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We analyze the properties of a 19-dimensional Galerkin approximation to a parallel shear flow. The laminar
flow with a sinusoidal shape is stable for all Reynolds numbers Re. For sufficiently large Re additional
stationary flows occur; they are all unstable. The lifetimes of finite amplitude perturbations shows a fractal
dependence on amplitude and Reynolds number. These findings are in accord with observations on plane
Couette flow and suggest a universality of this transition scenario in shear fBM#63-651X99)02907-4

PACS numbes): 47.20.Ft, 47.20.Ky, 47.15.Fe, 05.43

I. INTRODUCTION ably, this attractor would be built around stationary or peri-
odic solution. Here, the observation of tertiary structures

In many flows the transition to turbulence proceeds via §12—15 comes in since they could form the basis for the
sequence of bifurcations to flows of ever increasing spatiaturbulent state. Finally, the observation of fractality in the
and temporal complexity. Analytical and experimental ef-lifetime distribution suggests that the turbulent state is not an
forts, in particular, on layers of fluid heated from belfily2]  attractor but rather a repeller: Infinite lifetimes occur only
and fluids between rotating concentric cylindg2s3] have  along the stable manifolds of the repeller, all other initial
lead to the identification and verification of several routes toconditions will eventually decay. Permanent turbulence
turbulence that typically involve a transition from a struc- would thus correspond to noise-induced excitations onto a
tureless laminar state to a stationary spatially modulated onkepeller.
and then to more complicated states in secondary and higher In plane Couette flow some of the features described
bifurcations. above have been identified, but only with extensive numeri-

Transitions in shear flows do not seem to follow this pat-cal effort [12—14,18. The aim of the present paper is to
tern [4]. Typically, a transition to a turbulent state can bepresent a simple model that is based on the Navier-Stokes
induced for sufficiently large Reynolds number with finite equation and captures the essential elements of the transition.
amplitude perturbations, just as in a subcritical bifurcation.lt is motivated in part by the desire to obtain a numerically
However, in the most spectacular cases of plane Couette flomore accessible model that perhaps will provide as much
between parallel plates and Hagen-Poiseuille flow in a pipénsight into the transition as the Lorenz mod#&B8] for the
[5], there is no linear instability of the laminar profile for any case of fluids heated from belofgresumably at the price of
finite Reynolds number that could give rise to a subcriticalsimilar shortcomings The two and three degree of freedom
bifurcation. The turbulent state seems to be high dimensionahodels proposed by various groujsd reviewed i19]) to
immediately, without clear temporal or spatial pattefus-  study the effects of non-normality mock some features of the
like the rolls in Rayleigh-Beard flow. And the transition Navier-Stokes equations considered essential by their inven-
seems to depend sensitively on the initial conditions. Basetbrs but they are not derived in some systematic way from
on these characteristic features it has been argued that a tradhe Navier Stokes equation. The model used here differs
sition to turbulence different from the well-known three low- from the one proposed by Waleffd0] in the selection of
dimensional ones is at woifl6]. modes.

Recent activity has focused on three features of this tran- Attempts to build models for shear flows using Fourier
sition: the non-normality of the linear eigenvalue problemmodes immediately reveal an intrinsic difficulty: In the case
[6—11], the occurrence of stationary states without instabilityof fluids heated from below the nonlinearity arises from the
of the linear profild12—15, and the fractal properties of the coupling of the temperature gradient to the flow field so that
lifetime landscape of perturbations as a function of ampli-two wave vectorsk and X, suffice to obtain nonlinear cou-
tude and Reynolds numbgi6]. The non-normality of the plings. In shear flows, the nonlinearity has to come from the
linear stability problem implies that even in the absence oftoupling of the flow field with itself through the advection
exponentially growing eigenstates, perturbations can firsterm (u-V)u. This imposes rather strong constraints on the
grow in amplitude before decaying since the eigenvectors ar@ave vectors. At least three wave vectors satisfying the tri-
not orthogonal. During the decay other perturbations couldngle relationk; +k,+k3;=0 are required to collect a con-
be amplified, giving rise to a noise-sustained turbuldid@®  tribution from the advection term. A minimal model thus has
The amplification could also cause random fluctuations tat least six complex variables. Three of these decay mono-
grow to a size where the nonlinear terms can no longer beonically to zero, leaving three for a nontrivial dynamics. In
neglected 10,11]. Then the dynamics including the nonlin- the subspaces investigatd8.E., unpublisheg the most
ear terms could belong to an asymptotic state, different frontomplex behavior found is a perturbed pitchfork bifurcation,
the laminar profile, perhaps a turbulent attractor. Presumwhich may be seen as a precursor of the observed dynamics:
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for Reynolds numbers below a critical value, there is only u(k,t)-k=0. )
one stable state. Above that value a pair of stable and un-
stable states is born in a saddle-node bifurcation. The stablEhe Navier-Stokes equation for the amplitude,t) be-
state can be excited through perturbations of sufficient ameomes
plitude. The basins of attraction of the two stable states are
intermingled, but the boundaries are smooth. . .

