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In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken
plane wavewave tip can either rotatésteadily or unsteadilyaround a large excitable core, thereby producing
a spiral pattern, or retract, causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion
and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of
the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave
description is shown to naturally split between the tip region and a far region that are smoothly matched on an
intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with
the large scale motion of the spiral wave front slaved to the tip. This kinematic description provides both a
physical picture and exact predictions for a wide range of wave behavior, inclGidisteady rotatior(fre-
qguency and core radiyg(ii) exact treatment of the meandering instability in the free-boundary limit with the
prediction that the frequency of unstable motion is half the primary steady frequ@ncgrift under external
actions(external field with application to axisymmetric scroll ring motion in three dimensions, and spatial-
or/and time-dependent variation of excitabilitand (iv) the dynamics of multiarmed spiral waves with the
prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of
FitzHugh-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-
guantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin
interface limit of singly diffusive reaction-diffusion mode[51063-651X99)01610-4

PACS numbe(s): 82.40.Bj, 47.20.Hw, 87.18:h

[. INTRODUCTION are summarized in Fig. 1 for simple FN kinetids3]. In the
whole region above thpropagationboundary ¢P), the me-
Spiral waves are characteristic structures of excitable medium excitability is too weak for any plane wave to propa-
dia[1,2] that have been observed in systems as different agate persistently. In the narrower region comprised between
catalytic surface oxidatio3], the Belousov-Zhabotinsky

chemical reactiofi4—7], aggregating colonies of slime mold 0.6 :
[8], and heart tissue where they are suspected to play an N
essential role in cardiac arrhythmia and fibrillati@]. Spiral 0.5 ==
. . crege . ——— R (analytical)

waves are prone to a variety of instabilities, the best studied , »
of which is meander, and they can be made to drift and be 0.4 t F
controlled in diverse ways, for instance, by varying the me- No waves
dium excitability in space or/and time, or by adding an ex- € 03¢ Retacing waves
ternal field.

Much of the observed experimental phenomenology has 02 ¢ A igaroors
been reproduced by using simplified two-variable activator-
controller types of description, like the classic FitzHugh- 0.1 ¢ Meandering |
Nagumo(FN) model[10] and mild variations of it. Exten- spralvaves
sive surveyg11,12 of the possible types of wave motion in 0005 10 15 20
such models have been performed in a reduced parameter A=5°-35

space where the only two parameters left to vary are the

medium excitabilityA, defined in Sec. Il in such a way that o .
. . . . (éM) boundaries in the parameter spacdthe ratio of the fast

the_ .|solated pulse_speed 1S propor_tlonaﬂtdor weak explt- activator to the slower controller time scalend A (the medium
ability, and the ratice betwe_en the time scale of the activator “excitability” defined as ve—vy) for the numerically simulated
and controller kinetics, which controls the abruptness of thesj;Hugh-Nagumo kinetics f (u,v) =3u—ud—v,g(u,v)=u—8].
wave front(i.e., the thickness of the interface delimiting the our analysis predicts that the three boundaries smoothly approach
excited region Different regimes have been identified that the origin without crossing as—0, with A~ — €¥2n e for JP,

A~ €e¥®for 4R, andA ,— A~ — €%%/(In €)% for JM. The predic-

tion A.=(2Y%4e/B,)* with B,=0.535 for thedR boundary is in

* Associeau CNRS et aux UniversiseParis VI et VII. good agreement with the simulations.

FIG. 1. Plots of the propagatioP), rotor (¢R), and meander
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(@ (b) been helpful to rationalize experimental facts but it has not
been derived from the underlying reaction-diffusion equa-

IH

ﬁ\\ tions. Thus it remains limited in its predictions, e.g., it falls
\\\ short of predicting the’/M boundary and the rati@,/w;.
&%‘ Moreover, at a more conceptual level, the general validity of

the boundary condition assumed for the free end of the wave
front in this kinematic theory remains somewhat unclear.
The first goal of this paper is to present a rigorous
asymptotic derivation of a kinematic theory of spiral wave
motion in the weakly excitable and free-boundary limit
(lower left hand corner of Fig.)lon which we focus. As we
shall see, the structure of this theory differs from the one
proposed phenomenologically in R¢L8]. The second goal
of this paper is to demonstrate, through selected applications
of this theory, that it is able to provide a physical and quan-
titative understanding of a wide range of wave phenomena
9P and therotor boundary ¢R), the medium excitability is  sych as meander, drift under various external actions consid-
sufficient for a plane wave to propagate but not for a spirakred in previous studigd9-25, and multiarm spiral wave
wave to form. In this region, the end of a broken wave front,motion. Highlights of our results include an asymptotically
referred to hereafter as the “wave tip,” simply retracts exact treatment of the meander instability fo<1, which
steadily[Fig. 2@)], such that this finger-shaped wave mustgives the precise location of th&éM boundary and shows
shrink in length and eventually vanish at boundaries in &hat the instability arises from a supercritical Hopf bifurca-
finite system. In the even narrower region comprised betion with w,/w;=1/2 in this limit, the finding that multiarm
tweendR and themeanderboundary ¢M), the excitability  spiral waves with two or more arms are always linearly un-
is sufficient for large core spirals to form and the wave tipstable, in contrast to a previous numerical stigg], and
now rotates steadily at a frequeney around a circular core predictions of the spiral drift speed and drift angle in an
of radiusR,. Right on thedR boundary, a half plane wave, external field. These results are generally found to be in good
referred to hereafter as the “critical finger,” propagatesquantitative agreement with our simulations of FN kinetics.
without changing its shape. It can be equivalently interpreted The starting point of our analysis is the standard free-
as a retracting finger with vanishing retracting velocity or aspoundary limit of reaction-diffusion mode87] described in
a spiral wave of infinite core radius. As one keeps increasingec. Il, which is valid when the excited region is surrounded
the excitability, the radius of the spiral core decreases angy a thin interface of widthe<1. In this limit, the fast acti-
below thedM boundary the spiral tip traces a classic “flow- vator variable is eliminated in favor of an eikonal equation
erlike” meander patterfiFig. 2b)]. It has been shown that that gives the normal velocity of this boundary. This velocity
meander originates from a supercritical Hopf bifurcation atgenerally depends on the local radius of curvature of this
dM which adds a second frequenay, to the basic spiral interface, assumed large comparecetas well as the local
rotation[14,15. The meander patterns exhibit first inward value of the slow controller variable at the interface.
petals asw,<w;. Outward petals appear as, becomes This free-boundary problem is nontrivial to solve because
greater tharw,. Further away fromdM, the spiral tip motion it requires us to treat both the dynamics of the wave front,
becomes more complex and possibly chaotic past the stillvhich is the part of the boundary where the excited region
poorly characterizedC boundary[12] (not shown in Fig. L~ propagates into the recovery region of the medium, and the
Given that a Hopf bifurcation takes place 6N, symmetry  wave back where the reverse process occurs. Far from the
arguments fix its resonant coupling to the translation modetip, the front and back behave essentially identically, such
whenw,= w and thus determine the bifurcation structure ofthat a “single-front” description is rigorously possible. In
the tip motion near the codimension 2 pow}= w, on dM the tip region, however, the front and back must be matched
[16,17. at the tip(i.e., point of zero normal velocity along the bound-
In contrast to this rather detailed knowledge, the precisary), which is a difficult task. For this reason a single-front
mechanisms that govern spiral formation and motion remaimescription with a somewhat arbitrary tip condition was first
less well understood from both physical and predictive view-used historically to relate the steady rotation frequency and
points. A simple picture to answer even basic questions, suctore radius of spiral28]. The kinematic theory of Ref18]
as why the meander occurs and why this instability is oscilis an attempt to extend this picture to an unsteady situation.
latory (i.e., a Hopf bifurcation beyond numerical observa- Subsequent solutions of the complete free-boundary prob-
tion is missing. From a predictive viewpoint, we still lack a lem, with a rigorous matching of front and back that provides
guantitative analytical understanding of what controls thea unique and independent determination of the spiral fre-
dM boundary or the frequency ratio, /w4 in the parameter quency and wavelength, focused on two limits. One of these
space of reaction-diffusion models. Similar uncertainties ardimits (see[29] and earlier references thergiis obtained
to a large extent also present for other phenomena like spirahathematically by assuming<1 while keepingA fixed of
drift under external action. order unity, which corresponds physically to a highly excit-
A kinematical model of spiral dynamics, aimed at theable medium. The wavelength and frequency obey in this
weakly excitable large core limit, has been proposed som#mit [30] certain scaling laws witle proposed by Fif¢31].
years ago on a purely phenomenological ba&B. It has  The wave front and wave back, however, are matched onto

FIG. 2. Surface plots ofi and wave tip trajectorieghick solid
line) illustrating in (a) a retracting wave fo6=—1.4 ande=0.27,
in between thedP and JR boundaries, and itb) a large core
meandering spiral wave faf= —1.4 ande=0.18, close to theM
boundary.
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singular core solutiongof size € with only activator diffu- (1) and(2) in a standard dimensionless form by measuring
sion that have later been shown to be generically unstabléime and length in units of, and ©,72/7,)*? respectively,
[29]; this result actually seems to agree with the numericalvhich yields for the singly diffusive case

observation of complex meand@nd thus unstable motipn

in this limit [12]. Thus these solutions do not provide a du=eV2u+f(u,v)le, 3
proper starting point for a kinematic theory aimed to describe
the onset of meander. A better starting point, on which we dv=9g(u,v), (4)

focus here, is the second limit originating from RE32] o )

where one constructs smooth core solutions to the freevheree=r,/7,. We study this dimensionless form of the
boundary problem. It was shown [83] that this can in fact €quations in the rest of this paper, except in the next section
only be consistently done for a weakly excitable mediumwhere we summarize the essential ingredients of the kine-
When the radius Of curvature Of the boundary at the t|p remauc theory n d|mens|0na| units. For Small the eXC|ted
mains much larger than the front and back interface widthregion (u=+/3 with the previous choideof a propagating
i.e., by assuming simultaneousty<1 andA~eY3<1. This ~ wave is separated by a sharp boundary from the unexcited or
allowed a rigorous derivation of the linéR in the weak recovering mediumy=— /3 with the previous choige The
excitability limit [33] in good quantitative agreement with wave description can thus be reduced to determining the mo-
numerical simulations of FitzHugh-Nagumo kinetidgswer ~ tion of this boundary (i.e., a free-boundary problem
left-hand corner of Fig. )l as well as a semianalytic deriva- [2,28,32:

tion of the selected core radius/frequency of spiral waves and

retracting wave speed in the same liff8#]. Ch=C(V)— €k, (5
The present kinematic theory is derived by first refining . ) .
analytically the description of steady retraction and rotation dv=g(u=(v),v) in D, (6)

in this weakly excitable limitSec. IV), and then extending it
to an unsteady regiméSec. V) for the nontrivial case of
self-interacting spirals, i.e., where the wave tip motion is
influenced by the average controller concentration left by th
previous passage of the wave front. This allows us to deriv
an equation of motion for the wave tip that is then used t X X X s .
analyze meander in a linear and nonlinear regigec. v).  ¢(v) is entirely determined by Eq3) with v fixed. We
Results of these two sections have been summarized in g€asure the excitability of the medium, i.e., the threshold
previous short publicatiofi35]. Further applications of the Stimulus necessary to cause a response, by the parameter
kinematic theory are then contained in subsequent sectiors Vs Vo, Wherevs is the stall value ofv at which c(v)
that include spiral drift under various external actions with-=0- The isolated pulse spe@g=c(v,) is then a monoto-
out self-interactior{Sec. VI and interacting multiarm spiral NOUsly increasing function od with co=aA for A<1(«
waves(Sec. VIII). Finally, corrections to the large core re- =1/\2 for our numerical choice For values ofv nearv,
sults are discussed in Sec. IX and several points are furthtd- (6) can be simplified even further to

analyzed in four appendixes. In addition, for clarity of expo-
sition, we have found best to first give a simple physical
picture of the kinematic theory and summarize the main re-
sults of its application in Sec. Ill. This section is purposely
aimed to discuss this theory in terms of experimentally mea- ) .
surable quantities as well as to provide a guide to the rest g¥here the activator time scate,=1/g(u”(vs),vs) controls

wherec, is the normal velocity of the interface separating
the excited and recovery regions of the medium denoted by
* and D, respectively,x is the local curvature of this
terface, andi*(v) denotes the rightmost{) and leftmost
—) branch of theu nullcline [f(u,v)=0]. The function

lite in DF (7)

av= —(v—vg)lmg iIn D7, ®)

the paper. the pulse duration and the recovery time
a,f |
Il. REACTION-DIFFUSION MODEL TR= (9)
AND FREE-BOUNDARY LIMIT (0090 F = 090ub)] () vmv,

We consider the classic activat@r) controller () two-

. : ; ) s is the time scale over which the controller variable returns to
variable reaction-diffusion model of excitable mefli®],

its rest state after an excitatidfor our numerical choice,
du=D,V2u+f(u,v)/ 7y, 1) Te=1(2y3),7z=6]

hV = DVV2V+g(U,V)/TV, (2 Ill. PHYSICAL PICTURE OF KINEMATIC THEORY
AND MAIN RESULTS

with a linearly stable rest stateuf,vy). We focus in this
paper on the singly diffusive cag®,=0, although we shall
also briefly consider the slow controller diffusion limjt In a typical chemical or biological excitable medium,
=D, /Dy<1 in Sec. VI. Theu nullcline[f(u,v)=0] is as- many parameterghemical or ionic concentrations, tempera-
sumed to have the standard S shape in the) plane. A ture, light, etc), control the excitability of the medium. How-
simple choice of FN kinetics that we use for the numericalever, independently of the complexity of the medium, it is
simulations isf(u,v)=3u—u®-v, g(u,v)=u—3& with the  generally possible to construct a single dimensionless param-
rest statai,= 8,vo,=36— &°. It is convenient to rewrite Eqs. eter[33,34]

A. Retraction and rotation
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mal to thedR boundary in the multidimensional parameter
space that characterizes a given excitable mediiimthere-
fore the most natural parameter to characterize this excitabil-
ity close to this boundary, and is used throughout this paper.
From an experimental standpoict, andW are in principle
measurable quantities am, can be either measured or es-
timated, such that one could attempt to quanBfylirectly.

Of course, in practice, the definition &Y, and thusB, be-
comes less precise whenis not small and it is simpler to
use an experimental control parame®gy, (such as a con-
centration that can be varied to cross th#R boundary.
Therefore we will briefly describe in Sec. 1l C a more direct
way to obtain a quantitative relationship betweand P g,
close to thedR boundary without the need to use Eg0).

B. Rigid wave tip and slaved wave front

Close to theJR boundary, we will show that a spiral wave
in its tip region behaves as a “rigid body” whose motion can
be characterized by giving twinstantaneougjuantities: the

FIG. 3. Sketch of the spiral tip region and unsteady tip trajectorytip tangentia| Ve|ocityct(t)’ and its rotation ratewi(t)
(solid lines. (r,6) denotes the polar coordinates of the wave tip — ¢, (t)/R;(t) whereR;(t) is the radius of curvature of the tip
with respect to the fixed steady-state center of rotafoR; is the trajectory as depicted in Fig. 3. Two key ingredients make
instantaneous radius of curvature of the unsteady tip trajector)(his kinematic description possible. The first is that, neRy
about the instantaneous center of rotaton with 0;=0 andR; o \yave shape is close to a critical fingee., the broken
=Ry for steady rotation, an&y, is the radius of curvature of the I}{%Iane wave that simply translates without retraction or rota-

[

boundary between the excited and recovery regions of the mediu - / e
at the tip.c; denotes the instantaneous tangential velocity of the on for B=B) on a length scale’~D,,/(coV1—ci/Co) (as

wave tip along this trajectory, with,= w,R, for steady-state rota- expla_lln_ed in Sec. IV Cthat is large ComPared to the Sca_le of
tion. The coordinatest =r — Ry= eq/c, and = 6— w,t measure the tip itself, Rj,=Dy/co. The §econd |s.that the relations
the radial and angular departure from steady-state rotation, respef?at governc, andR; are established on time scales that are
tively. The Cartesian coordinate systemy() that moves with the POth much shorter than the steady rotation peridd,
wave tip is also shown with thg axis parallel toc,. y;(x) and =27/ w,, as discussed at the start of Sec. V and in quanti-
yp(x) denote the instantaneous wave-front and wave-back boundative details in Appendix B. This separation of time scales,
aries. Finally,d=q(6)—q(0—2=) measures the radial displace- which makes our adiabatic treatment possible, becomes ex-

ment of the wave tip after one72rotation. act in the large core limiB— B, but, importantly, it does
not depend or& being small. Therefore the present kinematic
2Ry, 2D, description should rigorously extend beyond the free-
STW oW (100 boundary limit but we shall assume thak 1 in this paper to
computec; .

