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Exact solution of a Z„4… gauge Potts model on planar lattices

N. S. Ananikian and R. G. Ghulghazaryan
Department of Theoretical Physics, Yerevan Physics Institute, Alikhanian Brothers 2, 375036 Yerevan, Armenia

N. Sh. Izmailian*
Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

R. Shcherbakov*
Department of Geological Sciences, Snee Hall, Cornell University, Ithaca, New York 14853

~Received 3 March 1999!

The exact solution of a general Z~4! gauge Potts model with a single and double plaquette representation of
the action is found on a subspace of gauge-coupling parameters on the square and triangular lattices. The two
Ising-type critical lines of a second-order phase transition for the model on a square lattice are found. For the
model on a triangular lattice the two critical surfaces of an Ising-type and two nontrivial lines of a second-order
phase transition with different critical behavior than on the critical surfaces are found. It is shown that a
two-dimensional~2D! general Z~4! gauge Potts model with single and double plaquette representation of the
action and a 2D spin-3

2 Ising model belong to the same universality class.@S1063-651X~99!03910-0#

PACS number~s!: 05.50.1q, 64.60.Fr
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I. INTRODUCTION

Confinement-deconfinement phase transition in ga
theory is one of the challenging problems in modern phys
Lattice-gauge theory is a gauge-invariant nonperturba
tool of regularization of gauge action to avoid the ultravio
divergence in the theory. Although this regularization pro
dure is not unique, different ways of defining gauge theor
on the lattice should lead to the same physics in each
when the continuum limit of vanishing lattice spacing
taken. From a theoretical point of view, investigations w
different lattice actions will enable a deeper understanding
the physics of confinement and other related problems
QCD. The first lattice-gauge model with a single plaque
representation of the action has been introduced by Wils

S52b(
p

ReUp ,

whereUp denotes the usual plaquette variable, the produc
link gauge fields around a plaquette@1#. It was expected tha
non-Abelian gauge theories, in general, do not have
phase transitions separating strong- and weak-coupling
gimes. Therefore, confinement, explicitly shown on the l
tice in the strong-coupling region, should persist also in
continuum limit. Later, Bhanot and Creutz@2# extended the
form of the Wilson action by adding an adjoint couplin
term. Using Monte Carlo simulations it was shown that co
finement could survive even through the phase diagram
the mixed action and the so-called bulk~volume! phase tran-
sitions separating strong- and weak-coupling regions e
@3,4#.

*On leave from Department of Theoretical Physics, Yerev
Physics Institute, Armenia.
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The choice of action is still far from unique. Recentl
several improved actions have been proposed as a wa
reducing scaling violation in the approach to the continu
limit from a lattice action. Among them the Symanzik-Wie
action constructed from a combination of (131) and (1
32) Wilson loops, the Bhanot-Creutz action@2#, the
tadpole-improved actions@5#, and theq-state gauge Potts
model with a single and double plaquette form of action@6#.

The Monte Carlo analysis of theq-state Potts model with
a single and double plaquette form of action@6# showed that
for d53, q52, first- and second-order transition lines; a
for d52, q53,4, the second-order; and forq55, first-order
transitions are existed, which is in good agreement with
analytical results ford52.

The lattice-gauge models with double plaquette inter
tion terms in the action were proposed and studied in th
dimensions and four dimensions by Edgar@7# and Bhanot
et al. @8#. Turban investigated the two-dimensional~2D!
gauge model with the global Z~2! symmetry on a rectangula
lattice @9#. He reduced it to the usual spin-1

2 Ising model on
a square lattice and obtained a point of a second-order p
transition. The Z~3! gauge model on the flat triangular an
square lattices with double plaquette representation of
action was investigated by Ananikian and Shcherbakov@10#.
It was reduced to the spin-1 Blume-Emery-Griffiths~BEG!
model @11# and an Ising-type critical line of a second-ord
phase transition was found on a subspace of the interac
constants@12#.

The fact that lattice-gauge theories could be mapped
the classical spin systems is well known. For example, W
czek and Rajagopal@13# showed that in QCD with two fla-
vors of massless quarks, the chiral phase transition is in
same universality class as the classical O~4! Heisenberg an-
tiferromagnet and they also established a dictionary betw
QCD and the magnetic system~see also Ref.@14#!. Okawa
@15#, using Monte Carlo renormalization-group method

n
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showed that a (311)-dimensional SU~2! lattice-gauge
theory and a three-dimensional Ising model belong to
same universality class.