Thus more wave vectors are needed and they have to atu(k,t)=—|pkk—|p§:k [u(p.1)-qJu(a,t)
couple in a nontrivial manner to sustain permanent dynam-
ics. The specific set of modes used is discussed in Sec. Il. It —vk2u(k,t)+f, ©)]
is motivated by boundary conditions for the laminar profile
and the observation that wave vectors pointing to the vorticewhere p, are the Fourier components of the presside
of hexagons satisfy the triangle conditions in a most symvided by the density » is the kinematic viscosity, ant} are
metrical manner. Other than that the selected vectors arethe Fourier components of the volume force sustaining the
matter of trial and error. In the end we arrive at a model withlaminar profile.
19 real amplitudes, 2 force terms, and 212 quadratic cou- There are three constraints on the componeuik: in-
plings. Without driving and damping the dynamics is energycompressibility(2), reality of the velocity field,
conserving, as would be the corresponding Euler equation
(suitably truncated Moreover, the perturbation amplitudes u(—k)=u(k)*, 4
can be put together to give complete flow fields. Thus the . o
model has a somewhat larger number of degrees of freedoriNd the boundary conditions that the flow is limited by two
but the dynamics should provide a realistic approximation tg°@rallel, -impenetrable plates. The ensuing requirement
shear flows. u,(x,y,z)=0 atz=0 andz=d (whered is the separation

The outline of the paper is as follows. In Sec. Il we Petween platgsis most easily implemented through period-
present the model, in particular the selected wave vectordCity in zand the mirror symmetry,
the equations of motion, and a discussion of symmetries. In
Sec. Il we focus on the dynamical properties of initial per-
turbations as a function of amplitude and Reynolds number. Uy | (x,y,—2)=| Uy |(X,y,2), (5)
In Sec. IV we discuss the stationary states, their bifurcations,

Uy Ux

) o . . ) u —u
and their stability properties. We conclude in Sec. V with a z z
summary and a few final remarks. which, in Fourier space, requires
*
Il. THE MODEL SHEAR FLOW Uy Uy
*

Ideal parallel shear flows have infinite lateral extension. Uy | (ke —ky k)= Uy | (Kiky ky). (6)
Both in experiment and theory this cannot be realized. We, u, -u;
therefore, follow the numerical tradition and chose periodic
boundary conditions in the flow and neutral direction. TheThis is not sufficient to fix the coefficients: the dynamics also
flow is confined by parallel walls a distandeapart. A con- has to stay in the relevant subspace, and thus the time de-
venient way to build a low-dimensional model is to use arivatives have to satisfy similar requirements.
Galerkin approximation. Solid boundaries would require the
vanishing of all velocity components and complicated Galer- B. The wave vectors
kin functions where all the couplings can only be calculated ) ) _
numerically. However, under the assumption that here as  N€ choice of wave vectors is motivated by the geometry
well as in many other situations the details of the boundanf the flow and the aim to include nonlinear couplings. The
conditions effect the results only quantitatively but not quali-P@Sic flow shall be a flow in thg direction, neutral in the
tatively, we can adopt free-free boundary conditions on th&liréction, and sheared in tiedirection. Thus we take the
walls and use simple trigonometric functions as a basis fof'St three wave vectors in tredirection,
the Galerkin expansion. Similarly, the nature of the driving 0 0

(pressure, boundary conditions, or volume fgrskeould not 0
be essential so that we take a volume force proportional to ki={ 0], kp={ 0], ke={ 0]. (7
some basis functiogor a linear combination therepfThis 1 2 3

still leaves plenty of free parameters to be fixed below.