A key difference between this description and the one
roposed if 18] should already be apparent. Namely, here,
ge dynamics is driven entirely by the rigid tip regitmhich
IS just a point on the core scalén contrast, in the kinematic
model of[18], the tip motion is determined by the wave front
dynamics via a boundary condition imposed at the tip. In the
present context, the dynamics of the spiral wave-front out-
side the tip regiomeed notbe invoked to calculate the tip
motion.

which determines whether the tip rotates, and thus forms a
spiral wave, or whether it simply retracts. This parameter i
expressed as the ratio of two length scales that characteri
the tip region of a broken plane wave that is shown sche
matically in Fig. 3. The first is the radius of curvatuRg, of
the wave boundary at the tip. In the limig€1) where this
boundary is thin,R;, is obtained by applying the eikonal
equation at the tip, which yields,=0=c,—D,/R;;,, and
thus Ry,=D,/co wherec, is the plane wave speed. The
second length scal@/ is the constant width of the excited
region away from the tip. As argued (133,34, the wave
boundary in the tip region can only be smoothRif,~W, The tip tangential velocity is determined by the controller
such that the/R boundary must correspond to a fixed value concentratio{equivalently the spatial variation of excitabil-
of B=B. of order unity; an explicit calculationRefs. ity in which the wave front propagates the tip neighbor-
[33,34 and Sec. IV A herpyields B,=0.535. ForB>B_, hood. To compute this velocity we exploit the fact that, close
the excitability of the medium is not sufficient to overcometo the R boundary, the equations of motion can be linear-
diffusion in the most highly curved part of the tip region, ized around the critical finger. This allows us to obtain a
which retracts. In contrast f@<B., the excitability is suf-  solvability condition(i.e., a general condition for the exis-
ficient to overcome retraction, and the increaseepfaway tence of a solution to these linearized equatiotisat
from the tip induces rotation. uniquely relates the tangential velocity({v}) to an arbi-
Increasing(decreasing B corresponds to decreasifip-  trary spatial distribution of/; this distribution is only con-
creasing the excitability of the medium while moving nor- strained to deviate slightly from the rest statgin order for

C. Tangential velocity
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the wave tip to remain close to the critical finger. This solv-rotation owing to the aforementioned adiabatic approxima-
ability condition is first used in Sec. IVB in the simplest tion. For steady rotation, the core radiRg is simply ob-
steady-state situation where the tip propagates into a uniformained by substituting the expression &ifrom Eq.(11) into

controller concentration. The result of interest is Eqg. (13), which yields
ci/co=1+(B—B.)/K, (11
t/%“0 ( c) - Du bK 3/2
whereK=0.63 is a numerical constant. This result implies Ro_c_o (B.—B) (14

that on the weak excitability side of th&R boundary B

>B;), steady retracting waves form withc,/cq o . . . L .
5 ) . ) The generalization to self-interacting spirals is given in Sec.
=\/c;+cy/co>1, wherec, is the tip retracting speed. On |\/p.

the other side B<B,), spirals forms withc,;/co<1 and a

second relation discussed in the next subsection is needed in

this case to determine the rotation rate. The calculation of the E. Parametrization of the wave tip trajectory

tangential velocity is extended to the case of steady self- Knowing how to compute, andR; gives in principle a

interacting spirals that propagate in a not fully recovered,omplete kinematic theory of the wave tip motion, since this

medium in Sec. IVD, to unsteady self-interacting spirals inyniquely predicts the Euclidean trajectory of the tip in time.

Sec. VB, and to spirals in an external field in Sec. VIIB. In However, to characterize analytically the tip dynamics in un-

the latter casegy({v},E|,E,) depends both on the controller gieady situationgsuch as drift, meander, eldt is conve-

concentration and the componeisandE, of the external  njent to measure the instantaneous tip position by the stan-

field, respectively, parallel and orthogonalda dard polar coordinates (6) with respect to a fixed origin at
A relation betweerB and an .arbltrary experimental con- the center of steady rotatiofFig. 3), and to relate the tip

trol parameterPe,,; can be obtained close to tiiR bound-  motion in these coordinates g andR;. This part of our

ary by simply measuring the slogof the curvec;/co Vs analysis is carried out in Sec. V A and yields a simple forced
Pexpt» Which should be the same on both sidesd®& and  harmonic oscillator equation

presumably simpler to obtain on the retracting side. It then

follows at once from Eq(11) that d2sr

+028r=w?6R;, (15

2
B—B.=K$S( Pexpt_ Pexpt,c) (12 dt

close todR, whereP . is the value ofP,, wheredR is h _ . : :
- | expte o =r(t)—R h I I f th
crossed. This relationship can be used to relate quantltatlvelW ere or()=r(t)=R, is the radial displacement of the

: ; Ve ave tip from its radiusR, of steady rotation an@R;(t)
th_e results of the rest of this paper to experlments,_keepmg 'r%Ri(t)—Ro. Equation(15) is valid for a small radial dis-
mind that these results are only accurate asymptotically close, . . .
t0 JR and for smalle. placement |(_5r|/R0< 1) and is accompanled by an indepen-
dent equation for the angular displacemen(t)= 6(t)
— w4t from steady rotation. For a small radial displacement,
however, the two equations are not coupled such dhatan
The motion of the wave tip region, although rigid, must be computed independently. Without forcing, the solution of
generally be consistent with the motion of the rest of theEq. (15), namely, a harmonic motion at frequeney, is a
wave front away from the tip. On the spiral side &R, the  simple superposition of the two translation modes: it gives
tip region must necessarily rotate to accommodate the fadhe tip displacement of a steady spiral which is slightly trans-
that its tip end translates at a slower speed than the plarlgted with respect to the reference unperturbed spiral.
waves radiated outward from the cdi@n the other side of
JR, ¢;>cq simply implies retraction of the tjpln Sec. IV C,
we show that the tip and the far regions can be matched on
the gently curved intermediate scate yielding a rotation In summary, the application of the present kinematic
ratec;/R;, with theory contains three step@) using a solvability condition
to calculatec; in terms of the local controller concentration,
external field, etc., with a resulting expression that depends
on the situation consideredi) using Eq.(13) to expressR;
in terms ofc,, and(iii) solving Eq.(15) to obtain the radial
whereb=2.946 is a constant that is obtained by matchingdisplacement of the tip for a given forcing, which also obvi-
the curved tip and far regions. It should be noted that thiously depends on the situation considered. We now summa-
constant differs from the constabt [36] obtained by arbi- rize the result of this procedure for the selected applications
trarily imposing a radial departure of the wave front from theexamined in this papeiin a different order than in subse-
steady-state circular core trajectory as in R&8]. The 3/2  quent sections

D. Rotation rate

F. Main results

32
: (13

b
(1—ci/cp)

Dy

R=—
Co

exponent, however, is the same both here and in R The simplest exampléSec. VII A) is to compute the tip
since it does not depend on details of the matching on the timotion induced by a small periodic spatially uniform varia-
scale. tion of excitabilityB(t) = Bg+ 6B sin(w t+ ¢). Following the

Equation(13) holds both for steady rotatiofin the con-  above steps, and using the fact that the perturbation is small,
text of which it is derived in Sec. IVand for unsteady we obtain at once
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d2sr lations. This actually provides a simple picture of the onset
+w§5r:w§(dR0/d B) B sin(wit+¢), (16 of quasiperiodicity(i.e., how w,/w; becomes irrationalas
one moves away from the large core limit.

i , , Finally, for spirals withN arms, we obtain a system bf
where the functionRy(B) is defined by Eq.(14), and .4 pied differential equations with delay and with the inter-
dR,/dB is to be evaluated @=B,. This resonant forced ,ciion petween the arms controlled by the parametgr
harmonic oscillator equation has a growing sinusoidal solu— g (dR,/dB)eTo/(NR) An exact linear stability analy-
tion with an amplitude that increases linearly in time, andg;s spows that, unlike for meander, there is no finite thresh-
which thus corresponds to a spiral drift at a spegd |4 of instability. Moreover, this instability develops on a
= 1(dRo/dB) 5B/2, Or Cq=w;dRy/dPexydPexpf2 In AN e scale proportional to 2 for N=2 and 1fny for N
experiment. The action of an electric field is considered N5 such that the time necessary to observe it grows expo-

Sec. VIIB and produces a similar type of periodic forcing : :
that leads to spiral drift. In agreement with previous studiesnentlally as the/R boundary is approached.

[20,21,23-2bthe spiral is found to drift at an angle with the
external field. This result also determines the curvature- IV. STEADY STATES
induced motion of a scroll filament. There the main predic-
tion is that rings expand in the large core lintite., the
filament tension is negatiyén agreement with previous nu-
merical observations in this limisee[37] and earlier refer-
ences therein

In the case of meander the tip tangential velocity an
hence the forcing on the right-hand side of Etp) depends
on the radial displacemeidr (t) — r (t—T,) of the tip after
one complete rotatiofFig. 3) due to the self-interaction o
the wave front with its own recovery tail. If this displace-
ment is positive, the average controller concentration will b
slightly more elevated in the tip regidne., the medium will
be slightly less excitable in this regipthan if it is negative,
which then affectg,({v}) and thusR; and the forcing of the
tip. This effect leads to a differential equation with delay o

dt?

We start by analyzing steady wave patterns of the free-
boundary probleng5)—(7). As shown in Refs[32,33, when
excitability is decreased, the spiral core radius and spiral
period diverge on the linéR with A=A (e) which marks
0the lower excitability limit of spiral wave propagation in the

(e,A) plane. As described in Sec. |, on the liBR, spirals
degenerate into critical fingers that translategtthe plane
§ wave speed. FoA <A (¢€), the steady waves are retracting
fingers. Laws for the tip retraction speed and spiral tip diver-
gence were obtained in Rgf34] from numerical computa-
tions in the neighborhood of the link.(e) for e<1. Here,

we begin by recalling the result ¢B3] about the line of
existence of critical fingers. We then proceed and study
¢ steady patterns in the neighborhoodif €) by perturbation
around the critical fingers. On the retracting wave side, we

the form determine the tangential speed of the tip as a functioA of
d%q —A.(€) by a solvability conditior{39]. This is the simplest
— +wig=wimF(Q(t)—q(t—To)), (17 example of the method that we will use in more complicated
dt? situations to determine the tip tangential speed. Bor

] ) ] o >A(€), the critical finger winds up around its tip and be-
where we have defined the dimensionless radial displacgsymes a steady spiral rotating around a circular ®yat a
ment q(t)=or (t)/Ryp=Codr ()/Dy, the parameterm  constant tangential speerj. We first consider the case
=3B(dRy/dB)e" '°""®, ‘and F is a tanh-shaped function \yhereR, is large enough so that the spiral front interface can
which we compute in Sec. V B. The saturationfolit large e assumed to propagate in the medium rest gtate the
radial displacement is due to the fact that the controller congisiurbance of the medium induced by the tip previous pas-
centration only varies appreciably on the scaleRaf. A sage can be neglectedVe obtain analytically the diver-

linear stability analysis of this equation in Sec. VIA vyields gence of the spiral radius by adding to the previous determi-
that the onset of meander occurs wieexceeds a threshold 4ti0n ofc, an analysis of the Burton-Cabrera-Fra@CF)

3/18F'(0)] that depends in a singular way on the diffusivity equation[40] in the large radius limit using matched asymp-
ratioD, /D, ande. Namely, the functiorf- is nonanalytic at  totics, thus confirming the laws obtained in RE24]. Fi-

0 in the pure sharp boundary limit, EdS), (6) of the singly  najly, we determine the modification of the steady spiral pa-
diffusive model, which sheds some light on difficulties thatameters induced by the perturbation of the medium

were previously encountered when attempting to perform @naracteristics due to previous passages of the spiral.
linear stability analysis in this limif38]. However, for a

finite interface widthyD 7, small compared to the spiral tip
radiusD ,/cy, the slope at the origin is finite, with’(0)~
—In(cyV 7, /D), such that there is a finite meander thresh- We first examine the critical fingers that propagate in a
old that will be typically of order unity in experiments or shape preserving way at the pulse spegdn the boundary
simulations. In addition, this analysis predicts that/w;  A.(€) in the parameter spacé\(e). For a small medium
=1/2 at onset in the large core limit and a simple physicalexcitability, the scaling of the linA ;(€) is easily determined
interpretation of both the existence of a threshold and oscilby comparing two length scald83] as reviewed in Sec.
latory motion is given at the end of Sec. VI A. Slightly away Il A. First, the condition that the normal velocity vanishes at
from the large core limit, the discussion in Sec. IX leads to ahe wave tip requires that the tip radius of curvature is equal
modified differential equation with delay that shows thatto e/c,. This gives the order of magnitude of the distance
w,/wq increases above 1/2 as the core rad®sis de-  between the wave front and wave back. Second, the front and
creased, in semiquantitative agreement with numerical simusack interfaces should move at the same velocity. The value

A. The line A (e) of critical fingers
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FIG. 4. The critical finger: the solution of Eq&.8) and(19) for
B=B..

of the controller fieldv should therefore increase fromy,
=v¢,—A on the front interface to+A on the back inter-
face in a time €/cy)/cq. This giveSTee/c§~A and, remem-
bering thatco=aA, the scalingA (e)~ (e/ a’e) Y.

A more detailed analysis is required to determine the con

stant in this asymptotic relation and the critical finger shapdhe finger tip =0

that we will subsequently need. We follow R¢B3] and
search for a steady-state finger shape translating,,athe
isolated pulse speed. It is convenient to work in the frame o
the finger with the origin at the finger tiigee Fig. 4 and to
use as length unit/cg, the finger tip radius. On the front
interfaceY;(x), the value of the controller field is equal to
the rest state value,. At point x on the back interface, the
controller field value has increased toy+ e[ Y(X)
—Yp(x)]/c37, from Eq. (8). Equation(5) therefore implies
that

dZYf B (de 2 L (de 213/2 18
w2 1lax) TP ) ] @8
Yy _ 149V i 1-B[Y Y
ol Hlgx | | T BLY ) = Yu(X) 1}
dYb 213/2
X| 1+ W) } , (19

where Y¢(x) denotes the front interface of the finger and
Y,(x) its back interface. These equations depend on th
single parameteB = e/ (a?7,A%) [41]. The desired solutions
should satisfy at the tip the boundary conditiois(0)
=Y,(0)=0, dY;/dx(0)=—dY,/dx(0)= +«, and asymp-
totically dY;/dx(+2)=dY,/dx(+>)=0.

The solution of Eq(18) does not require any supplemen-
tary condition. Atx=0, it tends to zero a¥(x)~2x in
agreement with the chosen tip radius of length unity.xAt
=+o0, it diverges logarithmically,Y{(x) ~2 In(x). In fact,
Y:(x) can be obtained analytically,

X=2 arctarniv) + 1™
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vi+1
(v—1)2

Yi=In (20

with 1sv<+oo,

On the contrary, Eq(19) can be solved with the appro-
priate boundary conditions only for a particular value of the
parameteB. The two boundary conditions at=0 entirely
determine the solution of Eq19) once the front interface is
determined. The solutiorY,(x) should approach Y;(x)
—2/B] asx— + oo to satisfy the boundary condition at infin-
ity. A linearization of Eq.(19) around this asymptotic behav-
ior gives a convergent mode and a divergent mode growing
as exp(/Bx). So, the solution obeys the right boundary con-
dition atx= + only for the special values @& which can-
cel the prefactor of the diverging mode. This is numerically
found to happen foB.=0.533 ... which defines the line
of existenceA.(e) of the critical fingers in thed,A) plane.

In the following, we refer to the solution of Eq&l8) and
(19 with B=B, as the “critical finger shape.” It is plotted
in Fig. 4.

Remark.One can note that at the level of Eq48) and
(19) the interface is continuous and so are its first two de-
rivatives. However, its third derivative is discontinuous at
y=0) since one ha¥(x)= \2x+x/3
+... while Yp(X)=—2x+x(1—-2B.)/3+--- (and B,
#0). This weak nonanalyticity can be cured by introducing
£ small boundary layer near the tip as discussed in Appendix
A.

B. Retracting fingers

We consider a medium characterized by a param@ter
= el (a?7,A%) higher thanB,, that is, not excitable enough
to allow for the existence of spirals. We look for steady-state
shapes propagating at. We use as before/c, as unit
length wherecy= aA is the velocity of the planar front in the
considered medium. EquationiS) determining the fronty;
and backy, interfaces become

I c dve |2 dv, | 21372
ayr_ & D [ 2 . (2D
dX2 Co dx dx
d?y, ¢ dyp)|? Co
I o +(W + 1B IYi00 - ¥(0)]
dyb 213/2
e x| 1+ W) (22

The solutions should satisfy at the tip the same boundary
conditions as the critical fingers,y{(0)=y,(0)=0,
dys/dx(0)=—dy,/dx(0)=+«. Asymptotically, they
should obeydy;/dx(+)=dy,/dx(+%)=/(c,/co)>—1.

As for the critical finger, the solution of E¢R1) for the front
interface can be obtained for any value of the ratio
=c;/cy>1 and is given by

=t
I

n
uyJu?-1

v—U—\/Uz—l
v—U+U?%-1

2
X=—

0 arctargv) —

w
U ’
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FIG. 5. Several retracting fingert&) & 1.05,1.02,1.01,1.005 and
corresponding values d=0.5669,0.5479,0.5416,0.538 48) com-
pared to the critical fingetbold line).

vi+1

_, 23
v24+1-2Uv @3

1
Yf:Um

with U+ JU?—1<v<+o. On the contrary, Eq(22) for

the back interface can be solved with the correct boundary

condition only if B is chosen appropriately for each value of
U. Several obtained shapes are shown in Fig. 5. In 34,
the solution of Eq.(22) was computed in such a way for
several values df) close to one and it was found thgt/c,
extrapolates linearly to one whé—B.,

Cy

B—B,
Z=1+
Co

K l

(24

with the constanK=0.63.

