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Exact solution of a Z(4) gauge Potts model on planar lattices
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The exact solution of a general4d gauge Potts model with a single and double plaquette representation of
the action is found on a subspace of gauge-coupling parameters on the square and triangular lattices. The two
Ising-type critical lines of a second-order phase transition for the model on a square lattice are found. For the
model on a triangular lattice the two critical surfaces of an Ising-type and two nontrivial lines of a second-order
phase transition with different critical behavior than on the critical surfaces are found. It is shown that a
two-dimensional2D) general Z4) gauge Potts model with single and double plaquette representation of the
action and a 2D spié— Ising model belong to the same universality cld§1063-651X99)03910-0

PACS numbds): 05.50:+q, 64.60.Fr

[. INTRODUCTION The choice of action is still far from unique. Recently,
several improved actions have been proposed as a way of
Confinement-deconfinement phase transition in gaugeeducing scaling violation in the approach to the continuum
theory is one of the challenging problems in modern physicslimit from a lattice action. Among them the Symanzik-Wiesz
Lattice-gauge theory is a gauge-invariant nonperturbativgction constructed from a combination of X1) and (1
tool of regularization of gauge action to avoid the ultraviolet x 2) Wwilson loops, the Bhanot-Creutz actiof2], the
divergence in the theory. Although this regularization proceadpole-improved actionf5], and theg-state gauge Potts
dure is not unique, different ways of defining gauge theories,ggel with a single and double plaquette form of acfiéh
on the lattice should lead to the same physics in each case The Monte Carlo analysis of thestate Potts model with

when the continuum _Iimit Of vanis_hing _Iatticg sp_acing _is a single and double plaquette form of act{@} showed that
taken. From a theoretical point of view, investigations Wlthi

i . . . . or d=3, q=2, first- and second-order transition lines; and
different lattice actions will enable a deeper understanding o _ _ i ,
) . for d=2, q=3,4, the second-order; and fq=5, first-order
the physics of confinement and other related problems in

QCD. The first lattice-gauge model with a single plaquettetranSitionS are existed, which is in good agreement with the

representation of the action has been introduced by Wilson",’m"’lIytICaI r_eSUItS fod=2. ) _
The lattice-gauge models with double plaquette interac-
tion terms in the action were proposed and studied in three
s=-8> ReU,, dimensions and four dimensions by Edd&i and Bhanot
p et al. [8]. Turban investigated the two-dimension&D)
gauge model with the global(Z) symmetry on a rectangular

whereU , denotes the usual plaquette variable, the product diettice [9]. He reduced it to the usual spinising model on
link gauge fields around a plaquefts. It was expected that & square lattice and obtained a point of a secqnd—order phase
non-Abelian gauge theories’ in generaL do not have anyansmon. The B) gauge model on the flat tnangular and
phase transitions separating strong- and weak-coupling r&quare lattices with double plaquette representation of the
gimes. Therefore, confinement, explicitly shown on the lat-action was investigated by Ananikian and ShcherbdHoy.
tice in the strong-coupling region, should persist also in thdt was reduced to the spin-1 Blume-Emery-GriffittBEG)
continuum limit. Later, Bhanot and Creufi2] extended the model[11] and an Ising-type critical line of a second-order
form of the Wilson action by adding an adjoint coupling phase transition was found on a subspace of the interaction
term. Using Monte Carlo simulations it was shown that con-constantg12].
finement could survive even through the phase diagram of The fact that lattice-gauge theories could be mapped to
the mixed action and the so-called b@liolume phase tran-  the classical spin systems is well known. For example, Wil-
sitions separating strong- and weak-coupling regions existzek and Rajagopall3] showed that in QCD with two fla-
[3,4]. vors of massless quarks, the chiral phase transition is in the
same universality class as the classicéd)Heisenberg an-
tiferromagnet and they also established a dictionary between
*On leave from Department of Theoretical Physics, YerevanQCD and the magnetic systefsee also Refl14]). Okawa
Physics Institute, Armenia. [15], using Monte Carlo renormalization-group methods,
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showed that a (31)-dimensional S(2) lattice-gauge The partition function for this gauge model is defined as a
theory and a three-dimensional Ising model belong to thesum of Boltzmann weights exffa,qd over all configura-