The negative vectors k; also belong to the set but will not
A. Galerkin approximation be numbered explicitly. In these units, the periodicity in the
z direction is 2, so that the separation between the plates is
d=m because of the mirror symmeti$). The amplitude
u(k4) will carry the laminar profile andi(k3) can be excited
u(x,t)zz u(k,t)e'x, (1) as a modification to the laminar profille; is needed to pro-
K vide couplings through the nonlinear term. These three vec-
tors satisfy a triangle identitik, +k,—k;=0, but the non-
Incompressibility demands linear term vanishes since they are parallel.

We expand the velocity field in Fourier modes,
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n=(1,0,0", m=(0,1,0". (11)

The Fourier amplitudes of the velocity are now expanded as

u(ki, )= a(ki,tyn(ki) + B(k; ,tym(k;). (12

\ L‘ The impenetrable plates impose further constraints on the
A A a(k;) andB(k;). Fori=1, 2, and 3, the wave vector has no
components in th& andy directions, so that and3 have to
be real. Foi =4, 5, and 6, the velocity field cannot have any

components in the direction; hence@g=0. The remaining
\‘\\ K / wave vectorsk; and —k; with i=7,...,18, a total of 24,

divide up into six groups of four vectors each,

k=(Ke Ky k), K'=(—k¢,—ky k), —k and —k’(.13)

The groups are formed by the vectors and their negatives in
FIG. 1. The 19 wave vectors,, . . ., kio. The full set is ob- the pairs with indice$7,10), (8,1, (9,12, (13,16, (14,17,
tained by complementing with-k;. Thus, there are only three and (15,18. The amplitudes of the vectors in the sets are
vectors on the symmetry plare=0, six each on the two levels related by
above and a single one on the third plane vkijh- 3.
a(k)=a(—k)*=—a(k')*,
The next set of wave vectors contains modulations in the

flow and neutral direction, B(K)=pB(—k)*=—pB(k")*. (14
1 1/2 1/2 Thus the full model has €6+6Xx4=236 real amplitudes.
Restricting the flow by a point symmetry arounx
K ks V312 » ke Vaiz|. ®) =(0,0,7/2)" eliminates the contributions frotk, and some
0 0 0 other components, resulting in a 19-dimensional subspace

with nontrivial dynamics and the following amplitudes:
Together with—k; they form a regular hexagon, so that they y g amp

provide nontrivial couplings in the nonlinear term. The peri- ak)=y1, Bk)=Ys, a(ks)=ys,

odicity in flow direction is 47/+/3, in the neutral direction it

Is 4. _ o _ B(ka)=Yyas, B(ky)=lys, B(ks)=iys,
Finally, this hexagon is lifted upwards witty andk, to

form the remaining 12 vectors, Bkg)=iy7, a(k;)=yg, B(k;)=Yq,

Kr=kitky,  kg=kitks, ke=kyitke, a(kg)=Y10, B(Kg)=y11, a(Kg)=Y1,

Kig=Ki=ka,  ku=ki=ks, ki=ki=kKs, B(Kg)=Y13, a(kiz)=iy1s, B(Kigd=iy1s,

Kig=katks,  ki=kotks,  kis=kaotke, a(kig)=1y1s, B(Ki)=iy17, a(Kis)=iyssg,

B(Kis) =iy19; (15

components not listed vanish or are related to the given ones
by the boundary condition€l4). A complete listing of the
flow fields u; associated with the coefficienys such thatu
>.y;u; as well as of the equations of motion are available
m the authors.

kig=ka—Ka, Kiz=ka—ks, Kig=ko—ks. (9

The full setk;, i=1...18 isshown in Fig. 1.