We show how the resu({®4) can be derived by analyzing
perturbatively Eqs(21), (22) around the critical fingefr39].
For|c,/co—1|<1, the front interface of the retracting finger
y¢ is close to the front interface of the critical fing¥f on
distances of the finger tip small compared to,/€g
—1)"2 In this region, we linearize Eq$21), (22) around
the critical finger shape ag=Y;+ dy;,yp=Yp+ y,. The
correctionsédys , 8y, obey the inhomogeneous linear equa-
tions

8¢, dys\?
Ef(évf)=c—o el | (25)
8¢ dy,\? 8¢,
ﬁb(SYb):C_ 1+ ax + BCC—0—58
dYb 213/2
XLYH(X) = Yp(X)] = Boys || 1+ W)
(26)

We have introducedB=B— B, dc,=c;— Cy and the linear
operatorsC;, L, which are given by

d2 211/2

feae ) } ]

dv;

dx

0ia dy; d
—et ax dx’

1+ (27
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d? d
Cb:@_a(x)&_b(x)a (28)
with
a(x)=)2+3{1=B[Y;(x) = Yp(X) ]}

dYb 211/2 dYb

8 “(WH ]W*

dYb 27312
b(X)ZBC[l'f‘(W)} . (29

The boundary values at the tip afg:(0)= 6y,(0)=0. For
the derivatives, one obtains, using the asymptotic behavior
Y(X)~ = Yu(X) ~ V2x nearx=0,

doy¢ 1 éc,
| T3 (30)
dx | _, 3 Co

doyp 1| éc,

“dx X_O_§[C_o(l+28°)_258}' (31

As before, Eq.(25) can be integrated and one obtaifi
= 1,6¢;/cy Where n, is the solution of

de)Z

dx

Li(n)=1+ (32)

such thatz,(0)=0,7;(0)=1/3. Whenx— +%, 7, grows
like x?/6. The situation is different for Eq26). For largex,
Ly, reduces tal’/dx?—B,. So, in generaldy, grows expo-
nentially as exp(B.x) on distances of order one much
smaller than the region where the linearized equai®) is
valid. It is only whenéc,/cy is related in a particular way to
6B that the exponential growth is absent and thgf can
grow algebraically likedy;, as it should. In order to deter-
mine the relation betweewc,/cy and 6B that should be
imposed, we find it convenient to introduce the zero mode
&(x) of the adjoint[:g which vanishes(exponentially at
infinity,

d?¢ d
— o T glaX)E]=b(x)€=0, &(+2)=0,

Ty

Ly(€) Ix
(33

where the functiona(x) andb(x) are defined by Eq29). ¢

is uniquely defined up to a global normalization. A local

analysis shows thatautomatically vanishes at=0 and that

it tends linearly to zero whex—0. For definiteness, we

normalize(x) so that its maximum value is equal to 1. A

graph of¢ is shown in Fig. 6. We now multiply both sides of

Eq. (26) by £(x) and integrate ovex from x, to X,. Integra-

tion by parts gives for the left-hand side
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FIG. 6. Graph of the zero modgx) of the operatorﬁg nor-
malized by imposing that the maximum value &{k) is one.

X d d X2
[axevo oy =| €0~ dygs ~ax)Ex) 3y,
+ [Faxanoche). (39

The integral on the left-hand side of E®@4) vanishes since
Eg annihilates¢, Eq. (33). Moreover, wherx;—0 andx,

— + o the boundary terms also vanish whéy), satisfies the
correct boundary condition. Terms at +o vanish when

8y, grows algebraically sincé(x) vanishes exponentially.

There is no contribution at zero siné&y, and £(x) vanish

linearly, which compensates for the singular behavior o
a(x)=—3/(2x)+ - - -. Therefore, the right-hand side of Eq.

(26) has to satisfy the solvability condition,

OCy
C_[Il+BC(_|2+I3)]_5BI3:01 (35)
0

where the constants,l,,l; are given by the following in-
tegrals which have been numerically evaluated:

dy,)\?
—| |=2.771,

1+ ax

= fo “dxé(x)

b 21312
1+ —) } =3.814,
dx

Ip= fo “AXE) 72(0)

dYb 271312

(36)

ly= fo " AXEOLY 00 — Yo ]
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Note that the valueg36) of the integrals depend on the nor-
malization of¢ but that the expression of the physical con-
stantK appears as a ratio of such integrals and is thus inde-
pendent of thigarbitrarily chosejp normalization. It is also
important to remark that Eq35) shows that the tangential
tip velocity is an appropriate quantity for a perturbative cal-
culation aroundR since it has a smooth behavior whéR

is crossed. This should be contrasted with the retracting tip
velocity which decreases as the square root of the distance to
JdR on the retraction side and does not appear to have a
simple continuation on the spiral side &R.

C. Steadily rotating spirals

ForB=e/(a?7.A%) <B., steady spiral waves exist. Their
tip rotates around a circular coRy, at a constant tangential
tip velocity ¢;= w;Ry. WhenB— B, R, diverges,c;— cC,
and the tip of the spiral becomes closer and closer to a criti-
cal finger. In this subsection, we determiRg and w; as a
function of B (“the excitability of the medium’). We begin
by considering spirals of radius large enough so that one can
neglect the disturbance of the medium due to the spiral pre-
vious passage. In this case, the front interface can be as-
sumed to propagate in the medium rest state. The spiral
shape is analyzed by decomposing it into three overlapping
regions where different approximations can be performed.
Close to the tip, on distances of ordeg,= €/c,, the curva-
ture of the tip trajectory can be neglected and a transposition
of the analysis of the preceding subsection shows that the
tangential velocity is linearly related t6B=B—B; by Eq.

(24), namely, 6c;= 6B/K (both sides being negative now
Far from the tip, it is the effect of the interface curvature on
fhe normal velocity Eq. (5)] which can be neglected. The
normal velocity can be taken constant, equatgoand the
spiral shape is then simply determined. These two approxi-
mate descriptions match at a distance of ordefrom the
spiral tip in an intermediate region where the interface is
almost normal to the tip circle of rotation and the interface
curvature is small. The intermediate scaleappears as the
balance between two effects. On one hand, the tip tangential
velocity is smaller tharcy by aboutw,/” for purely kine-
matical reasons so thaéc,| ~cy//R,. On the other hand!

is the distance where curvature effects become small enough
to be comparable to this velocity drop. At a distancérom

its tip, the critical finger curvature is of the ordeRgp//’z.

This provides the alternative estimatie,| ~ eRy,//%. Com-
paring both expressions and remembering tRgi= €/c,
gives /'~ (R§Ro)® and |8c,/co| ~(Ryp/Ro)?% The de-
tailed analysis reported below replaces this simple order of
magnitude estimate by the precise asymptotic relation,

CO_ Ct ;. % 2/3
Co Ro '

(39

Equation(35) shows that the tangential velocity of the re- Where the numerical constants obtained from the first zero
tracting finger tip depends linearly on the departureBof @i Of Airy function Ai [42], b= —2"%a,=2.946[36]. Com-

from B, as stated in Eq24). The proportionality constar

paring Eq.(38) with Eq. (24) determines the frequencies and

is in excellent agreement with the value obtained by numericore radii of steady spirals near the ling(e),

cal extrapolation in Ref.34].

K=Bg+ (13— Bcl,)/13=0.630. (37)

bK

Ro=Rip B.—B

)3’2 Co (BC—B
' 1

3/2
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Ci/Co— 1~ (€/RoCo) #2. In the limit Ry,= €/Cu<Ry, this jus-

We first consider the front interface and assume that théfies the expansion leading to E¢42) and the neglect of

spiral propagates in the medium rest stdtes is of course

higher-order terms. Introducing the rescaled varialjle

justified only if the spiral period is long enough and it is =x[ el (2¢c4Rp) 1*3, Eq. (42) becomes

required to be sufficiently close to the lidR). The equation

for the front spiral interface is then identical to the classic
equation for the growth of screw dislocations on crystal sur-

faces[40]. For a steady rotation at frequenay in a coun-
terclockwise direction, Eq(5) gives for the front spiral in-
terface in polar coordinates ()

vz (olef (d/dr)(rd 6 /dr)
+e€ —

1+ (rd 6;/dr)?
(40)

with the boundary condition at infinitg6; /dr— — w, /c,.
Rescaling coordinates makes it clear that Ef) depends
on the single dimensionless paramefer wle/cg. For O
<(<0.331, it is found thatdf; /dr— +o atr=R, when
Eq. (40) is integrated front = + . Ry is the location of the
spiral tip and is found to increase from 0 tex when ()
decreases from 0.331 to 0. The linft—0.331 has been
considered in previous work29,30. We focus here on the
other limit Q—0 where the excited region width—(e/cg)
becomes much smaller than the core radivcd/w,). In

d¢9f)2
1+

Tar

rw,=Cq W‘f’

1d%y 1/dy\?
E d_é.’z Z d_f §+ ap, (43)
where we have defined
213
al:21/3( CO_RO) ﬂ_ (44)
€ CO

The Riccati equationi43) can be transformed into the linear
Airy equation. Matching with Eq(41) imposes thatly/d¢
<0 whené— +., This imposes that the Airy function de-
creases at infinity and is proportional to p2]. It gives
dy/dé=2A] (é+ay)/Ai(é+a;). Using the asymptotic be-
havior [42] Ai( &)~ 1/2m~ Y& Yexp(—2/3¢°?), one indeed
checks that the obtained largebehaviordy/dé~ — 2/¢ co-
incides with the behavior of Eq41) nearz=1. Matching
with the tip region requires that the small behavior of
dy/d¢ coincides with the asymptotic behavior of E{.9)
whenx— + %, namely,dy/dx~ 2/x2. This requiresa; to be
a zero of Ai. Sincey(¢) should be well defined for all real

this limit, the front spiral interface can be separated intopositive & it is necessarily the first oney,=—2.338L. ..

three distinct regions.
(1) Far from the spiral tigthe outer regiop the interface

scale of variation ixy/w;. Introducing the rescaled coordi-

[42]. Comparing with the definitiod4) of a; directly leads
to the relation(38).
The relationw;(Ry), numerically determined if43], was

natesr =z¢,/w; shows that the terms involving the interface approximately obtained ifil8,28 by assuming a radial de-

curvature are multiplied by the small parameferNeglect-
ing them, Eq.(40) becomes

d GOUI —

z iz —\/zz—l,

(41)

parture of the front interface imposed on a fictitious inner
radiusR,. This boundary condition is equivalent to requiring
that 6 be maximum atR,. It is worth noting that, in the
present limit, it would simply amount to replacing the exact
value of the constard; by the location of the maximum of
Ai, namely,a;=—1.018® ... [42]. Correspondingly, this

which is of course integrable. This first approximation breakswvould replace the exact value=2.946 in Eq.(38) by b’

down nearz=1, where the solution of Eq41) has a fast

variation on thez scale and the formally negligible terms are

important.
(2) Close to the spiral tip, Eq40) can be simplified in a
different way. One can introduce the radial distarndeom

the tip circle of rotation measured in unit of the tip radius

=1.283.

2. The back interface

The equation for the back interface reads, in polar coor-
dinates,

such thatr=Ry+ e/cox and the tangential displacement a de,\ ]2
yelco=Ryf;. At lowest order ine/(cyRy), Eq. (40) be- Frw;={ —Cot wlTe(‘gf_‘gb) I+irgr
comes identical in these variables to Ef8) for the front
interface of a critical finger. . dé, N (d/dr)(rd6,/dr) 45)
i ioti i €l — .
(3) These two different descriptions do not directly match. dr 1+ (rd 6y /dr)?

The transition occurs in an intermediate region where the
interface curvature is small and the interface tangent almo
radial. We thus assum@nd checka posterior) that dy/dx

is small and expand the square root and denominator in E
(40). This gives

%s for the front interface, we proceed by separately analyz-
ing three regions. We consider first the tip region which
cﬂJIays the dominant role here. Introducing as before the co-
ordinatesx andy such thatr = Ry+ e/cyX,ye/co=Ry6,, EQ.

(45) becomes at lowest order wicyR, identical to Eq.(22)
describing the back interface of retracting fingerscept that
now c;<c, andB<B,). As in this previous case, requiring
that the back interface does not diverge exponentially from
the front interface relates /cg to B. For B close toB., one
can linearize around the critical finger and follow the previ-
ous analysi$25)—(37) which leads to Eq(24). The compari-

d?y

+ 1
dx?

(42

Ci—Cy € 1/dy\?
dx

+ X==|7
Co CORO 2

where the tangential tip velocitg;=Row has been intro-
duced. The different terms of E¢42) are of comparable
magnitude for x~ (RyCo/€)Y3 dy/dx~ (e/Roco)Y®, and
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son of Egs.(24) and (38) gives the expressio(B9) for the ARG
spiral core radius and frequency of rotation as a function of rog=clvo+ove(r)]| 1+ fm) }
B.
As one moves away from the tip, the ba¥l of the dé; (d/dr)(rd;/dr)
critical finger relaxes exponentially towaltt—2/B. on the € W+—2 , (49
scale of the finger tip width. The equations describing the 1+(rd@s/dr)
back and front interfaces are thus essentially identical in the
intermediate and far regions and the analysis of Sec. IVC 1 de,\ 2]
applies as well to the back equation. roy=—clvp(r)] 1+ r?) }
(deb (d/dr)(rd ab/dr)>
D. Steady self-interacting spirals +e|l —+ . (50
dr  1+(rd6y/dr)?

The analysis of the preceding section applies when the
spiral periodTo=27/w, is long enough compared to the
recovery time constantg so that the front interface can be
assumed to propagate in the medium rest state. This appli
for A sufficiently close toA.(e) but as the medium excit-
ability increases the spiral radius decreases and the front in-
terface begins to feel the medium disturbance due to theM: Ct
spiral previous passages. This eventually leads to spiral me-gyx2 ¢q

In the tip region, it is useful to introduce as previously the
coordinatesx and y, with r=Rg+ e/coXx,ye/cu=Ry6. At
fSwest order ine/(coR,), Eq. (49) becomes

dyf 213/2

dyf 2 o
(d—) }‘[170““”

ander as we show in the next section. As a preliminary step, (51)
we analyze here the influence of this medium modification
on the steady spiral parametétg and w,. We are interested in the parameter region whede(r)/c,

Thg concentration of the controllar on the front qnd is of the same order asc, /c,. As found above, this happens
back interfaces follows from Eq$8) and (7). For a spiral  \hen the spiral period is large but only logarithmicallyen

rotating steadily at frequency, in a counterclockwise di- This allows us to expand the exponential in E4g) and to

rection, they are given by obtain the expression of the medium perturbation as a func-
V(1) =vo+ ove(r), (46) tion of the critical finger shape,
= 5v((1) =B Y{(x)— Yp(x)] p( ZWR‘)) (52
—ovq(r)= X)—Yp(X)]exp — .
05(r)— Op(1) Co ! ot b CoTr
vb(r)=vf(r)+—wlT , 47
¢ We expand the spiral front in the tip region around the
critical finger shape ag:(x)=Y(x)+ dy;(x). The correc-
with tion 8y;(x) obeys the equation
8¢y dy;)? B
0+(r) — Op(r) Ef(éyf)=c— 1+(W) +B.e 2™Ro/Comr
ovi(ry=——— 0
W1Te dy; 2132
XD [27+ 0y(1) — (1) w7} XY= ¥ula)] 1+ W) } 59
1-exp—[27+ 6y(r)— 6:;(r) )/ wiTg}”
(49 where the linear operatd; is defined by Eq(27). 8y can
be expressed as
Near the lineA.(e€), w4 tends to zerodv¢(r) becomes neg- _ OC 2R fenr
ligible, and the concentration af on the front interface can 5Yf_c_0 N1+ Bee  “TTON0Ry, o, (54)

be taken equal tw, as done in the preceding subsection.
This approximation is justified as long a%; induces a ; ; ;
change in the front velocity which is negligible compared towhere 71 is defined in Eq(32). 7, o obeys

the differencec,— ¢y between the tip velocity and}. That is, v, 2132

for exp(—ZwRolcorRK&ct/cg/ or using the estimatg39), Li(7y0=[Yi(X) = Yp(x)] _f> } . (55
exd —2mRy,/co(bK/B.~B)**<B.~B. Therefore, one dx

can neglect the perturbation of the medium as longBas

—B<€?® (up to logarithmic correctionsor equivalentlyA with the boundary conditionsz, o(0)=0,(d 7, o/dx)(0)
—A <€ The results(39) are modified whersv((r) be-  =2/3.

comes comparable t@#c,. The transition regime where In the same way, we obtain, in the tip region, the lowest-
ov¢(r) is still small can be analyzed along the lines of theorder correctiondy, to the back interface of the critical fin-
previous subsections, ger Yy(x),

1+
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1+

dyy\? 8¢, The medium disturbance due to the spiral previous passage
W) } [( ¢ —0oB has two distinct effects which are comparable to lowest or-
der: (1) the medium “excitability” is reduced in the tip re-

gion, which modifies the tip velocitjEq. (57)], and(2) the

tip velocity should be compared to the velocity of a periodic
. train of planar waves which is slower than the velocity of a

%) } (56  Single planar pulse.

dx ’

oCy
Ly(0Yp) = o
0 0

_ Bce(Zﬂ'RO/COTR)) [Y:(X) = Yp(X)]—Bcdys

X |1+

where the linear operatdty, is defined by Eq(28). Equation
(56) is similar to Eq.(26) and can be analyzed in the same
way. The solvability condition that should be obeyed in or- We consider now the spiral dynamics in the vicinity of the
der for oy}, not to diverge exponentially as— + is found  line A(€) (for e<1). In this limit, several simplifying fea-

by integrating both members of E(:6) with the zero mode  tures made the previous analysis of the steady states pos-
&(x) of the adjoint ofC,, . This gives the following generali- - sjple. These still hold when one is interested in an unsteady

V. DERIVATION OF KINEMATIC THEORY

zation of Eq.(24): motion taking place on a time scale comparable to the steady
rotation period which is long compared to the time scales of
8¢ 27R, : )
KC_: SB+B.Jexp — c , (57) the internal modes of the wave tip.
0 07R

(i) The dominant effect which shapes both the steady spi-
whereK =0.630[Eq. (37)] and the constant is rals and retractin_g finger tips is the curvature dependence of
the normal velocity. As a consequence, the shape of a wave
v.0 tip is close to a critical finger up to a distancefrom the tip
J=1+ Bci:1.872. (58)  \where the curvature effects have become small enough to be
comparable to the velocity difference between the tip and
I3 is defined by Eq(36) andl, ( is given in terms of(x) planar front velocity, namely, whemo—ct~eRtip//2

Eq. (33), and 7, o, Eq. (55), by [where we have evaluated the curvatured?Y,/dx?
. 21312 ~Rtip//2 at x~/" using the asymptotic behavior; /Ry,
Iv,O:f dXE(X) 7y o 1+ ax =12.553. (59 ~In(x/Ry,) for x/Rgj,>1]. This yields the relation/

0

~Ryip/V1—ci/cq that remains also true in the unsteady case.
The motion of this “solid” shape can be determined from
he knowledge of its instantaneous tangential velocitgnd

of its instantaneous rotation rateobtained by extending our
previous analysis of the steady states.