same universality class. tions of the gauge variabld&J},
In this paper we consider the generalize¢d)Zjauge Potts
model with a single and double plaquette representation of
9 plad P ZGauge_E qu_SGauge] ©)

the action on the square and triangular lattices. We found an

exact analytical solution of this model on a subspace of

gauge-coupling parameters. Using duality transformationo establlsh the connection between this gauge model and
[16] and exact results for the spih-lsing model on the the spin3 Ising model, we introduce spin variabl8sin the
square and honeycomb latticEs7,18, we investigated the sites of the dual lattice such that

critical properties of the gauge theory. We showed that a

_1 _ 3 _
two-dimensional generalized Z(4) gauge Potts model with Si= 2(5Upi’20 5Upi’21)+ 2(5Up"22 5Upi'23)'
single and double plaquette representation of the action and a
two-dimensional spirg- Ising model belong to the same uni- SP=1( 8y, .2yt Bu, 7))+ ?—1(5Upv122+ 8y, .2,): (4)
versality class. ' ' ' '
The paper is organized as follows. In Sec. Il we define the Sis: L8y 5 — b, 21)+ 205, =By 1)

model under consideration and present obtained results. Sec-

tion If contains some concluding remarks. Using this substitution, we can rewrite gauge acti@hin

terms of new spin variables
Il. THE Z (4) GAUGE POTTS MODEL

The most general form of the(@ gauge Potts model with ~ Sspin= — E JSS+KSS+L 33534” (SS/+S°s)
a single and double plaquette representation of the action is i

defined through the action M,
ss%g )+ (S ’S +S’S?)

S d
Scauge™ <;J> yEZ Byz Up y 2 2 B Up, _Z (h§—AS?+h;SY), 6)

(1)

where constant§, K, L, M, M, M,, h, A, andhj are linear

where the outer summation in the first term runs over aII ?mblnatlons of the original gauge-coupling parameters:
nearest-neighbor plaquettes and in the second one is over al

plaquettes of the lattice. The indexgsand z of the inner J=8B11— L B1y— 2 Bt L Bort S Bost s5cBas

summations run over the groug4d. TheU =1l ;.U de-

notes the ordered product of link gauge fieltiss around an K=2B11+ 5 B1o— 5 B1at i Boo— 5 Bost 15 Bz,

elementary plaquette. Each link varialilg takes the value

expikn/2) e Z(4), k=0,1,2,3. 5 is the standard Kronecker L=3%B11—3B1o— § Bis+ 1 Bost £ Boat 35 B33

symbol andB,,,B,, y.zeZ(4) are coupling parameters. . . . . ] .
From the obvious identity for the Kronecker symbols M=—gBut+zB12t 1313~ 8 B22— 13823~ 72833,

1, M= — 5 B1t 12813t 16822~ 23 Boz— 73 Bas»

5Upi’1+ 5Upi'zl+ 5Upi'22+ (5Upi'23:

Mo=7B11—3B13— 1 Boot § Bost 13 Bas.
wherez e Z(4),k=1,2,3, and an assumption that the cou-
pling parameters are symmetric under the transposition o= (125811~ 32813~ 128B22F 83 B2st 353 B39 + 5 B1— 5 B2
the indexesy andz, we can reduce the number of indepen-
dent coupling parameters and rewrite gauge adtlgrn the ~2Ps,

following form: . . s . . L L
A=1y(52B11t+ 32812~ 33813+ 83 B22— 33823+ 53 B33 T 1681

+4lﬁ2_%ﬁ31
Scauge™ <pEp>[,3115u 10y, 1+,3225u z15u
F)
hs= (= 33811+ 8 B1at 33 B2ot 16825~ 96839 — 3 B1+ 2 B2
+,3335upi,zzﬁupj,zpL B 5upi,15upj,zl 11,

+ 6 ) + I O + 4 O . . .
Upr2a Upj'l) ST Up 22 " “Upi2 Upj'l) where y is the coordination number of the dual lattice. Ac-

tion (5) coincides with the Hamiltonian multiplied by KdT

of the spin3 Ising model[17,18. Thus, the partition func-

tion of generalized gauge Potts mod8) is equal up to the

+2 (B16y 17+ B2dy 5.+ B3bdy 2. 2) factor to the partition function of the spi-Ising model
b P Pt pir2 defined on the dual lattice