The Fourier amplitudes(k;) have to be orthogonal tky
because of incompressibili{@). If they are expanded in ba-
sis vectors perpendicular @, the pressure drops out of the
equations and need not be calculated. We, therefore, cho§ro
normalized basis vectors,

‘ —k.k, / k2/ k2 k2 C. The equations of motion
) V1+ + . . .
n(ki)= K+ K2 k2’k2+ k2’ ( In this 19-dimensional subspacg;( . ...y;o the equa-
tions of motion are of the form
m(k;) = (Ky, = ky,0) T/ K+ K3, (10
so thatn, m, andk form an orthogonal set of basis vectors. yi= % Ay Y Y+ T (16)

For the negative vectors-k; we chose the basis vectors

n(—k;)=n(k;) andm(—k;)=—-m(k;). If the x andy com-  Of the driving force all components bdit and f, vanish.
ponents ofk vanish, the above definitions are singular andMoreover, if thef’s are taken to be proportional te, the
replaced by resulting laminar profile has an amplitude independent of
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1.0 - i1 The reduction from 36 to 19 modes was achieved by restrict-
L ing the dynamics to a subspace where the flow has the point
N ——  twomodes symmetry aroundk,=(0,0,7/2)", a point in the middle of
05 | the shear layer,
u -u
u o0 X X
Uy | (X,y,z+m/2)=| —Uy [ (—X,—Yy,—2z+ 7/2).
u; —U;
-0.5 (21)
In addition, there are further symmetries that can be used to
-1 -00 0 reduce the phase space. There is a reflection op-thplane,
z Uy — Uy
FIG. 2. The laminar profile in case of one or two driven modes; T uy | (xy, 20— Uy | (=xy,2), (22)
compare Eq(17). u U
z z

viscosity (and thus Reynolds numberThese components 5n4 two shifts by half a lattice spacing
give rise to a laminar profile that is a superposition of a ’

cosf) profile (from f,) and a cos(3 profile (from f,). This Uy Uy
allows us to approximate the first two terms of the Fourier _
expansion of a linear profile with velocity,=*1 at the Toi| Uy | (XY, 2)—=| Uy [ (x+27,y,2), (23)
walls, u, u,
8 1 Uy Uy
UO:?<COSZ+ §COS3Z eya (17) T3; uy (x,y,z)—> uy (X+7T,y+7T/\/3_,Z)_ (24)
u, u,

which can be obtained with a drivin§,=4v/7? and f,
=4v/97? (see Fig. 2

The nonlinear interactions in the Navier-Stokes equatio
conserve the energf=3%/dVu? In the 19-dimensional
subspace, the corresponding quadratic form is

When applied to the flow, these transformations induce
changes in the variableg; (typically exchanges or sign
nchange}; but the equations of motion are invariant under
these transformations. Thus, if a certain flow has this sym-
metry, it leads to constraints on the variablgs and if it
does not have this symmetry immediately a flowfield can be
! L obtained by applying this symmetry transformation. We do
E:V( El yi2+2i28 ylz) (18) not attempt to analyze the full symmetry structure here and
confine our discussion to two illustrative examples, which
re relevant for the stationary states discussed below. De-
anding invariance of the flow field to the reflection sym-
metry T, leads to the following constraints on the variables

Yi-

The above equations conserve this form without driving an
dissipation. With dissipation but still without driving, the
time derivative is negative definite, indicating a monotonic
decay of energy to zero.

Finally, we define the Reynolds number using the wall
velocity of the linear profileuy=1, the half width of the
gap,D=d/2= /2, and the viscosity,

Y1=Y3=Y5=Yg=Y15= 0,
Y6=Y7 Yi10=™ ~ Y12,

Re=uoD/v=m/2v. (19 Y11=Y13 Yi6= Y18 Yi7= VY19 (25

The other geometric parameters are a periad¢B in flow The nonvanishing componentg;, ¥a, Y6=Y7, Yo, Y10~
direction and 4r perpendicular to it. ~ Y12, Y11= Y13, Y14 Y16~ ~ Y1, @Ndy17=Ysethus define a
nine-dimensional subspace.
For the combined symmetily; T, we find the constraints,
D. Symmetries

We achieved the impenetrability of the plates by requiring Y1=Y3=Y5=Yg=Y15=0,
the mirror symmetry:
Y6= —Y7
Uy Uy
uy (ny,_z): uy (X,y,Z). (20) Y1OZY121

Uz —Uz Y11= Y13 Y16~ Yis Yi7= — VYo, (26)
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FIG. 3. Real parts of the eigenvalues of the linearized stability ~FIG. 4. The dynamics of perturbations for one driven mode at
problem for one driven mode. Re=400. The perturbation was selected randomly and scale by fac-
tors 3, 5,7, 9, and 11, from bottom to top.