(i) The tangential velocitg,; depends on the “average”

concentration of the controller in the vicinity of the tip.
The precise definition of the average is obtained by using a

To complete the analysis, it remains to match the tip re
gion to the outer part of the spiral. As one moves away fro
the tip, the finger widthY{(x) — Y,(X) relaxes exponentially
toward its asymptotic value B, on the scale of the tip re-
gion. Therefore in the intermediate and far region,
advi(r)lcyg, Eqg. (52), is equal to lowest order to
2 exp(~2mR,y/cy7r) and the matching equation becomes in-

stead of Eq(42) solvability condition which generalizes Eq85) and (57).
(iii) A tangential velocityc, smaller than the asymptotic
C—C 2R 1/dv\2 d2 norma] velocityc, of the wave gives rise toa ro-tat|0n of the
t 0, ;{— T O) + sz _(_y) + —Z solid tip at a ratew which can be estimated as in the steady
Co CoTr/ CoRo  21dx/  dx case. As stated above, the wave tip has a solid char@eter

(600 is close to a critical finger shapeup to a distance/
~Ryp/V1—ci/cy from the tip. Since kinematics requires
that w/~cy—c;, one obtains for the rotation rate
~Co/Rip(1—co/c)*2 As shown in Appendix B, this rela-
tion is established on the time scateR;,/(co—c;) much
shorter than the steady rotation period. Therefore, on this

=a;=—2.338.... (62) latter slow time scale, the slowly varying rotation rate is
linked in an adiabatic manner to the slowly varying tangen-

The difference between Eg&1) and(38) is simply thatc, is  tial velocity by the same relation, E438) or (61), which

not compared to the velocity of a single planar pulse but taelates the steady-state frequency to the tip velocity.

the velocity of a train of pulses of wavelengthrR, (the We begin our analysis by considering the kinematics of

asymptotic wavelength of the spiral to lowest ojd€@om-  the wave tip motion. We then compute the tangential veloc-

paring Eqgs.(57) and (61) determines the radiuR, of a ity of the tip as a function of the concentration of the con-
steadily rotating spiral as a function of the medium charactroller v in the medium left by previous passages of the

Matching with the tip region gives in a similar way

CORO 213 Ct_C0+ZeX _2’7TRO
€ CO COTR

2—1/3

teristicsB, wave. As a result, we obtain an ordinary differential equation
with delay which describes the motion of the wave tip. An
2/3 2R - . ) . )
B € TR analysis of this equation at the linear and the weakly nonlin-
B.—B=Kb| —| +(BJ+2K)exp — . : L :
coRo CoTR ear levels determines the characteristics of the meandering

(62 instability near threshold in the weak excitability limit.
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A. Parametrization of the wave tip motion vy
We use polar coordinates () with the origin at the A ,«’Vb
center of the circular steady spiral core. The wave tip motion (@ Vs — X
is determined by its tangential velocity({v}), a functional Al
of the (space- and time-dependgmbntroller concentration v ]

which will be computed in the next subsection, and by the

rotation rate of the shap@r, equivalently, by the radius of

curvature of the tip trajectojy We use a complex notation
z(t)=r(t)exp(#) to denote the tip position. Then, the tip (b)

velocity is|z| and the shape rotation rate In#(|z|%) where

time differentiation is denoted by a dot amds the complex
conjugate ofz. The tip motion is thus determined by the two
equations

FIG. 7. Schematic plot illustratingg) the variation of the con-
troller field v on the instantaneous wave front, (solid line), re-
sulting from the previous passage of the spiral wave at the same
angular position with the tip displaced radially outwardsdhylhe
L dashed line if@) indicates the variation of on the wave backyy,,

Im(zz/|2|%) = c,({vH/Ri[c({v})], (64) at the time of the previous passage of the spiral. The solid and
) ) dashed line inb) represent the spiral boundary at the present time
where at this stage({v}) can be thought of as a given (solid line) and at its previous passaggashed ling Note that the
function of time. The instantaneous radius of rotatiyris & excitability averaged along the instantaneous wave front is higher
function of c,({v}) given to lowest order in the interaction than for steady-state rotation due to the radial displacement after
parameter by Eq61), one rotation. Our formalism provides a rigorous procedure for cal-
culating how the instantaneous tangential velocity of the wave tip
Ct—Co 42 ex;{ ZWRO) changes in response to this spatially varying excitability.
Co Co7r

2| =c({v}), (63)

CORi 2/3

c =—b. (65

We obtain the equation for the radial motion of the tip by
We will actually find that the meander threshold occurs besypstituting in Eq(68) the expressiori67) of i,
fore a significant modification of the steady-state radius by

g;:rirétgrécg)ion so that Eq65) can be replaced by the sim- d+w§q=w§5RiCo/6- (69)
b 3/ Finally, it is convenient to use the tip angular positién
Ri[ct]:i( Co ) _ (66) =w t+ ¢(t) instead of time. To lowest order ig/R, this
Co\Co~Ct simply gives
We consider the motion of a spiral tip which is displaced d2q coR/[°]

from its steady-state position=[Ry+ eq(t)/cyle' 2t ¥V — :'—tacq, (70)

(see Fig. 3 We restrict ourselves to displacements of the tip de? €

which are comparable to the tip radius of curvatete; [i.e., )

g(t)~1] and therefore small compared to the radius of theWith

steady coreR,. As a consequence of the tip displacement, A 5/3

the controller concentration and thag{v}) and R; depart CoRi[ct] — 3 (CoRO) (71)

slightly from their steady-state valuesg,({v})=c? € 2bcy| €

+ 5Cq({V}),Ri = R0+ oR; . . ..
We assumeand will checka posteriorj that the time from a dlfferent_latlon o_f Eq(65). In order _to have a closed

scale of the unsteady motion is of the order of the steadygduation forg, it remains to expressc, in terms of the

state periodTy=2/w,. We expand Eqs(63) and (64) in previous positions of the wave. We now proceed to this task.

the small parametee/(cyRy) and keep only the dominant

terms, |Z| = w,R[1+ Wa)1+qe/(coR0)+ . '],Im(iz;/|'z|2) B. Computation c_Jf the ta_ngent!al tip velocity
= wq[1+ ¢l w1~ €q/(Cow3Ry) + - - - ]. Equation (63) gives for self-interacting spirals
therefore at lowest order ie/(coRy) We consider successive passages of the wave tip by the
angular positiond. The successive radial displacements of
. 0Cq € the tip are ...€q(0—2m)lcq,eq(6)/cy,eq(6
- R_o_ m‘”lq' (67) +2m)/cy, ... . Let us consider the passage at the position

Ro+ €q(8)/cqy in the Cartesian coordinate system() at-
which shows that//w,~ e/(coR,). Using this scaling, Eq. tached to the wave tijgsee Fig. 7 in which we choose to

(64) becomes at lowest order measure Ien.gths in un[ts @fco . The controller concentra-
tion v¢(x; #) in the medium just ahead of the front interface
e q . éc SR. is related by the controller recovery kinetics E8) to the
— —+y= —q—c?—z'_ (68 controller concentration left just behind the back interface
CoRo @1 Ro Ro vp(X; 8—27) at the previous passage. At dominant order in
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el (coRy), one can neglect the tip width compared to the core " AR -
perimeter and the time interval between two passages of the £i(dy1)=——|1+| -] |+Bce To/ /LY ¢(x+d(6))
spiral by the same angular position can be taken equal to the 0
steady spiral period, dy;\?]%?
—Yb(X+ d(0))]®(x+ d(0)) 1+ W) } s
. TO
Vi(X; 0)—v0=exp< - T_R) (76)
X[Vp(X+q(8) —q(6—27);0—2m)—V,]. with the solution
(72 5¢,
éyf:C_o 71+ Bcexp(—To/ 7R) 7y,4(0) - (77

In Eq. (72), note thatv¢(x;6) is related tov,(x+q(6)
—q(#—2m);0—2m) since the argument in; refers to a
frame attached to the wave tip with origin R+ eq(0)/cg

The linear operatof; is defined by Eq(27), #, is defined in
Eq. (32), and , 4 is the solution of

whereas the origin of the coordinate fog is at Ry+ eq(6 dy;|2]32
—2m)lcy. Li(nyq)=[Yi(x+d)=Y,(x+d)]O(x+d)| 1+ W) } ,
The controller concentrations; andvy, at the same pas-
sage are also simply related by the controller production (78
equation in the excited regioi®), which generalizes Eq55), with the boundary conditions at
x=0, 7,4(0)=0,7,,4(x)~ X/2[Y{(d) — Yp(d)]O(d) for
_ x<<1.
_ _ Yi(X) = Yp(X) o . o . o
Vp(X; 0)=Vvi(X; 0)+5T. (73 Similarly, the back interface equation in the tip region is
e
d?y, ¢ dyp|? a

lterating back in time Eqg72) and(73), we see that ;(x; ) B2 Co H) +[ 1= C—O[vf(x, 0)=Vol
depends in principle on the positions of the tip, at all previ-
ous passages by the angular positién However, the ea dy, | 21%?
memory of the positionj(#—n2) is suppressed by theth = ———Lyi(X)=yp(X)] |1+ a)
power of the small parameter exp(y/7g). Therefore, to CtCoTe
dominant order the controller concentration only depends on (79

the position of the tip at the previous passage,
After linearization around the back interface of the critical

finger,yy(x) = Yp(X) + dy,(X), one obtains for the correction
yi(x+d(0))—yp(x+d(0)) Ny,
sc dvy\?
e (—b)

CiCoTe
¢ dx

X[Y§(X) = Yp(x)]=Bce™ OR{Y(x+d(6))

Vi(X;0)=vy+ ee To/R

+1|B,—-oB

X O (x+d(0)), (74) Ly(8Yyp) o

8¢, )

where we have defined the relative displacement of the tip

between its two passagdéd)=q(6)—q(6—2m). O is the

usual Heaviside step functio@(x)=0 for x<0 and®(x) —Yp(x+d(6))}O(x+d(6))— By

=1 otherwise. Equatiofi74) determines the controller con-

centration on the front interface & as a function ofg(6) dy,) 2|32

—q(#—2m). It is now an easy task to generalize the previ- dx ' (80)

ous computations and obtain the tip tangential velocity cor-

responding to this concentration. Multiplying both sides of Eq(80) by the zero mode&(x) of
As for steady interacting spirals, we obtain for the frontthe adjoint of{,, and integrating fronx=0 to +« gives

interface in the tip region

X |1+

5Ct —To /1
C—0[|1+Bc(|3—|2)]=55|3+5ce 0" R[I34¢9)+ Bely,aca) ],

d? c dyy)? @
d—yzf:C—t 1 (d—):(f) —[1—C—[Vf(X;a)—Vo] (81)
X 0 0 where the definite integrals,|,,l; have been defined in Eq.
dy; | 21372 (36) andl 4,1, 4 are given by
X 1+(5) (75)

l34= fo wdxg(x)[Yf(X+ d)—Yp(x+d)]O(x+d)

The only difference with Eq(51) is that v¢=v(x;6) — v,
is now given by Eq.74). Expanding Eq.(75) around the

" > . X
critical finger shapey;=Y;+ dy;, one obtains, as before,

dYb 213/2
”(W) } ’
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20 , , : In each case, the tangential velocity depends on the average
controller variable in the tip region and can be computed
from a solvability condition.

1.0+

VI. MEANDER
In this section we analyze the classic meandering instabil-
F oo ity in a linear and nonlinear regime. Substitution of E8¢)
in Eq. (70) expresses the right-hand side of E@0) as a
function of q(6)—q(6—27) and provides the differential
equation with delay governing the tip motion
-1.0
d%q
@+q=mF(q(0)—q(0—2w)). (85)
~2.0
-10.0 10.0 . .
The parametem is given by
FIG. 8. Graph of the spiral self-interaction functiéiid) vs tip 3B, [ RyCo 5/3
displacementd for different controller diffusion lengths”’,=0 M=ok | e exp(—To/7R). (86)

(solid line), /=1 (long-dashed ling and /=3 (short-dashed
line). The generalization of for finite controller diffusion is con-

sidered in Sec. VI A and Appendix C. Values of m of order unity are reached when

(RoCo/€)®Pexp(—Ty/m)~O(1). In this parameter regime,
one can use the simple formu(89) to estimate the spiral

%) 2}3/2 82 parameters since in E¢62) the correction ternfthe second
d .

+ o0
lv,d:fo dx&(X) 7y 1+

term on the right-hand sigeis of order Rycq/

€)?Pexp(—2mRy/cymr)~O(1) compared to the first term on

Finally, this gives the tangential tip velocity as a function of th€ right-hand side and therefore smaller diyR,Co). This

the tip displacement provides the explicit expression af in terms of the param-
’ eterB which characterizes the medium

1] 6B B

O 0% e Tolm g4 F(q(0)— g0 2m)], ~ 3B(bK)¥ [ 2me( bK | .

co K K M= 5 g5 > |5 —8 (87)

(83 (Bc—B) CoTr \ Pc
where the constant€=0.630 andJ=1.872 are defined in A. Linear stability analysis and instability criterion
Eq. (37) and Eq. (58). The function F(d)=[(lq We begin by studying the linear stability of E¢85)
+Bcly,a)/13—J] vanishes ad=0 and is plotted in Fig. 8 416undq=0, that is, the linear stability of steady rotation.
[44]. _ _ For q<1, one obtains
Comparing Eq.(83) with Eq. (57) for the steady case

shows that the change in tangential velocity due to the tip d2q
displacement is @+q=a[q(a>—q<9—2w)], (88)

5Cq:COEe—TO/TRF(q(0)_q( 0—2)). (84) where we have intrqducad: mF’(O). Seekingq under the
K form q=A exp(ob) gives the eigenvalue equation

. . o o?+1=a[l—exp—270)]. (89)

C. Computation of the tangential velocity in other cases

We conclude this section by emphasizing that, although For any«, o.==*i are isolated solutions of Eq89).
the present kinematic theory is quite general, the precise exthey simply correspond to the two translation modes of the
pression for the tangential tip velocity that is to be used inspiral: for a steady spiral which is slightly displaced from the
conjunction with Eq.(70) depends on the application at origin and centered atx,yo) with Xo<R,yo<R, the dis-
hand. For example, Eq(84) above is valid for self- tance of the wave tip to the origin varies sinusoidallygas
interacting spirals without external forcing and is therefore=|zo+ Ryexp(6)|—Ry=X,c0s8+Yosin 6.
perfectly suited to analyze meander in the next section, or The other solutions of Eq89) vary with «. For small
interacting multiarmed spirals with a minor modification «>0, the right-hand side of Eq89) is comparable to its
given in Sec. VIII. For the non-self-interacting spiral with an left-hand side only if the real part @f is large and negative,
excitability that varies slowly in space or tin{8ec. VIIA),  that is, Re¢)~ — 1/27 In(«). Therefore, for smalk, all ei-
one can use directly the results for steady-state rotgfiogn ~ genvalueddifferent from the two translation modekave a
(24)], whereas under the action of an external fi€RBkc. negative real part and the steady rotation is stableaAs
VIIB) one needs to compute a different expression for théncreased, the eigenvalues move continuously in the complex
tangential velocity. The general procedure, however, is cleaplane. An instability occurs when the real part of some of
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3.0

8=-1.2
£=0.445

g
8(\‘
0.60 F'(0)
8=-1.5
e=0.085
0.50 L2 s ; s
0.0 0.05 0.10 0.15 0.20
glc,R,

FIG. 9. Plot of w,/w, Vs cy/€eRy obtained by simulations of
FitzHugh-Nagumo kinetics witH (u,v)=3u—u3-v and g(u,v) 00 50 100
=u— & (solid line and circles cy=(5°—36)/2'2 The dashed line b
represents the extrapolation to the asymptotic limyt/ w,=1/2
predicted by our analysis. These simulations were carried out usinfq
a second-order accurate direction implicit scheme wdtk/'e 10
=0.33 anddt/e=0.1. The inset shows an example of a large core
meander pattern fog=0.180 andé= —1.4, wherew,/w,=0.67.