In this paper we consider the generalized Z~4! gauge Potts
model with a single and double plaquette representation
the action on the square and triangular lattices. We found
exact analytical solution of this model on a subspace
gauge-coupling parameters. Using duality transformat
@16# and exact results for the spin-3

2 Ising model on the
square and honeycomb lattices@17,18#, we investigated the
critical properties of the gauge theory. We showed tha
two-dimensional generalized Z(4) gauge Potts model w
single and double plaquette representation of the action a
two-dimensional spin-32 Ising model belong to the same un
versality class.

The paper is organized as follows. In Sec. II we define
model under consideration and present obtained results.
tion III contains some concluding remarks.

II. THE Z „4… GAUGE POTTS MODEL

The most general form of the Z~4! gauge Potts model with
a single and double plaquette representation of the actio
defined through the action

SGauge52 (
^pi pj &

(
y,z

b̃yz dUpi
,y dUpj

,z2(
pi

(
z

b̃z dUpi
,z ,

~1!

where the outer summation in the first term runs over
nearest-neighbor plaquettes and in the second one is ov
plaquettes of the lattice. The indexesy and z of the inner
summations run over the group Z~4!. TheUp5)bP]pUb de-
notes the ordered product of link gauge fieldsUb’s around an
elementary plaquette. Each link variableUb takes the value
exp(ikp/2)PZ(4), k50,1,2,3.d is the standard Kronecke
symbol andb̃yz ,b̃z , y,zPZ(4) are coupling parameters.

From the obvious identity for the Kronecker symbols

dUpi
,11dUpi

,z1
1dUpi

,z2
1dUpi

,z3
51,

wherezkPZ(4), k51,2,3, and an assumption that the co
pling parameters are symmetric under the transposition
the indexesy andz, we can reduce the number of indepe
dent coupling parameters and rewrite gauge action~1! in the
following form:

SGauge52 (
^pi pj &

@b11dUpi
,1dUpj

,11b22dUpi
,z1

dUpj
,z1

1b33dUpi
,z2

dUpj
,z2

1b12~dUpi
,1dUpj

,z1

1dUpi
,z1

dUpj
,1!1b13~dUpi

,1dUpj
,z2

1dUpi
,z2

dUpj
,1!

1b23~dUpi
,z1

dUpj
,z2

1dUpi
,z2

dUpj
,z1

!#

1(
pi

~b1dUpi
,11b2dUpi

,z1
1b3dUpi

,z2
!. ~2!
e
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The partition function for this gauge model is defined as
sum of Boltzmann weights exp(SGauge) over all configura-
tions of the gauge variables$U%,

ZGauge5(
$U%

exp@2SGauge#. ~3!

To establish the connection between this gauge model
the spin-32 Ising model, we introduce spin variablesSi in the
sites of the dual lattice such that

Si5
1
2 ~dUpi

,z0
2dUpi

,z1
!1 3

2 ~dUpi
,z2

2dUpi
,z3

!,

Si
25 1

4 ~dUpi
,z0

1dUpi
,z1

!1 9
4 ~dUpi

,z2
1dUpi

,z3
!, ~4!

Si
35 1

8 ~dUpi
,z0

2dUpi
,z1

!1 27
8 ~dUpi

,z2
2dUpi

,z3
!.

Using this substitution, we can rewrite gauge action~2! in
terms of new spin variables

SSpin52(̂
i j &

FJ SiSj1K Si
2Sj

21L Si
3Sj

31
M

2
~SiSj

31Si
3Sj !

1
M1

2
~SiSj

21Si
2Sj !1

M2

2
~Si

2Sj
31Si

3Sj
2!G

2(
i

~hSi2DSi
21h3Si

3!, ~5!

where constantsJ, K, L, M, M1 , M2 , h, D, andh3 are linear
combinations of the original gauge-coupling parameters:

J5 81
64 b112

81
32 b122

3
32 b131

81
64 b221

3
32 b231

1
576b33,

K5 1
16 b111

1
8 b122

1
8 b131

1
16 b222

1
8 b231

1
16 b33,

L5 1
4 b112

1
2 b122

1
6 b131

1
4 b221

1
6 b231

1
36 b33,

M52 9
8 b111

9
4 b121

5
12 b132

9
8 b222

5
12 b232

1
72 b33,

M152 9
16 b111

7
12 b131

9
16 b222

13
24 b232

1
48 b33,

M25 1
4 b112

1
3 b132

1
4 b221

1
6 b231

1
12 b33,

h5g~ 81
128b112

3
32 b132

81
128b221

3
64 b231

1
384b33!1 9

8 b12 9
8 b2

2 1
24 b3 ,

D5g~ 9
64 b111

9
32 b122

5
32 b131

9
64 b222

5
32 b231

1
64 b33!1 1

4 b1

1 1
4 b22 1

4 b3 ,

h35g~2 9
32 b111

1
8 b131

9
32 b221

1
16 b232

1
96 b33!2 1

2 b11 1
2 b2

1 1
6 b3 ,

whereg is the coordination number of the dual lattice. A
tion ~5! coincides with the Hamiltonian multiplied by 1/kBT
of the spin-32 Ising model@17,18#. Thus, the partition func-
tion of generalized gauge Potts model~3! is equal up to the
factor to the partition function of the spin-3

2 Ising model
defined on the dual lattice
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ZGauge54a(g)NZSpin
Dual , ~6!

where

ZSpin
Dual5(

$S%
exp@2SSpin#,

anda(g) is a constant that depends on the coordination nu
ber of the lattice,a51 for the square lattice, anda5 1

2 for
the honeycomb one respectively.

A factor 4a(g)N has been included in Eq.~6! to take into
account the difference between the number of gauge$U% and
spin $S% configurations. To obtain the phase structure of t
gauge model we will restrict ourselves to the spin-3

2 Ising
model on the square and honeycomb lattices. For coi
dence with the spin-3

2 Ising model the coefficientsh, h3 , M1,
andM2 will be set to zero. Thus, we can express the para
eters of the spin-32 model through the rest of the gauge co
plings as follows:

J5 337
288b112

81
32 b121

1
288b131

49
36 b22,

K5 1
8 b111

1
8 b122

1
8 b13,

L5 1
18 b112

1
2 b121

1
18 b131

4
9 b22,

M52 25
36 b111

9
4 b122

1
36 b132

14
9 b22,

D5g~ 9
32 b111

9
32 b122

1
32 b13!1 1

2 b1 .

The general spin-3
2 Ising model on a honeycomb lattic

was investigated by Izmailian and Ananikian@18#. The
model is described by the Hamiltonian

2bH5(̂
i j &

FJSiSj1KSi
2Sj

21LSi
3Sj

31
M

2
~SiSj

31Si
3Sj !G

2D(
i

Si
2 ,
-

s

i-

-

whereb51/kBT, Si56 1
2 , 6 3

2 is the spin variable at sitei,
and ^ i j & indicates the summation over all nearest-neigh
pairs of sites. Under the conditions

tanh2~J1!5tanh~J2!tanh~J0!,

exp~24K !5cosh~J22J0!, ~7!

that in terms of gauge-coupling parameters are

J05 1
4 b112

1
2 b121

1
4 b22,

J15 1
4 b112

1
4 b22, ~8!

J252 1
4 b111

1
2 b131

1
4 b22,

the model transforms to the spin-1
2 Ising model on the same

lattice. The free energy and critical point for the spin-1
2 Ising

model on the honeycomb lattice in the limit of an infini
lattice are well known@19#. Thus, using this result one ca
obtain the important thermodynamic properties of the spin3

2

Ising model with Z~2! symmetry@17#. After substitution ofJ,
K, andL from Eq. ~8! into Eq. ~7! we obtain the subspace i
which the corresponding spin-3

2 Ising model can be solved
exactly,

22exp~b12!2exp~b112b13!50,

cosh 1
2 ~b112b22!cosh 1

2 ~b112b132b12!

5cosh 1
2 ~b221b132b12!. ~9!

Then, using the exact solution@18#, we obtain thel surface
of an Ising-type transition~logarithmic specific heat singu
larity! for our Z(4) gauge model
tanh1
4 ~b2222b121b11!1tanh1

4 ~b2212b132b11!exp~22D0!

11exp~22D0!
5

1

A3
, ~10!
e

where

D05 3
32 ~9b1119b122b13!1 1

2 b123R,

exp~24R!5
cosh1

4 ~b2222b121b11!

cosh1
4 ~b2212b132b11!

3cosh5/4 1
2 ~b121b132b11!,

in the space spanned byb12, b13, andb1. It is easy to see
that thel surface of the critical points in Eq.~10! is defined
only in the two regions of the (b12,b13) plane,
~i! 0<tanh1
4(b2222b121b11)<1/A3 and 1/A3

<tanh1
4(b2212b132b11)<1,

~ii ! 0<tanh1
4(b2212b132b11)<1/A3 and 1/A3

<tanh1
4(b2222b121b11)<1.