+ Baal 5Upi,215Upj,zz+ 5up‘,zz5upj,zl)]
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Zoauge= 4a(7)Nzgg?n|, (6) wheref=1kgT, S== 1, =3 is the spin variable at sitie
and(ij) indicates the summation over all nearest-neighbor
where pairs of sites. Under the conditions
Dual _ —
Z3pin= 2y XL~ Sspir, tanif(J;) =tanh(J)tank(Jo),
anda(vy) is a constant that depends on the coordination num- exp( — 4K)=cosiJ,— Jy), (7)

ber of the latticea=1 for the square lattice, anal= 3 for
the honeycomb one respectively.

A factor 4N has been included in E@6) to take into
account the difference between the number of gdujend
spin{S} configurations. To obtain the phase structure of this Jo=13B11—3B1o+ 3 B2,
gauge model we will restrict ourselves to the spirsing
model on the square and honeycomb lattices. For coinci-

that in terms of gauge-coupling parameters are

=1lg 1
dence with the spig-Ising model the coefficients, h;, M, Ji1=aBu—iBz; ®)
andM, will be set to zero. Thus, we can express the param-
eters of the spirg- model through the rest of the gauge cou- Jo=— 1B+ 3 B1st 1 Boss

plings as follows:

the model transforms to the spinising model on the same
lattice. The free energy and critical point for the spising
model on the honeycomb lattice in the limit of an infinite

w

__ 337 81 1 49
J=388B11~ 32 B12T 288 P131 36 B22s

00!

K=35B1u+ 5812~ 5813, lattice are well knowr{19]. Thus, using this result one can
obtain the important thermodynamic properties of the $pin-
L=145B11—3B12+ 15 B13+ § Bz, Ising model with Z2) symmetry{17]. After substitution ofJ,
K, andL from Eq.(8) into Eq.(7) we obtain the subspace in
M=—2811+ 281~ 35 B13— 5 Baos which the corresponding spi-Ising model can be solved
exactly,

A=y(35B11+ 35812~ 3:B12) + 3 B1.

The general spig- Ising model on a honeycomb lattice
was investigated by Izmailian and Ananikigi8]. The
model is described by the Hamiltonian cosh3(B11— B22)cosh3(B11— Biz— B1o)

2—exp(B12) —exp( 11— B13) =0,

= 1 _
_I3H:<izj> JSSj+KSiZSj2+LS?SI‘3+%(SiS?+S?SJ) coshz (B2t B13— B12)- 9

Then, using the exact solutid 8], we obtain thex surface

—AE <2 of an Ising-type transitiorflogarithmic specific heat singu-
T larity) for our Z(4) gauge model

tanhz (Bao— 2B12+ B1y) +tanhz (Bao+ 2813~ Br)exp —2A¢) _ 1

1+exp —2A,) Nek (10
|
where (i) O<tanhi(Byp—2B1,+B1)<1N3 and 143
Ao=35(9B11+9B1,— B1d) + 381~ 3R, <tanh3(Bzt+ 2815~ 1) =<1,
(i) O<tanhi(B+2B13— B1)<13 and 143
4R)— coshz (B2~ 2B12+ B11) <tanh#(B,— 2B1,+ B1)=<1.
exp( )= hi +28a— For each set of3;, and B13, EQ. (10) determines the
coshz (B2t 2813~ F11) . . . .
unique value ofA, except for the intersecting point of the
X cos* 3(Byo+ Bra— B11), two regions(i) and(ii) for which B is an arbitrary. Thus, the

\ surface in Eq(10) contains two nontriviak lines of criti-
in the space spanned I84,, 813, andB;. It is easy to see cal points given by
that the\ surface of the critical points in Eq10) is defined (@ B11=B13=2 In(2+/3), B1,= B,=0, B;-arbitrary,
only in the two regions of thef4,,813) plane, (b) B11=B12=B13=0, Bro=2 In(2+/3), B;-arbitrary.
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Thus, we showed that there exists an diees for square
lattice) where the 2D generalized Z(4) Potts gauge model
mapped to the corresponding 2D sginsing model. Hence,
because of universality of critical indexes it follows that
these two models have the same critical indexes and belong
to the same universality class.