FIG. 10. Derivative atd=0 of the spiral self-interaction func-
n F(d;/p) vs the diffusion length’y . The dashed line shows
the large#; [Eq. (C26)] asymptotic behavior.

text, the onset of meander occurs right at the critical finger

them traverses zero and becomes positive. This happens Rgundary. However, when one starts from the full reaction-

nary rooto=i(, namely, for the order ofe. This eliminates any short distance nonanaly-
ticity and cutoff the divergence d¢f'(d) atd~A~ €' This
a1—cog2m0)]=1-02, (90) gives the estimate F'(0)~—In(e) and A.,—A,
— 65/9/||n(€)|2/3.
asin(27Q) =0, (92) The nonanalyticity of also disappears if the slow field

diffuses, that is, if instead of E@6) one has

Eqg. (91) requires thal) be a half integer. Equatiof®0) can 5 . . .
therefore be rewritten as-10%=a[1— (—1)?], the only dv=yeVv+gU-(v),v) in D-. (92
solution of which is, fora.>0, Q= *1/2,a.=3/8. . o

We therefore conclude that for<0a< . all eigenvalues For a sufficiently small diffusion constant one can neglect
different fromo . have a negative real part. Asincreases entirely the diffusion in the excited regid® * and consider
pasta.=3/8, a couple of eigenvalues traverse the imaginanPly @ radial diffusion ofv in D~. The controller concen-
axis and acquire a positive real part. The vaite a. is thus tration on the front spiral interface in the tip region is then a
the threshold of a Hopf bifurcation and corresponds to theéMoothened version of E¢74),
meander onset with a frequency ratio at threshold v,

=1/2. This ratio is consistent with the extrapolation to infi- o ee TR dx o xHd()-x'1212
nite core radius of numerical simulation results as shown in Vit Vo= CoCie Jo 7/
Fig. 9.
It is interesting to note that as is further increased, the X[Y¢(X")=Yp(x")], (93
frequency of the two linearly unstable modes decreases and
the two unstable eigenvalues become purely reabfora, Vp=Vi+ e(Y:(X) = Yu(X))/(CoCiTe). (99

(a, is simply determined as the value af for which Eq.
(89) has a doubly degenerate roetr= (o /) exp(2ra;)  The finite diffusion length/p=\4eyToCo/e removes the
with o2+ 1= (o,/7)[ exp(2ra;)—1] which giveso,=0.375  short distance analyticity and gives a finite first derivative to
and a,=1.260. This may explain why a previous analysis F at the origin which decreases with increasifig as plotted
performed at smalk, but away fromdM [29], yielded only  in Fig. 10 (see also Appendix \C This decrease of stability
real unstable modes instead of complex conjugate eigenvalvith a decrease of ; qualitatively agrees with the numerical
ues as expected from a Hopf bifurcation. results off45]. Of course, diffusion controls the stability only
Given the expressio(87) of the constantn, the criterion  if /5 is much larger than the interface widbr the width of
for meander onsei.=mF’(0)=1/2 implies that, for small the tip boundary laygr When it is much smaller, stability is
€, the meander boundaty,,,(€) lies close in the §,A) plane  controlled by finite interface width effects as discussed
to the critical finger boundanA.(e) (see Fig. 1 with A, above. When the two effects have comparable magnitude,
— A~ €29 9F 7 (0)]. the numerical results ¢#5] suggest that more complex sta-
In the pure sharp boundary description with no diffusionbility diagrams are possiblé.e., there is a region of reen-
of the controllerv field, the behavior of the functiof is  trant stability. It would be interesting to see if this could be
nonanalytic at short distandé(d)~—0.57&lIn(|d|) for d  explained by a more complete computationFofaking into
<1 as shown in Appendix C. This implies that, in this con-account both finite interface effect and diffusionwaf
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We conclude this subsection with a simple interpretation I'=mF"(0)/2, (99)
of the obtained results. The existence and magnitude of the
instability threshold can be understood by considering a dis- B=—mF"(0)/6. (99)

placement of the wave tip by a small distartteowards the

outside of its steady circular trajectory. Since the outside o - -
the core is slightly less excitable than the inside, this outwar(\;)r} \'/:vril:: r;g eESl'J(rzsiyhgrephs (;/L?nzl;?)? (I)i?nei? ;P;it E)Zir? ?gl? gr? Iggfg):)f

d|splacement \.N'" cause the spiral tip to propagate in a Ies?i\ither by taking into account finite interface width effects or
excitable medium and to rotate on a new larger rad®us by a small diffusion ofv [e.g., for/p=1 one hasF’(0)

= Ro+ 5Ri>R0. The faCt that5R|>0 by |tse|f iS not Sufﬁ' 2112]:"(0):2810_2,':,"(0)2 _ 11] NOte, hOWeVer, that

gednir:ot%eatje' ar|1 mstablltlty.f Itth's only ”;R' IS Iark')ger thapf_ g. (85 is well defined even for the nonanalytic sharp
at th€ displacement of the wave tip can beé ampiilie oundaryF. We shall comment in the next subsection on the

and meander can appear. Th_eTe/XC|tab|I|ty change due to the, ., amplitude behavior in this case. Equati®b) is valid
displacementl |s|5B|~d/Rtipe o’"R where the exponential in a regime where the parameter

factor simply reflects the global attenuation of excitability
variations between two passages of the wave. This excitabil-
ity change leads to a variation of the rotation raditR;

— ) . o TolTR—
dRo/dBSB. Thus, &R;/d~(dRo/dB)/Rype o™*f~m which defines the distance above the onget=3/8) of the

and the onset of meander occurs forof order unity in meandering instability, is small. Next, we seek perturbativel
agreement with the above stability analysis. The period dou; g Y : ’ X y

bling like character of the unstable motidne., w,/w; for time periodic solutions of E¢95) of the form
=1/2) can also be attributed to the radial gradient of excit- o

ability at the edge of the spiral core. A wave tip displaced _ inQo

outw)::lrd from thg center at erl)given passage will ppropa%ate, at q(&)—qo+n§:‘,1 Ane T C.C (10

its next passage, in a medium more excitable than the one

produced by steady rotation. This will cause the tip to eXxwhere as beford)=w,/w; is the ratio of the Hopf fre-
ecute this second turn on a smaller radius and thus, to propguency at the meander bifurcation and the primary angular
gate again in a less excitable medium and with a larger rarotation frequency. Substituting E€LO1) into Eq. (95) and

dius at the next cycle, leading to the period doublingfocusing on the first two modesi & 1 andn=2), we obtain
behavior. As we shall discuss in Sec. IX, this picture iSat once that

modified by finite core effects that roughly make trajectories
of larger radius take a longer time to complete one rotation. , 2, _ _ n N1 2
This effect causes the spiral tip to return sooner inside the (m05 4+ DAL= a(1= A+ 2T AA(1= (1= 85)
core and, in turn, leads,/w, to increase away from 1/2 —38(1— O)A(1— )AL A2, (102
with decreasingR,.

pn=a—ac, (100

_ _ (—4Q%+ 1A= (1-)’Al+ a(1-{*)A—2B(1-0)
B. Nonlinear dynamics

We now carry out a standard weakly nonlinear analysis of X(1= (1= P)AR A%, (103
the wave tip equation of motio(85) and show that the bi-
furcation to meander is supercritical in agreement with existwhere we have defined
ing numerical studies of reaction-diffusion mod¢ist,15. _
This analysis also allows us to characterize more precisely (=g i2me (104
the epicyclelike trajectories of the wave tip in the large core

limit. Ne_xt, we ir!tegrate Eq(85) numerically_ and prlorg andz Kn denote the Comp|ex Conjugates @fAn’ respec-
the nonlinear regime further away from the bifurcation point.tively. Eliminating A, between the above two relations, and

neglecting the terms proportional to €X)?(1— ) A,|A,|?

on the right-hand side of Eq102) (which can be checked to
To carry out the weakly nonlinear analysis, we first ex-be of higher order at the ehdwve obtain that

pand the functiorF on the right-hand side of E¢85) up to

cubic terms, which yields the equation

1. Weakly nonlinear analysis

(1-0(1-0*1-¢)

Q2—1+a(l-Q)+|2I?
d%q (=0 1-40%—a(1-7%)
@+Q=aAOI+F(Aq)2—B(Aq)3, (95
=3B(1-0%(1-0) ||A*=0. (105
where we have defined
Aq=q(0)—q(6—2m) (96) The condition that the real and imaginary parts of the left-
hand side of the above equation must vanish independently
and the constants provides two independent relations that deternfinandA;.

Next, expanding Eq(105 to first order in the frequency
a=mF'(0), (97 shift ) —1/2, we obtain
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—=3/4+2a+ (1—-i27al)(Q—1/2)
2ag+ 28T | 2o 106
- B+m |A1]*=0. (106
The conditions that the real and imaginary parts of the above
(a) (b)

equation must vanish lead after simple algebraic manipula-
tions to the relations

|A|=+ciu, (107 FIG. 11. Comparison of large core meander trajectories obtained
(a) by plotting a two-radius epicyclesolid line) with 1 =0.735 and
O—1/2=—cou, (108 p1/po=1/5 and the predicted three-radius epicy@ashed ling
with Q=0.735, p; /po=1/5, andp, /p,=(1—Q)/(1+Q), and(b)
wherec; andc, are constants defined by by simulation of the FN model witke=0.18 and§=—1.4. The
value of ) and the ratigp, /pg used as input ifa) were extracted
2 972+32 from the simulation in(b). The total time in(a) and (b) is about
1llci=128+ 5+ —— 1 3To.
fer=126+ 3 1+(37/8)2" (109 °
2 b s [+ 1 i(1-nQ)6
CZ:L. (110 X+iY =poe +nZl[An 1+ e +A,
3[1+(37/8)?]
1 i(1+nQ)6
Equation(103 implies that at leading order in, X|1-5q)€ : (119
2
Ay= I'AL _ (111) where the amplitudes,, dictate the meandering motion of
(21/2—-Q)(1+i37/8) the tip.
) Note that in deriving Eq(116) we have only assumed that
or, using Eqs(107) and(108), a/po is small, such that this equation is not restricted to the
3 asymptotic large core limit wher@ = 1/2 at the bifurcation.
__ > MAaii2a2 In fact, in the weakly excitable limit that is typically acces-
[Ad 64’ 1+(3mi8)" (112 sible in simulation,Q) is larger than 1/2 at the bifurcation

. . . , point due to finite core radius correctionsl/p, that modify
In addition, substituting Eq101) into Eq. (95), one obtains Eq. (85) as discussed in Sec. Iee, e.g., EG165]. In this

for n=0 thatqo==8I'|As|*=8Icu. Itis simple to work out  case. the bifurcation is not resonafie., 2w,# w,), and

that highe/rz—order terms in the pregent expansion must sca]@zN’u near onset. Equatiof1 16 implies that in this generic

asAp~u™* for n odd andA,~ "< for n even. Note that  .3se relevant for usual simulations and experiments, the mo-

the expansion of Eq85) leading to Eq.(95) remains justi-  ion of the tip can be described by keeping only the terms

fled_ because&q(ﬁ)_ vanlshes au—0 even t_houghAz re- proportional toA; andA; in Eq. (116) that is a three-radius

mains of order unity(i.e., A,{exdi2Q6]—exdi2Q(6—2m)]} epicycle(or epiepicycla

~cyu in this limit). picy plepicy
Let us now examine the meander trajectory of the wave XATY = poel 0+ p,el A= D0-i01_ ; ei(1+0)0+i0y

tip. For this purpose it is convenient to define the dimension- 0 ! 2

less coordinat&=X+iY =Rée’/Ry,, which is scaled by the

tip radiusRg,= €/cq, and is given by (@2>172), (117)
Z=X+iY=(po+q)e ¥ (113  Where#d, is an arbitrary phasg; ~ Jp, and
dy/d 6= (a=do)/po, (114 palpr= (1= /(L) s

where we have defined the scaled steady-state ragjus '€ fact thatp,/p, vanishes ag—1 may provide an ex-
=RyRy,- We have subtracted thé-independent part of pIanqtlon for V\_/hy the meander trajectories in simulations of
q(#) which gives a shift ofw, of O(qo/po) [EQ. (67)]. rggchon-dlffuspn models of eXC|tabI_e media have bgen tra-
Since 1py<1, we can expand the above relations to firstditionally well fitted by a simple epicyclgEq. (117) with
order in, which yields p>=0]. In Ref.[15], it was .argued that meander trajectories
should generally be epiepicycles close to the onset of insta-
_ , bility. It was left unexplained, however, why the rapg/p,
g'(1~ %o po) 0+ 1o, turns out to be very small. For the simulation of the FN of
(115 Ref. [15], 2~0.782, in which case Eq118) predicts that
p2/p1~0.12. This ratio is roughly consistent with the ratio
Since the phase fact@ry corresponds to a translation of the of the amplitudes of the peaks oft+) and 1-() in the
center of rotation, we can sé=0, which yields the rela- power spectrum ofX(t) in Fig. 4 of [15]. Here, Fig. 11
tion illustrates that two-radius and three-radius epicycle trajecto-

X+iY=(p0+q—if (q—0qp)de
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ries are very close even wheh departs significantly from

unity. Such a small difference is probably hard to resolve

experimentally.

Let us now examine the meander trajectory predicted by

Eq. (116 in the asymptotic limit where)=1/2, which is
more difficult to reach in simulation and experiment. The
main difference in this case is that is O(1) because the
bifurcation is resonant, i.eA2e'>*? act as a periodic drive of
the wave tip at the primary frequendy=1. Inserting the
results of the weakly nonlinear analysis, EqE07)—(112),
into Eq. (116), we obtain that

X+1Y = poel 1+ p, 02101 . gi30/2+i0y

iQ* 6+i(—26,+tan 137/8) (Q=1/2)

(119

+—p36

where we have define@*=1-20=2c,u, 6, is an arbi-
trary phase, and

p1=3VCiu, pr=pil3, ps=31+(37/8)%(3).
(120

Consequently, the effect of the resonance wlien1/2 is to
add a slow component of motion with frequen€y* ~ u
around a circle of radiug; of O(1). Steady-state rotation is
approached smoothly whewn— 0, even thougtp; remains
finite, becaus€)* vanishes in this limit. Finally, we note
that p; diverges as 17 in the limit '—0. The tangential
velocity of the tip around the circle of radiys;, however,
scales a$)* p;~1I" and vanishes in this limit, which is there-
fore well behaved.

2. Numerical integration of the wave tip equation
Equation(85) was integrated numerically using the algo-
rithm described in Appendix A. We used both the function
plotted in Fig. 8, and the simple analytical form

F(x)=tanh x—a)+tanha). (121
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q(6)-q(6-2m)

q(6)-

-0.5

m=0.42 m=0.6

-1.0

10 20 30

8/2n

0

FIG. 12. Plot ofq(6) —q(#—2) vs 6/27 obtained by numeri-
cal integration of the wave tip equation wikhdefined by Eq(121)
anda=0.2;(a) m=0.42, andb) m=0.6. The onset of meander for
this functionF corresponds ton,=0.3902.

The results of the numerical integration of E§5) are
illustrated in Figs. 12 and 13. We have found it convenient to
plot q(#)—q(6—2m), instead ofq(#) because the latter
quantity contains a componente'? that only yields a trans-
lation of the center of rotation. We have checked that the
amplitude of oscillation and the frequency shift @Qf from
1/2 increase quantitatively for small as predicted by the
weakly nonlinear analysis. Figure 13 shows that the oscilla-
tions become more nonlinear with increasing distance from
the bifurcation point, but remain periodic with a frequency
close to 1/2. The fact that the frequency is rather insensitive
to m can be understood by remarking tHaf calculated or
approximated by Eq121) with a small] is close to being an
odd function of its argument. FoF exactly odd [T’
=mF"(0)=0], the weakly nonlinear analysis of the preced-
ing section predicts tha,,= 0 for all n even and that there is
no nonlinear frequency shift, i.eQ)=1/2 for any value of
p#>0. One would therefore naturally expect to find tiat
remains close to 1/2, even far from onset, whedeviates
slightly from an odd function.

