency relation is equal to unity for all valuesstable and unstable fixed points of the nfaplternate.
of parameters, andp(1). It follows from Eq. (1) and monotone increasing of the

Concentrations of the mixture, reflect heterogeneity of transition functionF that densities of defec{s(l) monotoni-
the considered system: in homogenous systems one concesglly tend to a limit valugp*, which, generally, depends on
tration is equal to unity, others are zero; in the system withthe initial density of defectp(1). It follows from the conti-

B. Stable scale invariance
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nuity of the transition functiorr that this limit pointp=p,
must be a fixed point of the m&p(p). Thus, the number of
possible kinds of behavior demonstrated by the system witl
transition functionF is completely determined by the num-
ber of fixed points of the map. When the fixed point 0
<p;<1 is unstable, then it governs the unstable scale invari
ance forp(1)=p; . If the fixed point G<p;<1 is stable, then

it determine the area of the stable scale invaridiice self-
organized criticality(SOQ]. The area of stability exists if
the fixed pointp;=0 is stable. The area of catastrophe exists
if the fixed pointp,,=1 is stable. The unstable scale invari-
ance is realized in all unstable fixed poiptEl )= p; , differ-

ent from 0 and 1. Thus, all kinds of system behavgiabil-

ity, catastrophe, stable, and unstable scale invarjamagy

be realized in the behavior of one system, if the corresponc
ing transition function has sufficient number of fixed points.

M. G. SHNIRMAN AND E. M. BLANTER
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As illustrations, we suggest below two examples of this com-

plex behavior for the system with branching number5.

A. Complex case: stability-SOC-catastrophe

The transition function for the system with=5 is deter-
mined by five concentrations of the mixtuag, whose sum
is equal to unity. To reduce the number of free parameter:
we consider a symmetrical case, whep=as; and a,=ay.

So, the transition function is completely determined by two

concentrations of the mixture, for exampég, and a,:
F(p)=5a,p(1-p)*+10(a; +az)p*(1-p)°®
+101-(a;+a,)]p%(1-p)?

+5(1—a;)p*(1—p)+p°. (26)

FIG. 7. Different parametric areas of system behavior for sym-
metric case withn=5. The mixture is parametrized by two free
parameter€c=a;=as andd=a;+a,=a,+as=1—as. There are
four areas: 1, unstable scale invariaripease transition from sta-
bility to catastrophg 2, stable scale invariance; 3, nontrivial scale
invariance(phase transition from one stable point to anothér all
gossible kinds of primary system behavistability, unstable scale
invariance, stable scale invariance, catastrppdre realized by
changing only initial densityp(1).

—po) and three unstablgpE0, p=0.5, andp=1). The ex-
istence of two stable fixed points determines stable scale in-
variance(SOQ for all values of initial densityp(1), except-
ing the unstable fixed points 0, 0.5, and [Eig. 8d)].
Nevertheless, whep(1)=0, p(1)=0.5, or p(1)=1, the
system also demonstrates the scale invariance, but the un-

In the symmetric case the transition function always hagtable one. Thus, in this case for all values of the initial
three fixed points: 0, 0.5, and 1. It can be easily obtainedlensityp(1), the scale invariance may be observed. How-

that five fixed points of the map exist, when
10(a;+a,)+15a;—7>0, and ®—1<0 or
10(a;+ay)+15a;,—7<0, and &—1>0.

When 106, +a,)—5a;,—3>0 and 5;—1<0 (Fig. 7,
area 4, the transition functionF has five fixed pointsp
=0, p=0.5, andp=1 are stablep=py, andp=1—p, are
unstablg Fig. 8@)]. The area of stability corresponds to ini-
tial densities of defects®p<p,, densities of defectp(l)
tend to zero, when levdl grows [Fig. 8b), curve 1. The
area of stable scale invariand€0OQ corresponds tgg
<p(1)<1-py and densities of defects(l) tend to 0.5,
when levell grows[Fig. 8b), curves 2,3 The area of ca-
tastrophe corresponds to-Ipo<p(1)<1, densities of de-
fects tend to I Fig. 8(b), curve 4. The unstable scale invari-
ance is realized fop(1)=py andp(1)=1—pg. Thus, when
the initial densityp(1) increases, the system passes all pos
sible kinds of behavior.