and again a nine-dimensional subspace with nonvanishing

componentsy,, Ya, Ye=—Y7, Yo, Y1o=Y12: Y11=~ Y13, ' == (U V)U' = (U V)up=Vp'+wAu’.  (27)

Y14, Y16=Y1s, andyi;7=—Yyq9. The dimensions of the in-

variant spaces vary from a minimum of gfor each ar,T;  The second term on the right-hand side describes the energy
and T,T,T5 invariance to a maximum of ter(for T,T5 in-  source for the perturbation, and depends, becauseof

variance. =Uo(z)ey and thus
As mentioned, one can classify flows according to their
symmetries. The most asymmetric flows are eightfold degen- (U"-V)up=uzd,Ug(2)ey (28)

erate as the application of the eight combinations of the sym-

metries give eight distinct flows. The laminar flow profile is in an essential way on trecomponents of the perturbation.
invariant under all the linear transformations and is the onlyThus, if the amplitudeyg, Y10, Y12, Y14, Y16, andy;g be-
member of the class with highest symmetry. The other stacome too small, the decay of the perturbation cannot be
tionary states discussed below fall into equivalence classesfopped any more. These modes account also for most of the
with eight members or four members if they are invariantoff-diagonal block couplings. A model for sustainable shear

underT, or T;T,. flow turbulence has to include some of these modes.
We chose a fixed initial flow field with a random selection
of amplitudesy, ... .y1g, Scaled it by an amplitude param-
. DYNAMICS OF PERTURBATIONS eter A, and measured the lifetime as a function Afand

Reynolds number Re. Figure 4 shows the time evolution of

A stability analysis shows that the laminar flow profile is such a perturbation at Re400 with one mode driven and for
linearly stable for all Reynolds numbers. The matrix of thedifferent amplitudes. For smah there is an essentially ex-
linearization is non-normal with a block structure along theponential decay, whereas for larger amplitudes the perturba-
diagonal. To bring this structure out more clearly, it is best totion swings up to large amplitude and shows no sign of a
order the equations in the sequence 1, 2, 3, 4, 5, 7, 15, 8, #lecline at all. The results for many amplitudes and Reynolds
14, 13, 19, 12, 18, 6, 11, 17, 10, 16. The matrix of thenumbers are collected in Fig. 5 in a landscape plot. For small
linearization then is upper diagonal, with a clear block struc-Reynolds number and/or small amplitude the lifetimes of
ture: there are ten eigenvalues isolated on the diagonal, thrgeerturbations are short, indicated by the light areas. For Rey-
2% 2 blocks, and one 83 block as well as several cou- nolds numbers around 100 isolated black spots appear, indi-
plings between them in the upper right corner. While somecating the occurrence of lifetimes larger than the integration
eigenvalues can be complex, all of them have negative redime (which increases with Re so thgt,/Re=4w). The
part as shown in Fig. 3. For vanishing viscosity, the eigenspottiness for Re between about 100 and 1000 is due to rapid
values become zero or purely imaginary. changes in lifetimes from pixel to pixel. For Re above 1000

Large amplitude perturbations, however, need not decayhe long lifetimes dominate. These results are in good agree-
Already in the linear regime the nonorthogonality of the ment with what has been observed in plane Couette flow.
eigenvectors can give rise to intermediate amplifications intd-igure §b) shows a similar plot for the case with two modes
a regime where the nonlinear terms become importandriven; it is qualitatively similar, but quantitatively shifted to
[6—10. In a related study on plane Couette fl¢i6] we  higher Reynolds numbers.
used the lifetime of perturbations to get information on the In connection with the non-normality of the linearized
dynamics in a high-dimensional phase space. As in that caseigenvalue problem it has been argued that the upper limit on
the amplitude of the velocity field in thedirection indicates the size of perturbations for which the nonlinear terms in the
the survival strength of a perturbation. Linearizing the equadynamics can be neglected decreases algebraically like
tions of motion around the base flawy gives for the pertur- Re™ “. Different exponents have been proposed, ranging
bationu’ the equation from 1 to 3[6,10,19. It seems that for large R@vhere the
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FIG. 5. Lifetime of perturbations as a function of amplitude and
Reynolds number for the case of one driven mgdeand two
driven modegb). The black regions correspond to lifetimes larger
than T=4-Re, the white regions to lifetimes shorter th@fi0.
The gray levels interpolate linearly between these levels.

model is actually less reliable because of the limited spatial
resolution), the envelope of the long-lived states in the frac-
tal lifetime plot decays like Re'.