Finally, it is worth noting that hypermeandgre., chaotic
meander is not contained in the large core limit. This is
consistent with the fact that hypermeander has been observed
numerically in the opposite parameter range of high excit-
ability [12]. In this range, the shape of the spiral boundary is
not constant in time on the scale Bfj,. It therefore seems

This form has qualitatively the same shape as the calculatdékely that the dynamics on this scale plays an important role

function F, which is plotted for different’ in Fig. 8, and

yields a qualitatively similar nonlinear behavior. For this rea-

in hypermeander.

son, all the results presented here are for this simplified form VII. SPIRAL MOTION UNDER EXTERNAL ACTION

of F defined by Eq.(121) for the choice of parametea
=0.2. As noted earlier, the calculated functieris nonana-
lytic at the origin in the singly diffusive sharp boundary
model and behaves as0.576jIn(|g]). When this is used in
Eq. (85) for the tip motion, as noted previously, a steady
rotation is unstable for aln [Eq. (87)] however small since
the slope ofF at the origin diverges. The growth of the

Motion of spiral waves can be induced by modulating the
medium excitability in space or time or by adding an exter-
nal field. It is not difficult to extend the approach of Sec. V to
describe these effects simply and quantitatively in the large
core limit.

modulation as one moves away from threshold is, however,
much slower than in the analytic case, the amplitude of the
modulation being of order exp{cstm). It is interesting to
note that requiring this amplitude to be larger than the inter-
face widthe, as a criterion for meander threshold in a real
small€ model, givesm~cst/|In(e)| quite similarly to what
was obtained previously by cutting off the slopefo&t the
scale of the interface width. Away from onset, however, this
nonanalyticity does not modify the nonlinear behavior much.
For this reason, we shall not treat this case separately.

qa(6)-q(6-2m)

FIG. 13. Plot showing saturated oscillations qt#)—q(é
—21) vs 0127 for differentm.
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A. Variation of the medium excitability spiral centerzy and parametrizing the wave tip &=z,

We consider first the effect of spatial and temporal modu-T[Ro* eq(t)/cole! 1" . The slow variation ofz, with
lations of the excitabilityobtained by changing and/ore time is qbtalned by.requmng that it cancels the secular term
into space and/or time Such a modulation will generally ©On the right-hand side of E¢123. _ . .
produce a variation of both the planar front veloaityand a A time-independent excitability which varies slowly in

variation 8B(z,t) of the parameteB characterizing the me- SPace is another simple case. The paramBi@) in Eq.
dium. We assume that this variation is small enough to bé123 should be evaluated at the spiral tip position. As the

treated as a perturbation, théB(z,t) varies slowly in time spiral tip turns around the spiral cof®,varies harmonically

(i.e., on the scale of the spiral rotation pefiahd in space in time at the spiral rotation period and the spiral drifts.
(ie., on the scale of the spiral coreand thatB is close Since the direction of maximum excitability viewed from the

enough toB; (i.e., dR) so that the spiral self-interaction can spiral center is along the gradient Bf one concludes that
be neglected. The radius of curvature of the tip trajectoryfn€ SPiral drifts perpendicularly to the gradient®falong an

will then depart from its unperturbed valig,, R=R, isoexcitability line.

+ 5R| with
B. Drift in an external field and filament tension
ﬁ: E i (122 It has been reported in previous experimef,21,23
R, 2B.—B and theoretical studig®4,25 that a spiral drifts when it is

submitted to a constant external field. Interestingly, the spiral
was found to drift at a nonzero angle with the applied exter-
nal field. In the presence of an external fi@dvhich couples

to the activatoru, the activator reaction-diffusioni3) be-

3 coRy w26B(z,t) - comes
2 € B.—B (123

and the variation o€, gives a subdominant contribution for
B close toB.. Substituting the above expression into Eg.
(69), we obtain at once

2
ared du=eV2u+f(u,v)/e—E-Vu. (127
Integration of Eq(123) gives the spiral tip motion result-
ing from a given space time variation of excitability. As a
simple illustration, we show that a global periodic variation
of excitability at the spiral frequency induces a spiral drift
[19]. When SB:ACQS@“H@' the rlgh_t-hz?md side of Eq. ever, the controller equation is modified. It reads, in the ex-

(123 is resonant with the natural oscillation modes of theCited reqi

. : . { gion,
left-hand side, the translation modes, and induces their
growth,

A simple way to determine the effect & is to view the
wave dynamics in a fram®l which moves at velocit§. In
such a frame, the supplementary gradient term in(E87)
disappears and simply obeys the fieldless E¢3). How-

ov=1r.+E-Vv. (128
3C0RO wlt
A=z B B

Asin(wqt+ ¢). (124 The gradient term in Eq128 modifies the relation between
the tangential tip velocity and the medium parameters. As

A simple way to understand the motion described by EqShown below, one obtains instead of E§7)
(124) is to remember that for a steady spiral centered close to
the origin (compared to the radius of its coreat zy=Xx, S B_Bc+ Bt E (129
+iy,, the distance of the wave tip to the origin varies peri- tror 0 K YIEIT YiEL
odically as

. . whereE| andE, are the external field component, respec-
|Roexpli 1t) + 2| =Ry +XoC0 w1t) +yosin(wt). tively, parallel and orthogonal to the tangential tip velocity
(125 (measured in the framil). Our sign convention is thd
>0 when it points toward the excited region of the spiral tip.
The numerical coefficienty; and y, are determined below
from a solvability condition, as we have now done several
3¢R, A _ _ times. Before detailing this computation, we show that the
0=, g_pgel—iexp—i#)]. (126  spiral drift is a simple consequence of Eg29. As above,
¢ the wave tip motion is determined by Eq63), (64) where
The drift direction depends on the relative phase between th@ow z=x-+iy denotes the position of the wave tip in the
spiral rotation and the periodic modulation of excitability: frame M andc, is given by Eq.(129 and depends on the
the spiral drifts perpendicularly to the directipaxp(—i¢)]  angle between the instantaneous velo¢itythe frameM)
of the spiral tip at the maximum excitability viewed from the and the external fiel&. The form of the functiorRi[¢,] is a
spiral center. One can note that our derivation of @@6) is ~ consequence of the front interface dynamics determined by
simple, but, of course, it breaks down when the spiral centeFd. (3) which applies in the fram#/. Therefore, it still has
is no longer close to the origin and the linearization givingthe large core asymptotic for(66). Writing ¢,= c{+ sce in
Eq. (69) and thus Eq(123 becomes illegitimate. The rem- Eq. (129 as a constant pan? independent of the external
edy is standard: a nicer looking derivation is obtained byfield and a small external field-dependent pécg= y|E,
introducing at the very start of the derivation of E§9) the  + 1y, E, , we can again copy the analysis of Sec. VA and

Comparing the two expressions shows that ER24) de-
scribes a linear drift of the spiral,
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simply replacedsc, by oce. For a perturbed wave tip circle Fig. 3. As before, the front interfagg(x) simply obeys Eqg.
motion z=[Ry+ eq(t)/co]e'“1'" ¥ this gives instead of (18) in the tip region. However, the controller concentration

Eq. (69 on the back interface is changed by the external fiélg.
(128] and this modifies the back equati@td).
. ) 5 COR{[C?] »3 CoRg  6Ce We begin by computing the controller concentration on
q+wiq=widCe e TW15 T, — o the back interface. The time dependence of the field compo-
Co—C (130 nents can be neglected since it is on the scale of the rotation

period,Ry/cy, which is much longer in the large core limit
For definiteness, we suppose that the fElis parallel to the thazn the time scale of interest, the spiral width.traversgl time
x axis which gives, to lowest order in the perturbatid, el cg. Equation(128) thus shows that in the excited region

= —E sin(w,t) and E, =E cosfst). So, Eq.(130) is again  Obeys

found to be the equation of a harmonic oscillator forced at its

natural frequency and the amplitudeof the oscillation di- V(tLXx—E t,y—Et)=v(0X,y) +t/7e. (139
verges in time,

The concentratiorv,(x) on the back interface at the point
€ 3 E ) . .
——q(t)= 7 ——wst[ yjcog wyt) + ¥, sin(wyt)]. (X,yp(x)) is related to the controller concentratiog on the
CoRo 4 Co—Cy front interface at the pointx; ,y;(x;) +c;t(x)) at a previous
(13D {ime t(x) with

Comparing Eq.(131) with the expression of for a trans-

lated spiral(125), one concludes that Eq131) describes a Xg=X—E t(x),
spiral drifting away from the origin at constant velocity with
3 E yf(xf)_’_ctt(x):yb(x)_EH . (133

X0=7 gy—c, YRowtt, . . .
0~ X¢ andt(x) are functions ofx, the considered point of the
3 E back interface which can be determined perturbatively for
Vo= —— 7, Rywt. (132  small ext(_arnal field. Writing; = x+ 6x,t(X) =to(X) + 6t(X),
4 Co—Cy one obtainsty(x) =[yp(x) —y:(x)]/c;,0x= —E, to(x), and
i ) . o t(x) =to(x)(—Ey+ E,dy;/dx|,)/c;. Therefore the con-
The spiral drift anglefip with the external field is therefore  yqjler concentration at abscissaon the back interface is

equal to
tan(6p) =y, ]. (139

Several remarks can be made: Vp(X)=Vo—t(X)/ 7¢
(i) Formally, 6y is the angle between the drift velocity yi 00— yp(X)
and the external field in th& frame. However, the drift =yt T
velocity in the large core limit is dominantly produced by the Ci7e
time-dependent variation of the spiral radius and is much
larger than the velocity difference between the laboratory X ) .
frame and theM frame. Terms of the same order as the X
velocity difference between the two frames have been ne-
glected in obtaining Eq131). It therefore makes no sense to The last term is the modification of on the back interface
correctdp for this velocity difference. coming from the external field.

(ii) A constant field produces a spiral drift because the Wwhen Eq.(136) is taken into account, the back equation
right-hand side of the components of the external field in then the tip region read&using as before space variables scaled
tip frame, Ej= — E sin(wyt) andE, = E coswst), oscillate at by e/c,)
the resonant frequenay;. A sinusoidal external field oscil-
lating atw, has components in the tip frame @+ w4, and

dys

1+| —Ej/c+E; /Cta

(136

we— wq. A spiral drift is therefore induced by an external @:[, ] —B@[y (X) = Yp(X)]

field when it oscillates atwice the spiral frequency e dx? old c ' b

=2w1), as noted in previous studig22]. 3
(i) As stated previously, the derivation of E¢L32) dy;

X —E”/Ct-f—EJ_/Ct

dx

dyp|?
breaks down when the spiral center is no longer close to the XH1+( dx)
origin and the linearization giving Eq131) becomes illegiti-
mate. This can be cured as stated above, by introducing from (137)
the start the spiral center the motion of which is determined
through the requirement that no secular terms appear on thghere[ - - - o4 denotes the terms on the right-hand side of

right-hand side of Eq(130). Eqg. (22). When the front and back equations are linearized
It remains to obtain Eq129 and compute the parameters around the critical finger ag(x)=Y(x)+ dy;(X),yp(X)
v and y, . We consider the spirdiin the M frame) in a = Y,(X) + dyp(X) one obtains as beforéy(x) = 7,6c;/cq

Cartesian coordinate system attached to the wave tip as (fEgs.(25) and(32)] and a modified equation fafy,(x),
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100.0 Finally, we note that the curvature-induced motion of a

weakly curved three-dimension&D) scroll wave[46,37)
filament is directly related to spiral drift in an electric field.
For a 3D filameni(xy(s),yo(s),zo(S)), we can choose a co-
ordinate system with its third axis aligned with the filament
tangent ats. Locally, the activator field can be writtem(x
—Xo(S),y—Yo(s);t) with u(x,y;t) a two-dimensional spiral
wave. The two-dimensional Laplacian in E@) acting on
such a solution gives V3pu—(X"d,+y"dy)u=Vjpu
—kN-Vu wherex is the filament curvature and the fila-
ment normal with«N directed toward the filament center of
curvature. ThereforeskN acts as an external fieH in the
normal x,y) plane. Sincey;<0 and a spiral drifts opposite
to the field direction, one concludes that a scroll ring grows
%20 ) ! . ! and that curvature is destabilizing in the large core limit
(negative line tension Moreover, a scroll ring propagates
FIG. 14. Simulation of the FN model of Fig. l£0.1855= normally to the plane of the ring at a velocity proportional to
—1.41) with an external field added as in E427) with E=1.0  itS expansion velocity sincg, #0. The other laws govern-
x 1073, The wave tip trajectory is showtbold line) as well as  ing filament motion can similarly be deduced by reducing the
surface plots ofu showing the spiral position at the end of the 3D dynamics to an effective 2D process. We defer, however,
simulation. The spiral is found to drift at about 135° with the field a detailed study of 3D dynamics in the large core limit to a
in good agreement with the present asymptotic prediction of 132.5%uture publication.

800 g

40.0 §

20.0

VIIl. MULTIARMED SPIRALS

21312

av;
X —E”/CO-FEL /Coa

Ly(8Yp) =L Joia= Bl Y(X) = Yu(X)]
HH(% In this section we extend our analysis to the situation
X dx where several thin excited regions or “spiral arms” rotate
(139 around a common core. Our main finding is that such multi-
armed spiral waves are always linearly unstable in the large
Integrating both sides of E§138), one obtains the solv- core limit. We confirm this finding by numerical simulation
ability condition which replaces E435), of the FitzHugh-Nagumo model for two-arm and three-arm
spirals. A different conclusion has been reached in 2]
6Cy where multiarmed spiral waves were found by numerical
c_o[l 1+ Be(—12+135)]— 6Bl3=Bc(—Ej/col s+ E,L /Col L), simulation of the FN model, with a well-prepared initial con-
(139 dition, to be stable over windows of parameters in the large
core limit. We shall comment at the end of this section on the
where the constants,l,,I; have previously been defined possible origin of this disagreement.
[Eqg. (36)] and the new constait is given by the integral Let us denote byj;(6) the coordinate of the tip of thith
spiral arm. We make the arbitrary choice that rotation is

i dv; dYb) 23 counterclockwise and take the indpx [O,N—1] to increase
=] d Yi() = Yp(X) = | 14| = ! ; pL™, .
* fo XECLY 0 = Yo(x)] dx ( dx clockwise. The equation for the phasag,=6;— wit, is
given by
=8.431. (140
Equation(139 shows that Eq(129 holds with the fol- dyj/dt=—(elcoRp) w105  (j=0,... N=1).
lowing expressions foty andy, : (142
_ %2—0.850, For simplicity, we consider an initial condition where the

7K angular positions of th&l spiral arms are uniformly distrib-

(141 uted. To lowest order ir/(cyRy), one can assume that the
Bl spiral arms rotate at constant angular velocity and that the
Y= Klg =0.929. phase difference between two successive arms remains con-
stant:;— ¢;_1=2m/N. The equation that governs the mo-
Changes of spiral core radius are the dominant effect in th&on of a given arm, say arij is essentially the same as the
large core limit and lead to a drift opposite to the fielg, ( one governing the motion of a one-arm spiral, except that
<0) as qualitatively argued if25]. We quantitatively find this arm interacts with the exponential recovery tail of the
here that a counterclockwise rotating spiral drifts at an angleontroller fieldv of arm j—1, instead of its own recovery
of about 132.5° with the field direction in good agreementtail. Consequently, the equation of motion for gria simply
with previous simulation§25] as well as our own, as shown obtained by replacing the interaction tenmF(q(6#)—q(#é
in Fig. 14 (the sign ofy, and of the drift angle would be —2)) on the right-hand side of E(85) by myF(q;(6)
opposite for a clockwise rotating spiyal —Qj_1(0—2m/N)), with my defined in terms of the reduced
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period 2Ry /N. For a spiral withN arms, the wave tips are

governed by théN coupled equations

d?q;
— +a;=myF(q;(0) —q;_1(6—27/N))

dg?
(j=0,...N-1), (143
where
3B.(bK)®? 2me [ bK \%?
™ (B B)5’2eXF{ - cgNTR( B.— B) (144

andF is the same function as for a one-arm spiral.

A. Linear stability

Let us first analyze the linear stability of &karm spiral.
Linearizing Eqs(143), we obtain

d?q;
d—ez+qj=a[qj(a)—qj,l(e—zw/N)]
(j=0,...N-1), (145

where we have defined=myF'(0). Thesymmetry of the

above system of linear equations implies that its solutions

must be of the discrete Floquet-Bloch form

g;=q exp(ik,j +Q,0), (146)
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2

) 1 (ZW(nil)) ,
N

nx1
Q)= *5sin N Fi smz( M) :

(150

Since the leading term in the expansi¢i49 is purely
imaginary, the stability is determined by the sign of the real
part of ;). Equation(150 implies that Re(2,;))>0 for
n=0 orn>N/2+1, and Re(2,;))>0 for n<N/2—1, and
therefore thatN-arm spirals are always unstable fide>2.
For the special casi=2 andn=0, Eq. (150 implies that
Re(Q,T(l))=O, in which case the stability is determined by
the sign of the real part of the next order term in the expan-
sion, Re{);,)). The calculation at orden?® yields that
Qgy=m/2%i/2 and therefore that REy,)=m/2>0.
Thus the symmetric(=0) mode is always linearly unstable
for a two-arm spiral. In contrast, for the antisymmetrit (
=1) mode, ;= =*i remains the solution for arbitrarg.
We conclude thalN-arm spiral waves are always linearly
unstable folN>1 in the large core limit.