For each set ofb12 and b13, Eq. ~10! determines the
unique value ofD, except for the intersecting point of th
two regions~i! and~ii ! for which b1 is an arbitrary. Thus, the
l surface in Eq.~10! contains two nontriviall lines of criti-
cal points given by

~a! b115b1352 ln(21A3), b125b2250, b1-arbitrary,
~b! b115b125b1350, b2252 ln(21A3), b1-arbitrary.
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As shown in@18# the model exhibits a critical behavio
different from the critical behavior elsewhere on thel sur-
face. The phase transition is not marked with the logarithm
divergence of the derivative of the order parameterP, where
P is the quadrupolar moment defined as

P5
1

N (
i

N

^Si
2&5Z21(

$S%
Si

2 exp~2bH !.

This phase transition is associated with the logarithmic
vergence in the specific heat.

The area in the plane of coupling parameters exp(b12) and
exp(b13), where thel surface exists is shown in Fig. 1. I
the Appendix it is proved that this area is connected a
there is no phase transition forT→` andT→0. Hence, for
all possible values of the coupling parameters there is o
one finite critical value of the external field for which th
phase transition is of the second-order, except points~a! and
~b! in the above equation.

The spin-32 Ising model with Z(2) symmetry was invest
gated on a square lattice by Izmailian@17#. It was shown that
this model is reducible to an eight-vertex model on a surf
in the parameter space spanned by the coupling constanJ,
K, L, andM. It was also shown that this model is equivale
to an exactly solvable free fermion model along two lines
the parameter space. The twol lines of a second-order phas
transition was found exactly in this model.

In terms of our gauge theory, thesel lines have the fol-
lowing form:

~c! b115b125b1350, b2252 ln(11A2), b1-arbitrary,
~d! b115b1352 ln(11A2), b125b2250, b1-arbitrary.
On thesel lines our gauge theory exhibits an Ising-typ

second-order phase transition~logarithmic specific-heat sin
gularity!.

FIG. 1. The area in the plane of the coupling parameters expb12

and expb13 where the criticall surface exists, i.e., conditions~9!
and~i! or ~ii ! are satisfied. Points A and B correspond to projectio
of two nontrivial l lines of ~a! critical points and~b! for which b1

is arbitrary.
ic

i-

d

ly

e

t

Thus, we showed that there exists an area~lines for square
lattice! where the 2D generalized Z(4) Potts gauge mo
mapped to the corresponding 2D spin-3

2 Ising model. Hence,
because of universality of critical indexes it follows th
these two models have the same critical indexes and be
to the same universality class.

III. CONCLUDING REMARKS

In summary, we have found an exact analytical solut
of the Z(4) gauge-lattice model with a single and doub
plaquette representation of the action by mapping it to
dual spin-32 Ising model with Z(2) symmetry. For the mode
on the square lattice we found thel lines of the second-orde
phase transition with logarithmic specific-heat singulari
For the model on the triangular lattice we derived the twol
surfaces of a second-order phase transition with a u
Ising-type singularity of the order parameter and two no
trivial l lines of critical points on which our model exhibit
the critical behavior unlike critical behavior elsewhere on t
l surfaces. We demonstrated that the 2D general Potts g
model belongs to the same universality class as the 2D s
3
2 Ising model.
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APPENDIX

Here we present the analytic investigation of thel surface
in the plane of the coupling parameters exp(b12) and
exp(b13) for triangular lattice. Let us make the followin
denotationsx5exp(b12), y115exp(b13), and z5exp(b22).
After elimination of b11 from Eq. ~9! one obtains the first-
order polynomial forz,

z~122y1xy!1~22x!~y2x!50. ~A1!

In terms of the variablesx, y, andz the conditions~i! and~ii !
take the following form:

~Ai ! 1<zy~22x!/x2<c2,

and zy/~22x!>c2,

~Aii ! 1<zy/~22x!>c2

and zy~22x!/x2>c2,

wherec521A3. From~Ai ! and~Aii ! it is easy to show that
x,2 for any values ofz andy. Taking into account that for
T→0, x, y, z can take only values$0,1,̀ % and for T→` x
5y5z51, one can show that neither A~i! nor A~ii ! are sat-
isfied, hence there is no phase transition forT→0 and T
→`. Using this fact one can construct the area in the pla
of coupling parameters exp(b12) and exp(b13) in which Eq.
~A1! and one of the conditions~Ai ! or ~Aii ! are satisfied.
This area is shown in Fig. 1.
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