The sensitive dependence of lifetimes on initial conditions
and parameters is further highlighted in Figs. 6 and 7. The
first shows the lifetime in the plane of the amplitugggand
Y17 at Reynolds number Re400 with all other components
fixed. There is considerable structure on many scales. Ont
notes “valleys” of short lifetimes between “plateaus” of
longer lifetimes and a granular structure within both. The

lifetime

1.0

0.75 |

FIG. 6.

Magnification of the fractal landscape of lifetimes as a

function of the amplitudey,5 andy,; for the same perturbation as
in Fig. 5 at Re=400.

magnification by 10 there is no indication of a continuous
and smooth variation of lifetime with amplitude.

IV. STATIONARY STATES

Motivated by the observation of stationary structures in

3000
0

3000

plane Couette flow for sufficiently high Reynolds number

TR

5 5.1

| =

:
5 5.01
i E
5 5.001
I |
5 5.0001
:
5 5.00001
5 5.000001
5 . 5.0000001
amplitude

striations are reminiscent of features seen near fractal basin FIG. 7. Lifetimes of perturbations as a function of amplitude for
boundarieq 20]. Figure 7 shows successive magnificationsthe case of one driven mode atR200 and successive magnifica-
of lifetime versus amplitude plots at R&00. Even after a tions by a factor of 10.
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FIG. 9. Stationary states for two driven modes. Compared to
Fig. 8 there seem to be more states and the next bifurcation is a lot
closer to the leading one.

“saddle-node” bifurcation into unstable states.

With increasing Re more and more stationary states ap-
pear, partly through secondary bifurcations, partly through
(b) additional saddle-node bifurcations. Their number increases
rapidly with Reynolds numbe(Fig. 11 and this increase
S goes in parallel with the increase in density of long-lived
300 1000 states, Fig. 5. The detailed structure of the bifurcation dia-

Re gram is rather complex and has not yet been fully explored.

FIG. 8. Stationary states for a single driven md@g and a We note here Fhat the \{arious sta_tiongry states may be
magnification(b) near the leading saddle node bifurcation near RedroUPed according to their symmetries introduced in Sec.
—=190. II D and that we found only stationary states, which belong

to equivalent classes with four or eight members. The sta-
[12—14 we searched for nontrivial stationary solutions andijonary states of the classes with four members are invariant
studied their generation, evolution, and symmetries. under the transformatiofii; or T,T,. In addition, there are

We computed the stationary states with the help of &qnyard-directed bifurcations generating two branches with
Monte Carlo algorithm. The |n|t|§1I conditions for thg's the same symmetry propertiésight- or four-member clags
were chosen randomly out of the interyat 1/2,1/7 and the  anq inverse bifurcations of two branches belonging to eight-
Reynolds number was chosen randomly matrix with an exmember equivalent classes. We also found a backward-
ponential bias for small Re in the interyal0,10 00Q. With  gjrected bifurcation generating branches of an eight-member
these initial conditions we entered a Newton algorithm. Ifthedass' which is born out of a four-member class branch. The

Newton algorithm converged, we followed the fixed point in scenarios described above are marked in the bifurcation dia-
Reynolds number as far as possible. We included abouram, Fig.8.

200000 attempts in the Monte Carlo search.

The stationary states found for a single driven mode are
collected in Fig. 8. No stationary statésesides the laminar 0.05
profile) were found for Reynolds numbers below about 190.
Between 190 and about 500 there are eight stationary states,

energy
o
%o

10°

which divide into two groups of four symmetry-related states Qies

each. With increasing Reynolds number more and more sta- ©

. ©

tionary states are found and they reach down to smaller and L o0 k—
smaller amplitude. The envelope of all states reflects the g

Re ! behavior found for the borderline where nonlinearity
becomes important. For two driven modésg. 9 the situ- -0.025 L
ation is similar.