The nature of the linearly unstable tip trajectories is
simple to deduce from the above results. To be concrete, let
us consider two-arm and three-arm spirals that we shall study
in simulations below. FoN=2, aside from the two transla-
tional modes, there are two unstable modes corresponding to
the complex conjugate pair,

Oy =ma’2*i(l—a—a?2) (N=2). (151
Since this pair corresponds =0, the two tips will move
symmetrically (with equal radial displacementsaabout a
fixed center of rotation. Furthermore, since the imaginary

wherek, is the discrete Bloch wave vector that takes on thepart of Q) is slightly less than unity, the two tips will oscil-

values

. N—1). (147)

Substituting the above form into E4145, we obtain the
eigenvalue equation

O2+1=a (n=0,...N—-1)

(148

2 )
l—exp{ - W(Qnﬂn)

that determines the allowed values @f, for each moden

late in and out of the unperturbed steady-state circle of rota-
tion with a period slightly larger than the basic peridg,
and with an amplitude of oscillation that grows exponentially
in time. ForN=3, there are four modes aside from the two
global translational modes: a complex conjugate pair with a
negative real part, which is stable, and the unstable complex
conjugate pair

05 =\3ald*+i(1-3als) (N=3) (152
obtained by evaluating Eq150) for N=3, where the tips
move with equal radial displacements. As fdr=2, the fi-
nite imaginary part slightly smaller than unity implies that

and hence its stability. The two global translational modesthe tips will exhibit exponentially growing oscillations with a

which are exact solutions of E¢148) for arbitrary «, cor-

respond toQ);=—i andQy_;=i. We restrict ourselves to

period slightly larger thaff.
In addition, « is typically much smaller than unity in the

considering the R —2 other modes which correspond to the |arge core limit since the spiral period is large compared to
coupled translations of the individual spiral arms. The eigenthe recovery timesz<T,/N, and the spiral arms are only
values corresponding to these modes can be calculated pgfeakly coupled via the controller field. Therefore, the in-

turbatively by expandind),, in a power series inx about
+i. For brevity of notation, let us denote iy, the N—1
eigenvalues obtained by expanding abduf=+i for n

stability of a multiarmed spiral should generically develop
on a time scale much longer thdn, especially forN=2
since the real part of); scales asy?, instead of asx for

=0,2,...N—1, and byQ},, the ones obtained by expanding N> 2.

about Qy_,=—i for n=0,1,... N—2. Substituting the

power series expansions

into Eq. (148 we obtain after simple algebraic steps

B. Numerical simulations

In order to test the above predictions, we investigate nu-
merically the stability of spiral waves with two and three
arms in the FN model. We restrict ourselves to a range of
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FIG. 17. Simulations of the FN model showing the wave tip
trajectories during the initial development of the instability of mul-

FIG. 15. Plots of the radial displacement of the wave tips vstiarm spirals for(a) a two-arm spiral withe=0.445 and =

time for two-arm[(a) and(b)] and three-arntc) spirals. The highly
nonlinear symmetric meander dynamics of three-arm spjfats

—1.24, and(b) a three-arm spiral witke=0.445 ands= —1.25.
Each line type(solid, dashed, or long-dashedorresponds to a

17(b)] is destabilized at large enough time leading to the elimina-different wave tip trajectory.
tion of one arm at boundaries. In contrast, the symmetric meander

dynamics of two-arm spirals is stable on the time scale of our simu
lations despite the collisions illustrated in Fig. 18.

plot the normalized radial displacement of the wave tips,
[rj(t) —Rol/Ro, which corresponds teq;/c, in our analy-
sis. We calculated the position of thewave tips by looking

parameters where a one-arm spiral is linearly stable and rqq; the noints of zero normal velocity along the spiral bound-

tates rigidly. We construct an initial condition for &karm
spiral, denoted byuy,vy), by simply rotatingN—1 times
by 27/N a one-arm spiral wave, which yields the expres-
sions

N—-1

uN(r,a):EO u(r,0—2mj/N)—(N—1)uy, (153
=
N—-1

vn(r,0)= 2, v(r,0—2mjIN)—(N—1)v,, (154

j=0

where (g,vg) are as before the resting valueswandv.
Since the simulations are performed in Cartesian coordi
nates, and the edges have a negligible effect, each rotation
27/N is simply carried out by running the simulation of a
one arm spiral for a time equal @,/N. The initial condition
defined by EQs.(153 and (154) deviates from the true
steady-state solution of ad-arm spiral by an amount pro-
portional tov—v, on the wave fronts, which is exponen-
tially small in the large core limit. Therefore, this initial con-
dition can be considered as a slightly perturlbedrm spiral
solution and is ideal for the present purposes.

ary defined byu=0. This is equivalent to looking for thi
intersections of the curvas=0 andd,u=0. We measured

riy(t) from the instantaneous center defined by't)

=;jN:1xj(t)/N and?(t)=sz:1yj(t)/N. All the main quali-
tative features predicted by our analysis are observed in the
simulations.(We have not attempted a detailed quantitative
comparison because our predictions are strictly valid outside

the range of our simulationsFirst, during the initial insta-

bility, the center of rotatiorix(t),y(t)) remains fixed in time
and the radial displacements are equal for all tips. This im-
plies that the symmetrin=0 is the most unstable one. Sec-
ondly, the radial displacements exhibit exponentially ampli-
fied oscillations, with the amplification rate depending
sensitively on the steady-state peridgl and the number of
arms, which both determine the parameter F’(0)my,
entering in the predicted amplification ratgise., the real
parts ofQ, in Egs. (151 and 152]. In particular, Fig. 15
shows that the amplification is much slower(ls) than (a),
which agrees with the fact thdi, is about 1.46 times larger
in (b) than (a). In addition, for the same parameters, the
three-arm spiral inc) is destabilized much faster than the
two-arm spiral in(b), in agreement with the fact tham,

Results of the simulations are shown in Fig. 15 where wedefined by Eq(144) is larger forN=3 thanN=2. Lastly,

8
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FIG. 16. Plot ofq(6) vs 6/27 obtained by numerical integration
two-arm spiral form= 0.2, and(b) three-arm spiral fom=0.1.
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of the wave tip equation Wittlefined by Eq(121) anda=0.2; (a)
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FIG. 19. Plot of the radial displacement of one of the spiral tips
vs time showing the instability of a two-arm spiral wave in the FN
kinetics studied in Ref[26]. The kinetics is defined by the equa-
tions 9,0=DVg—k,g(g—a)(g—1)—k,g andg;r=(g—r)/7. We
usedky=5.2 and the other parameters as defined in R8]: D
=1, k,=1.5,a=0.05, andr=5.

details of the nonlinear instability of multiarmed spiral
FIG. 18. Sequence of surface plotswo&nd superimposed wave waves are captured by our analysis. In Fig(al5the oscil-

tip trajectories(thick solid line illustrating the highly nonlinear |ations grow too rapidly to their saturated values to observe
collision of wave fronts occurring during a symmetric meander patthjs crossover.
tern of a two-arm spiral. Simulation parameters are—1.24 and One important consequence of the absence of a weakly
€=0.445. Framesb), (c), and(d) are att/e=20, 25, and 40, ré-  ponlinear saturation of the unstable symmetric mode is that
spectively, witht measured from framé). Note that an exchange the distance of closest approach between the wave tips
of wave tips and spiral arms occurs during the collisiofdn such - \yhich occurs at the minimum of each oscillatiatecreases
that the wave tip of the downward moving arm(by) is at the end i, fime The resulting highly nonlinear regime is obviously
of the upward moving arm iid) and vice versa. Thls exchange not described by the wave tip equatit43, which is only
produces the sharp pivot turns around the small inward meander_ . . : .
petals, valid for small radial dlsplaceme_nts of the wave tip com-

pared toR,. Results of the FN simulations show the com-

plexity of the dynamics in this regime, as illustrated by Figs.
the period of the radial oscillation is slightly larger thdp 17 and 18.
as predicted by our analysis. This can be seen, for example, To conclude, let us contrast our results to those of Ref.
in Fig. 15b) where the radial displacement of the tips exhib-[26] where the stability of multiarm spiral waves was studied
its 48 peaks over a time lapse of B in a slightly different version of FN kinetics, but in a similar

One interesting question is whether the instability of theregime of weak excitability. When starting from sufficiently

symmetric mode saturates in a nonlinear regime. To explorgvell-prepared initial conditions, multiarmed spiral waves
this question, we have integrated E@43) numerically for  were found to be stable when the peribglwas large enough
the symmetric mode by lettingy;(t)=q,(t)="---qn(t) to accommodate a finite number of arms around a single
=(q(t), in which case Eq(143 reduces to a single equation core. Moreover, it was observed that a spiral witharms
for gq(t). We investigated different values bfandmfor the  became unstable and decayed into a spiral Withl arms
function F defined by Eq(121) with a=0.2. The results are when a transition line was crossed by decreadiggn the
shown in Fig. 16 foN=2 andN=3, the plots for higheN  plane of T, and the refractory periofdefined as the mini-
being qualitatively identical to the plot fdd=3. These plots mum interval between waves in response to the lowest
show that the bifurcation is subcritical. For @&l=2, the  stimulus exciting the mediumwith a separate line for each
amplitude of oscillation increases linearly in time in the non-N. The main difference in our predictions is that steadily
linear regime. This comes about because in the forced haretating multiarmed spiral waves are always linearly unstable
monic oscillator equation fag the amplitude of the resonant for N=2 for any parameters in this plane. Note, however,
forcing termF saturates wherq becomes of order one. For that steadily rotating multiarmed spirals were not observed in
smallmy, averaging the forcing term over one period of the[26] when starting from randomly broken arms.
harmonic motion gives the mean energy increase of the os- We have actually checked that the instability predicted by
cillator and accounts for the phenomenon. Interestingly, theur analysis, and observed in our FN simulations, also occurs
cross over from the linear to the nonlinear regime is qualitain the FN kinetics studied if26]. This is illustrated in Fig.
tively different forN=2 andN>2. ForN>2, the slope of 19 for a two-arm spiral anll;=5.2, other parameters being
the envelope of the oscillations increases monotonously ichosen the same as in RE26]. The main difficulty in ob-
time until it reaches a constant value in the nonlinear regimeserving this instability is that it develops extremely slowly
whereas folN=2, the slope of the envelope increases nonwhen the spiral period is much larger than the refractory
monotonously with time. The FN simulation fdbr=2 shows period, in which caseny defined by Eq(144) becomes ex-
qualitatively the same nonmonotonous increase of the envgsonentially small, and the time to observe the instability ex-
lope of radial oscillations with time as obtained by integrat-ponentially large, as a function of the ratio of the two peri-
ing the wave tip equation, as can be seen by comparing Figads. For example, for the parameter of Fig. 19, the
15(b) and Fig. 16a). This shows that even relatively fine destabilization of the two-arm spiral already occurs over a
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time scale of about ten rotations. For the valye=5 re-  wheredR; is given by Eqs(71), (84), as previously. At the

ported in Fig. 3 of[26], T, is about twice larger than for linear level, Eq.(157) simply becomes

kg="5.2. Hence, the instability cannot be seen on a time scale

of a few rotations. d(sRy)
wltd d0

+oR=a—[a(e)-q(6-2m)]. (158
0

IX. TOWARD SMALLER CORE RADII: A DISCUSSION ) )
Searching for the eigenmodes of E¢E56), (158 under the

We have seen in Sec. VI that the large core equation oform q=A exp(6) gives the modified eigenvalue equation
motion (85) lead to a meander onset frequenay which is
equal to half the basic spiral frequency, quite independently (0?+1)(1+ 0w 7g)=a[l—exp—27o)]. (159
of the detailed form of the functiofr. It is interesting to
identify the main subdominant effects which leasls/w; to  The meander threshold is determined by requiring that Eq.
depart from 1/2 for smaller core radig@s shown in Fig. B (159 has purely imaginary roote=i{) besides the two
The following two assertions underlie the large core result. translation modes = =i. Perturbation around the large core
(i) The tangential velocity and spiral tip rotation rate only (t;=0) result gives the modification to the meander fre-
depend on the instantaneous characteristics of the medium guency at onset,
which the spiral tip propagatége., the relaxation of the tip
velocity and rotation rate can be taken to be instantaneous 1 w7y
(i) The angular tip position is slaved to tim@&= w,t), Q= 2 om (160
i.e., the time interval between two successive passages of the
spiral tip by the same angular positidhcan be taken to be gg relaxation effects lower the frequency rati¢/w; below
27w, and one can neglect the dependence of this time in1/2 and cannot account for the numerical observations re-
terval on the spiral path. ported in Fig. 9.
A systematic discussion of corrections to the large core |n contrast, we show that improving dii) leads to cor-
limit is beyond the scope of this article. We content our-rections in agreement with the numerical data. We param-
selves here in showing that corrections(tpand (ii) both  etrize the spiral tip position as in Sec. VA &= (R,

_affe_ct the value ofuzlwl_at onset. As discusse_d below, tak- + eq/cy)explif wit+(t)]}. The angular tip position is
ing into account the noninstantaneous relaxaftian, correc-

tions to(i)] formally appears to give the dominant correction 6= wt+ Y(t). (161

to the large core limit results. However, corrections(it,

although subdominant, seem the most important for the paBeyond leading ordet(t) is not negligible in Eq(161) and

rameter range of Fig. 9 and account semiquantitatively fothe spiral period of rotatioff depends on the spiral tip path.

the numerical results. _ ___ Equation(67) gives ¢=—w,q/R, to dominant ordefnear
We t_)egm by discussing). T_he motion of the spiral tlp_ IS the meander onset the other term in EG7) is of higher

d_etermln.ed .from the Fwo relatior{§3), (64). The tangential ~ order, Ecq/c0~(e/coRo)5’3 using Eqs.(70), (71) and it can

tip velocity is determined by the dynamics of the close tippq neglectel This implies that it actually takes a tinie

region_~e/RO, which i_s fa_st and indep_endent of the spiral —T,+AT longer (shortej than the periodr, of the steady
core size. The determination of the radius of curvature of th%piral to return to the same for outward(inward) displace-
spiral tip trajectory involves, however, the dynamics of aqants

whole intermediate region- (RyR§,)* and, as discussed in
Appendix B, this happens on a time scdlgwith w4ty/ € fa de

~(Ryip/Ro) ™3 So one expects that this instantaneous radius AT:TOE

(). (162

~ H*Z‘n’z
of curvature, which we denote here By to distinguish it
from the steady-state valug , adapts on a time scatg to  Thjs reducegincreasesthe interaction with the previous tip
changes in medium conditions. Short of solving B82), 8 py — AT/ rzexp(—T,/7s) and causes the spiral tip to return
crude model of this effect is obtained by replacing the instangqgner insideoutside the core. This lead®,/w, to move

taneous Eq(64) by away from 1/2 toward unity. In order to explicitly show this,
we compute the variation of the tip trajectory radius of rota-

dR . tion SR; due to the spiral displacement taking E&62) into
tag; TRi=Rile({vp]. (159  account. Comparing Eq$83) and (162 gives
L . . SR 3B (RqCo|??
This gives instead of E(q70) the couple of equations R_OZZb_K — exp —To/7R)
d%q ~ | Ecaco g2 AT 2K+JB,
d_02+q: ORiCo/ €, (156) () —q( m)) B, |
(163
it d(oR;) 4 SR = SR (157) A modified version of Eq(85) is obtained by substituting
1td i~ i

dé Eqg. (163 in Eq. (69),
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AT 2K+JB,

q+wfg=mof| F[q(6)—a(6—2m)]-— —F
R c

(164

where the constamn is given by Eq.(87) and AT depends
on the tip trajectoryfEq. (162)]. The linear version of Eq.
(164) is (where we can replace time by angular position

2

d=q o do¢
@+q=a[Q(9)—Q(9—27T)]—,3L_27rzq(¢),
(165

where a=mF'(0) as before and B=m(Ty/7g5)(e/
coRo) (2K+JB,)/B.. The eigenmodes of Eq165 are of
the formq(6) =A exp(od) whereo is a solution of

o’ +1=

a— i)[1—9X[:(—27T0'):|. (166

270

The meander onset corresponds to the critical vadye
where Eq.(166) has purely imaginary roots=i{) (besides
the two translation modes= *i). For smallg, first-order
perturbation around th8=0 values gives

_3 43 16
ac_g 37721 ( 7)
1 8p
Q0= §+ 32 (168

This shows that the correction term in E464) lowers the
threshold for the meander instabilifie., plays a destabiliz-
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dient of excitability in the medium in a way that can be
precisely deduced from the starting reaction-diffusion equa-
tions. This has provided a simple understanding of the spiral
tip motion and a precise reduction of its dynamics to that of
a single point. This has allowed us to describe the Hopf
bifurcation nature of the meander instability and to derive
simply, but with precise asymptotic estimates, spiral drift
due to spatial or temporal variation of excitability, or due to
an imposed external field. This last computation determines
in particular the drift angle of the spiral with the external
field and also the parameters governing the motion of an
average scroll wave filamefiturvature has been found to be
destabilizing in the large core regimeln addition, our
analysis has allowed us to elucidate a generic instability of
multiarmed spiral waves that was previously missed in nu-
merical simulations in the large core limit because it devel-
ops very slowly.