A\
A\
A\

40

Ill. CONCLUDING REMARKS

In summary, we have found an exact analytical solution
of the Z(4) gauge-lattice model with a single and double
plaguette representation of the action by mapping it to the
dual spin3 Ising model with Z(2) symmetry. For the model
on the square lattice we found thdines of the second-order
phase transition with logarithmic specific-heat singularity.
For the model on the triangular lattice we derived the two
N surfaces of a second-order phase transition with a usual
0 1 2 Ising-type singularity of the order parameter and two non-

exp(B,;) trivial )\ lines of c_rmcal .pomt_s_on which our model exhibits
the critical behavior unlike critical behavior elsewhere on the

FIG. 1. The area in the plane of the coupling parametersgxp \ surfaces. We demonstrated that the 2D general Potts gauge
and expB;s Where the critical surface exists, i.e., conditio8) ~ model belongs to the same universality class as the 2D spin-
and(i) or (ii) are satisfied. Points A and B correspond to projections% Ising model.
of two nontrivial \ lines of (a) critical points andb) for which 8,
is arbitrary. ACKNOWLEDGMENTS
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As shown in[18] the model exhibits a critical behavior
different from the critical behavior elsewhere on thesur-
face. The phase transition is not marked with the logarithmi
divergence of the derivative of the order paramé&tewhere
P is the quadrupolar moment defined as

APPENDIX

1 . 2 -1 2
P=X > (SH=z ES: S’ exp(— BH). Here we present the analytic investigation of thsurface
' S in the plane of the coupling parameters ep] and
exp(Big) for triangular lattice. Let us make the following
This phase transition is associated with the logarithmic digenotationsx=exp(81,), Y11=exp(Bia), and z=exp(B.,).

vergence in the specific heat. After elimination of 3;; from Eq. (9) one obtains the first-
The area in the plane of coupling parameters gxp(and  order polynomial forz,

exp(Bi3), where then surface exists is shown in Fig. 1. In

the Appendix it is proved that this area is connected and Z(1-2y+xy)+(2—x)(y—x)=0. (A1)

there is no phase transition fér—~ andT—0. Hence, for i o .

all possible values of the coupling parameters there is only? terms of the variables, y, andz the conditiong(i) andii)

one finite critical value of the external field for which the take the following form:

phase transition is of the second-order, except pdatand . 2 _ o

(b) in the above equation. (Al) 1=zy(2=x)/x"<c%,
The spin3 Ising model with Z(2) symmetry was investi-

: ~/ d zy/(2—x)=c?,
gated on a square lattice by Izmailigk¥/]. It was shown that and zyl(2=x)=c

this model is reducible to an eight-vertex model on a surface (Ail) 1=<zyl(2—x)=c?
in the parameter space spanned by the coupling consiants
K, L, andM. It was also shown that this model is equivalent and  zy(2—x)/x?=c?,

to an exactly solvable free fermion model along two lines in
the parameter space. The twdines of a second-order phase wherec=2+ /3. From(Ai) and(Aii) it is easy to show that

transition was found exactly in this model. x<2 for any values of andy. Taking into account that for

In terms of our gauge theory, theselines have the fol- T—0, x, y, z can take only value$d,1} and forT—o x
lowing form: =y=2z=1, one can show that neitheriAnor A(ii) are sat-

(©) B11=B12=PB13=0, Bro=2In(1+/2), B;-arbitrary, isfied, hence there is no phase transition Tor:0 and T

(d) B11=B13=2 IN(1+2), B1o=B»,=0, PB-arbitrary. —o0, Using this fact one can construct the area in the plane

On these lines our gauge theory exhibits an Ising-type of coupling parameters exg{,) and expf3;3) in which Eq.
second-order phase transitidogarithmic specific-heat sin- (A1) and one of the condition§Ai) or (Aii) are satisfied.
gularity). This area is shown in Fig. 1.
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