The appearance of the branches of the stationary states
and, in particular, their coalescence near=Fi9Q suggests -0-0159(141 Sl 56 & §567
that the states are born out of a saddle-node bifurcation. And Re
indeed, the eigenvalues as a function of Re show two eigen-
values moving closer together and collapsing at zero for Re FIG. 10. Eigenvalues of the two branches of the stationary states
=190.41(Fig. 10. However, these eigenvalues are not thea andb near the saddle-node bifurcation around<R®0. Note that
leading ones, so that one set of states has three unstaliteleed two eigenvalues with real positive and negative real parts at
eigenvalues, the other two unstable ones. It is thus aero, but there are also eigenvalues with positive real part.
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300 ‘ ‘ . k times. This fractal behavior is the new quality introduced by
* one mode 8 f[he addltlona] degrees of_freedom. Indlc_atlons for this behav-
o two modes o % ior are seen in the experiments by Mullin on pipe flE2e].
s ‘o It is interesting to ask just how few degrees of freedom are
200 | oo ** necessary to obtain this behavior. Reducing our model to the
% o & T, subspace gives one with just nine degrees of freedom
o Oeffo * (comparable in number and flow behavior to the ones of
o * © Waleffe [10]) that still shows this fractal lifetime distribu-
100 | o tion. Further reduction, as in the four-mode model[ @],
o * seems to eliminate them.
cox it The full, spatially extended shear flows share essential
o8 features with the model but add new problems. Spatially re-
4O ‘ . . , solved simulations of the present mofieb] as well as plane
0 0 2000 4000 6000 8000 10000 Couette flow with rigid-rigid boundary conditiond2,14

Re show the occurrence of additional stationary states at suffi-
) ) ) ~ciently high Reynolds number that are unstable. An as yet

FIG. 11. Proliferation of stationary states for one and two d”Venuneprained feature in spatially extended plane Couette flow,

modes. which we believe to be connected to the high dimensionality
V. CONCLUDING REMARKS of phase space, is _the difference between Reynol_ds nL_meers
where the first stationary states are bémbout 125 in units

The few degrees of freedom shear model introduced heref half the gap width and half the velocity differen@nd the
lies halfway between the simplest models of non-normalityones where experiments begin to see long-lived statasut
and full simulations. Its dynamics has turned out to be sur300-350 [23].
prisingly rich. There are a multitude of bifurcations introduc-  The fractal lifetime distributions have obvious similiari-
ing stationary states besides the laminar profile; there arges to chaotic scattering@4,25,2Q. Drawing on this analogy
secondary bifurcations, and the distribution of lifetimesone would like to identify permanent structures in phase
shows fractal structures on amazingly small scales. It seenspace away from the laminar profile that could sustain tur-
that as one goes from the low-dimensional mod8I§] via  bulence. This has partly been achieved by the search for
the present one to full simulations one notes not only arstationary states. Many have been found but irritatingly only
increase in numerical complexity but also the appearance dor Reynolds numbers above about 190 while long-lived
qualitatively new featureg21]. states seem to appear much earlier. The solution to this

The simplest models with very few degrees of freedompuzzle must be periodic states and indeed we have found a
focus on the non-normality of the linearized Navier-Stokesfew periodic states in a symmetry-reduced model at lower
problem and emphasize the amplification of small perturbaReynolds numbers, close to the occurrence of the first long-
tions. If the nonlinearity is included, a transition to anotherlived states. This suggests that the dynamical system picture
kind of dynamics, sometimes as simple as relaxation to @hat long-lived states have to be connected to persistent
stationary point, is founfi19]. structures in phase space is tenable.

Next in complexity are models like the one presented here There are several features of the model that can be studied
that share with the few degree of freedom models the amplifurther. In particular, quantitative characterizations of the
fication and the transition but the additional degrees of freefractal lifetime distribution, visualizations of the flow field, a
dom allow for chaos. When nonlinearities become importantietailed analysis of the primary and secondary bifurcation,
the dynamics does not settle to a fixed point or a limit cycleand an investigation of the dependence on the aspect ratio of
but continues irregularly for an essentially unpredictablethe periodicity cell are required and look promising. We ex-
time. The time is unpredictable because of the fractal life-pect the lessons to be learned from this simple model to be
time distribution, which seems to persist down to amazinglyuseful in understanding the dynamics of full plane Couette
small scale: tiny variations in Reynolds number or ampli-and other shear flows. Work along these directions contin-
tudes of the perturbation can cause major variations in lifeues.
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