B. Scale invariance: phase transition SOC-SOC

A nontrivial case of scale invariant behavior may be ob-
tained in the same model, when #Q¢a,)+15a;—7<0
and 5a;—1>0 [Fig. 7, area 3 The transition function has
five fixed points[Fig. 8(c)]: two stable p=py and p=1

ever, this is not trivial stable scale invariance, because den-
sities of defectp(l) tend to two stable limits, depending on
initial densityp(1) [Fig. 8(d)].

VIII. INVARIANT SCALING

Let us consider a specific case, when all concentrations of
the mixturea, are equala,=1/n. After the substitution of
a, into Eq. (3), we obtain the transition functioh:

F(p)=p. (27)

Thus, it follows from Eq.(1) that densities of defectg(l)

are equal to one another for all leveisp(l)=p(1), which
means the scale invariance exists for all values of initial den-
sity p(1), no special scale may be distinguished. The
magnitude-frequency relation is always linear with a slope
equal to unity, but this is not appropriate to any special con-
centration of destruction at the highest level of the system.
The system does not reach any special critical state, but it is
critical in any state. This kind of behavior is referred to as
the invariant scaling.

It seems that invariant scaling is a degenerated case of
system behavior; only one point in the space of parameters
a, exactly corresponds to the invariant scaling. However,
when parameterg, are not very far from this point the value
F(p) is close top for all p [Fig. Ya)]. Therefore conver-
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gence of densitiep(l) to limits p; is very slow and for a essary to involve nonmonotone rules of destruction in order
restricted number of levels it is hardly obsenj&ilg. 9b)].  to obtain stable critical behavid6]. So, for the homoge-

In fact, the deviation between concentrations of the mixturgneous monotone model, criticality is a degenerated behavior,
a, and 1h may be quite significanta;=as=0.22a,=a, and general behavior is noncritical.

=0.12 forn=5 (Fig. 9. So, the density of defects(l) The behavior of the system became critical when a het-

conserves its valup(l) for several levels of the system that erogeneity of destruction is assumed. It was shown that the
make this kind of behavior quite general. magnitude frequency is always linear in a log/log plot, when
the relevant parameter of the mixture is nonzero. Thus, for

IX. DISCUSSION AND CONCLUSIONS the heterogeneous system the critical behavior is a general

case and noncritical behavior is a degenerated case. For the

We have suggested a model where the heterogeneity dthosphere of the Earth, for example, it is rather natural to
destruction is governed by concentration of the mixture ofassume heterogeneous rules of destruction instead of homo-
different rules. This formalism may be applied both when thegeneous ones, therefore the power-law form of the
system contains elements of different strength, or when th&utenberg-Richter law for earthquakes is more natural than
stress field is heterogeneous and therefore different densiti¢ise exponential one. This is the simplest explanation of the
of fractures of smaller scales are necessary to build a fractu@utenberg-Richter law, although it is very abstract.
of the next range. Although the model is rather abstract and We may distinguish three kinds of criticality in the behav-
does not reflect particular features of any concrete system, ibr of the system: general self-similarity, which is character-
may be considered as a good illustration of the statisticaized by a linear magnitude-frequency relation with various
properties of a wide class of multiscale systems, such as, f@lopes; scale invariance, which is associated with equal prob-
example, the fracturing of samples or earthquakes. abilities of defects at all ranges of the system and unity slope

The simple hierarchical model considered above showsf the magnitude-frequency relation; and invariant scaling,
how scaling properties of the system may be related with thevhen the system does not reach any special critical state, but
heterogeneity of conditions of destruction. In the homoge-all states of the system are critical. These three cases are also
neous case this system demonstrates critical behavior only ielated with different order of heterogeneity involved in the
the unstable critical point of phase transitidrl]; it is nec-  system. The general self-similarity exists for any nonzero

(a) (b)
1 1
0.8 0.8l 4 FIG. 9. Invariant scaling for a restricted num-
FI— ber of levels.(a) Transition function forn=5,
,>.<\0-6 08 a;=a;=0.22, a,=a,=0.12 (not rescalef is
frg a close to the diagonddashedl line. (b) Densities
04 04 R of defects for first 20 levels slightly change their
02 0.2f | initial value: 1, p(1)=0.1; 2, p(1)=0.4; 3,
—_— ] p(1)=0.6; 4,p(1)=0.9.
0 0
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