The present analysis can be compared with several previ-
ous analytical approaches which have provided insights into
spiral wave dynamics. As already noted, a phenomenological
kinematical model of spiral wave dynami¢&8] has been
proposed several years ago and has succeeded in capturing
many aspects of spiral wave motion. It differs from the
present approach not only because its parameters need to be
adjusted and cannot be obtained from the underlying
reaction-diffusion equation but also more fundamentally be-
cause here the dynamics of the spiral tip is reduced to an
ordinary differential equatiofODE) and drives the motion
of the rest of the spiral arm whereas in the kinematical model
of [18] the tip motion follows from that of the whole curve.
Moreover, the tip motion is described here in a different
way, by the tip rotation rate and not by a growing or retract-
ing velocity as in18]. Another notable approach is based on

ing role). More importantly, it increases the frequency ratio normal forms[16]. As in our case, the tip motion is de-

O =w,/w, at meander onset, as announced.
The frequency shift predicted by E{L68) can be com-

scribed by ODE. The normal form approach postulates the
existence of a Hopf bifurcation and it describes its coupling

pared to the numerical results of Fig. 9. Using the lowestio the spiral translation modes and the resulting tip motion

order threshold estimateF’'(0)=3/8, one obtaing)—1/2
=e¢l[cociTrF ' (0)]. With the estimatd='(0)~ —0.58 InQA),

based on general symmetry arguments, close to the resonant
case where the meander frequeney is equal to the basic

the frequency shift is found to be of the same order of magspiral rotation frequency»,. The present approach is re-
nitude as the one measured. This semiquantitative agreemegfficted to a particular limit but makes more specific predic-
leads us to think that, for the parameters of Fig. 9, the corlions. Besides providing determined parameters in the re-

rection(168) is the main effect and that the correctiti60)
is still numerically smaller than Eq168. Of course, for

duced equation which gives, for instance, the drift angle with
an external field, it has the advantage, in our view, of pro-

spirals of sufficiently large core this should cease to be trueviding an understanding of the physical mechanisms respon-

the correction(160) should become dominant, arg /w4 is

sible for the very existence of spiral waves and of their dy-

expected to drop below 1/2 before ultimately reaching itshamics, be it meander or drift due to external action.

asymptotic value. Unfortunately, a numerical check of this

Extensions of the present work can be considered in sev-

nonmonotonic behavior would require simulating spirals oferal directions.

very large core radius. This appears a difficult task with

present-day computers.

X. CONCLUSION

(1) It would be interesting to extend the analysis to
slightly more excitable media to capture hypermeandering or
at least the change from inward to outward petaks., the
line w,=w,). This would require going beyond our adia-
batic approximation and considering the dynamics of the in-

We have developed an analytical approach to spiral wavetermediate region.

close to the linedR where the spiral rotates around a large

(2) The large core nature of the spiral rotati@re., the

core and in the free-boundary limit where the medium exhib{proximity of the linedR) is an essential element of our ap-

its an abrupt response to a stimulusg1). The main ingre-

proach but several of our arguments do not really require

dient of our analysis has been to note that in this limit thesharp front and back interfacéise., e<1). This is certainly
entire wave tip can be treated as an essentially rigid body, thiue for the— 3/2 divergence of the spiral radius divergence
slow motion of which is controlled by the local spatial gra- near the linedR which only requires that the spiral normal
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velocity and curvature be related by an eikonal equation ofn the wave tip neighborhood. For a shape movingcat
the type of Eq(5) on a sufficiently large scale. This is also along they direction the two reaction-diffusion equatiof$,
the case for the validity of the adiabatic approximation.(4) become

Thus, it appears that a computation of critical fingers and of

the allied solvability conditions at finite would provide an —Codyu=V2u+f(u,v), (A4)
extension of our reduced description to the neighborhood of
the full line R. This would not accurately describe meander —CodyV=¢€g(U,v). (A5)

(sincedR anddM are close only for<<1) but would allow
a simple quantitative description of spiral drift and other phe-For notational simplicity, we consider functiofisind g of
nomena a|0ng this line. the form f(U,V): F(U)_V,g(U,V)ZU_ n with the stall
(3) Finally, it appears possible to extend some of our calconcentrationvs=0 and the corresponding rest stateuat
culations to scroll waves in 3D as succinctly described for=0v=0. We choose~(u) = —Au(u—1)(u—2) for illus-
filament motion in Sec. VII B. Hopefully, this will not only trative purposes which giveA=2A7. To study the tip
provide definite coefficients in the average filament equaneighborhood, it is convenient to use insteadxahe dis-
tions of motion, but it will also provide a better understand-placed coordinate=x—h(y) wherex=h(y) is a line in the
ing of the dynamics and instabilities of 3D scroll filaments interface transition regiofor definiteness, one can take an
[47,37,48,49 iso-u line, for instance, the line=1 with the above choice
of F). Equation(A4) then reads

ACKNOWLEDGMENTS —coldy— ' (y)d,Ju=2u+[d,—h' (y) 4, 12u+ F(u) V.
We are grateful to B. Pier for performing some computa- (AB)
tions at an early stage of this work. The work of A.K. is
supported by the American Heart Association. The controller fieldv is assumed to remain close to the stall

concentration and in the tip neighborhobtis small. Thus,

APPENDIX A: THE TIP BOUNDARY LAYER at dominant order, EGAB) reduces to

It has been noted in Sec. IV A that the solutions of the d2u+F(u)=0, (A7)
free-boundary problent5), (8) are continuous as well as
their first two derivatives but have a discontinuous third de-which has a standing front solutiai®(z) which goes from
rivative at their tip. We show in this appendix that this weaku®=0 at z=—o= to u®@=u, at z=+o[u®(z)=1
nonanalyticity can be taken care of by introducing a bound-+tanhg/A/2) for the above choice d¥]. At next order, one
ary layer of sizee/\/co~ €>® near the wave tifi.e., smaller ~ obtains
than the tip radius of curvature of sizéc,~ €2 and larger
than the interface width- €). JuM+F (u@)u®=[coh’ (y) +h"(y)]o,u®

We restrict ourselves to analyzing the case of a critical
finger. We take the interface widthas length unit. We first
consider the sharp interface case. We find it convenient t
parametrize the interface &s-h(y) instead ofy =y;,,(x) as
in the main part of this paper. In the vicinity of the wave tip
(h'(y)<1), Eq. (5) reduces to

—h'2(y)o2u@+v, (A8)

?ntegrating both members of EGA8) with the zero mode
a,u® gives the solvability condition,

Coh' (y)=—h"(y)+c(y), (A9)
Coh'(y)=c(v)—h"(y). (AD)  Lith
The nonanalyticity of the interface is a direct consequence of
the nonanalyticity ott(v), f dzva,u©®
c(y)=———. (A10)
Co=—a(Vo—Vs), y>0 f dz(9,u(®)2
c(v)= ae (A2)
Co— 2y +..., y<O.
CoTe Whenv has negligible variations in the interface width, Eq.
. ) (A10) gives back the sharp interface result witliv)=
Equations(Al) and (A2) give —av and
11 1
_ = 2— —_ 3 PR uoo
Co<2(y00) G(YCO) + , y>0 (A11)

h(y)= ) f A4 o072

1 ) 1 ) 3
” E(yCO) —g(l— Bo)(yco)®+--- |, y<O.

(A3) On the contrary, in the tip regiomw, varies in the interface
transition region and the integral term in E&10) needs to
When one takes into account the finite width of the inter-be more carefully evaluated. To lowest order, the fieldn
facec(v) becomes a rapidly but smoothly varying function the interface is obtained by integrating E45),
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vzy=vor = [ dyaelzhiy)-heyy) )
0Jy
(A12)

When Eq.(A12) is substituted in Eq(A10), one obtains a
smooth functiornc(y),

oY) = — avo— o f “dy,T(h(y)—h(y.)),
Co y
(A13)

with

T(w)= f f:d z[?zuouo—mw). (A14)

u2

Equation(Al14) gives a smoothly varying functioffor in-
stance with the above choice ofF, T(w)

= [ expv/A72)/sinhvy/Al2) — w+/Al2/sint(wyAI2)]) in-

stead of the Heaviside function of the sharp interface limit

To make further progress, we assu(aad check afterwardls
that h(y)=coy?/2+ 5(y) with 7 a small correction in a

neighborhood of the spiral tip that can be neglected in evalu-

ating the integral term in EqA13),
+ o0 + oo P
[ @yt —hiv= | ayiTieorz-cayire

1
= —S(y\/co). (A15)

Jeo

Equation(A9) then gives for the tip profile correction

eaxlU,
cdy+con' (y)=— Wsw@— 7'(y). (A16)
0

Comparing the different terms, one obtains that a consistent

scaling isy~1/\/co and 7~ /c, which give the size of the
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APPENDIX B: DYNAMICS OF THE INTERMEDIATE
REGION

The analysis of spiral dynamics that we have developed in
the main part of this paper makes a crucial use of an “adia-
batic” assumption. Namely, that for changes of medium pa-
rameter on the time scale of the spiral rotation period
~Ry/cq, the instantaneous motion of the spiral tip can be
taken to be that of a spiral tip moving in a steady medium
with characteristics invariant in time and identical to those of
the changing medium at the considered time. In the large
core limit, the spiral is described by matching three regions:
a close tip region on the scale of the tip radiRg,= €/cy
which determines the spiral tip tangential velocity; an inter-
mediate region of sizeRyRf ;)" which determines the in-
stantaneous radius of curvature of the tip trajectory, and fi-
nally, an outer scale the dynamics of which is driven by the
previous two regions. The close tip region relaxes on a time
scale which is independent of the spiral radius and which
therefore clearly becomes short compared to the spiral period
T for a spiral of sufficiently large radius. In this appendix, we
show that the intermediate region relaxes on a time scale

T(Rip/Ro) which is also much shorter than the rotation

periodT in the large radius limit. This justifies our adiabatic
assumption.

We first write the dynamic equivalent of the static BCF
equation(40), that is, the motion of a curve governed by Eq.
(5) using polar coordinates

90 ( def)“’z (def
1+(r— +€ +

3 (d/dr)(rd 6 /dr)
ot T i a2

1+ (rd6;/dr)?

(B1)
As for the static case, it is convenient in the intermediate
region to introduce the rescaled variablesnd ¢ with 6;
=w t+yel(coRy) and r=Ry+[2Ry(e/co)?]*3¢. Expand-
ing the square root in EqB1) and keeping terms of the
dominant order gives

dr dr

boundary layer(note that, here, our unit of length is the with
interface widthe) and the magnitude of the shape correction

in the boundary layer. This legitimates the neglectroin
Eq. (A15). In the scaled variablesy=Y/\/c, and 7(y)

=/coH(y+/co), the equation for the tip profile correction is

d’H

W+BCS(Y)+Y:O, (A17)

where the functior§(Y) is defined by Eqs(A15) and(Al14)
[the second term on the left-hand side of E416) is of
higher orde}. The behaviors of at infinity, S(Y)—0 atY

=+ andS(Y)— —2Y at Y= —=, give the corresponding

asymptotic behaviors o, H(Y)— —Y%/6 at Y=+ and

H(Y)——Y3(1-2B,)/6 atY=—o. These precisely match

the different smally behaviord Eq. (A3)] of the sharp inter-
face description. It shows th&t(Y) interpolates smoothly
between these different behaviors.

Ro[ e \Yay 1d% 1/dy\?
e ZCORO) AT g alag 0 B2
coR ci—C
a=2"13 2 0) £ 0 (B3)
€ Co

Equation(B2) is the dynamic equivalent of the static equa-
tion (43) determining the shape of the intermediate region. It
shows that the characteristic time to adapt to changes of
(e.g., ofc,) for & of order unity(e.g., for the intermediate
region is Ry/col €/ (coRo) ]2, It is shorter by the factor
(Rip/ Ro)® than the rotation period as announced above. It
is, however, worth pointing out that this is larger than the
time one may have guessed, namely, the length of the inter-
mediate region divided by the velocity. The reason is that

in the intermediate region the interface is almost radial. As a
consequence, the advection velocity is much smaller thhan
and advective effects become comparable to diffusionlike ef-
fects due to surface tensidne., the last two terms in Eq.
(B2) are of the same magnitufle
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APPENDIX C: SOLVABILITY INTEGRALS AND 100
FUNCTIONS: SOME RELATIONS 90|

In this appendix, we recapitulate the definitions and give il

additional information on the several functions and integrals o

which have been introduced in the evaluation of solvability sor
conditions. 50}

The linear operators considered afe and £,, which a0}
comes from the linearization of the front and back equations a0l

around the critical finger in the tip region,

E d2 2 3 1 de 2|12 de d Cl 00 Pt . . N
= — — _— _ “od 14 20 30 40
%2 - 3 dx dx dx’ €D ° ’ x
FIG. 20. Graph of the functiong,(x) (solid line), 5,(x) (dot-
d? d ted line, and 7, o(x) (dashed lingdefined in Eqs(C6) and(C8).
Lb:ﬁ_a(X)d_X_b(X)' (CZ)
X To evaluate the solvability conditions, besid¥s,Y),
and &, the solutions of the following inhomogeneous equa-
ith tions with the linear operatof; [Eq. (C1)] are needed:
with,
dyy)? ,
Lim)=1+| 4|+ m0)=0, 71(0)=13,
a(x) =) 2+3{1 =B Y(x) = Yp(X) ]} X
(Co)
dv. 211/2 ay, /2
X“(d_b) }d_b' £ang =] 1+ 2]
X X (772 dx )
213/2
b0 =B 1+ %) ©3 1(0)=0, 7,(x)~ X2 forx<1, (C7)
de 271312
Y:(x) andYy(x) are the critical finger front and back inter- Li(my,0=LY1(x) = Yp(x)]| 1+ W) '
faces which satisfy Eqgs.(18) and (19 with B=B,
=0.538 ... . Thesmallx behaviors of these different func- dy
. v,0
tions are Y{(X)=2x+x/3+ -+, Yp(x)=—2x+x(1 Mo(0)=0, —5-=(0)=2/3, (Cy)
—2B)/3+ -, a(x)=—3/(2X)+ 2B /\x+---, and
b(x)=Bc/(2x)%%+ - - -. o , dy; dv;\2
The zero modef(x),x=0, of the adjoint ofZ, is the Ef(ne)=d— 1+ ax] |
solution of X X
e d 76(0)=0, 7¢(x)~x/2 for x<L1. (C9)
Toey— -
=—4 — -b =0 C4
£old) dx? dX[a(X)g] (x)€=0. €4 They are plotted in Fig. 20.

For the evaluation of the different solvability conditions,
which tends to 0 whex— +. It is here normalized by it is useful to compute the following integrals:
imposing the supplementary condition gugl £&(x)]=1. A dy. 12
b
W)

local analysis determines the behavior&gk) for small x, = f+xdx§(x)
0
b 271312

1+ =2.771,

£(x)=¢&'(0)[x—B¢/\2x¥An(x)+---]. Equation (C4) has
been solved numerically by a finite- difference scheme on a
nonuniform grid(with a step size decreasing to zero at small +oo

x). A graph of the obtained solution is shown in Fig. 6. The l2= fo dxg(x) 71(x)
computed value of the derivative gfat the origin is¢’ (0)

=4.441. An exact relation betweefi(0) and a weighted

1+

+ o0 dy, 271312
integral of £ is obtained by integrating EqC4) betweenx I3=f dxEX)[Y(X) = Yp(x)]| 1+ —b) } =7.708,
— — 0 dx
=0 andx= + o,

+ +oo | 21372
£(0)/2= f dXE(X)b(X) =Bl (C9) 4= fo A0 1+ W) } —4.1476,
0
e . Lo 21312
The verification of Eq(C5) serves as a check of our numeri- lg= J dx&(X) 75(X)| 1+ _b) } ~6.306
cal computation. 0 dx ’
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1+

dx

dy,\? In the analysis of meandering, there appear several func-
) =—2.118, tions of the tip displacement:

| —rmd avs
6= |, X§(X)W

L(n7y,0) =[Yi(x+d) = Yp(x+d)]O(x+d)

+ 0 213/2
Iy =J d v 1+ —b> } ~12.553, 4y, 2132
,0 0 X§(X)77 ,0 dx w14 d_Xf) } , nvyd(O)ZO, (Cl?)
_ o de dYb 21312 oo
'L_fo AXEOLY 00 = YOI 14| 55 '3~d:f AxEOO[ Y (x+d)— Yy(x+d)]O (x+d)
0
=8.431, dy..\ 2132
x 1+(—b> ,
o dv,)|2]32 dx
o= fo dXE(X) 76(X)| 1+ W) } ~4.476. y -
(C10 ly,a= jo dxé(x)my 4/ 1+ I } (C18

Exact relations between some of these integrals can be _
obtained by using symmetry transformations of known actor large|d|, these functions tend toward constant values,
tion on the interfaces. For instance, under dilation the criticafoward 0 when d——o and I34—214/B; and I, 4
finger front and back become’; ,=Yi(ax)/a, Y. —2l5/B. whend— +20. Their behavior for small displace-
=V, (ax)/a and obey scaled versions of Eq&9) and(lg), ments (d|<1) is nonanalytic. From the smadlbehaviors of
Y:,Yy,, and&, one obtains, for €|d|<1,

d?Ys, L dYi,\2 dYs .\ %% £(0)
e I e dx ! l39=15= =——dIn(|d])+O(d), (C19
(C1)
) , 7v.d(X) = 1y o(x) —d In(|d[) + O(d). (C20
d“Yp o dYp o
" 2 :a[ +< di +{1-Bcal[ Y o(X) = Yp o(X) ]} The expansioC20) of 7, 4 for smalld gives forl, 4
X
dy, .\ 2]%? ly.a=ly,0— 14d In(|d])+O(d). (C21
X dx ) } ] (€12 The functionF which measures the spiral self-interaction,

F(d)=(l34+ B¢l 4)/13—J, has therefore a singular expan-
An expansion arounde=1 gives Y¢ ,=Y¢+(a—1)5Ys sion for 0<d<1,
+ .-+ where 8Y¢(x)=xY{(x)—Y¢(x). Similarly, one has
Yo o=Yp+(a@—1)8Yp+ - - with 5Y,(X)=XY4(X) — Yp(X). F(d)~— 2B in(|d))=—0.57aIn(d|) (C22
Expanding Eqs(C11) and (C12 in the same limit shows I3
that 8§Y; and 6Y,, obey the following linear equations:

[where we have used E(C5) which shows that the singular

dy;\?2 dy.\ 2132 contributions of I34 and Bgl, 4 are equd For d—
Li(6Ys)= 1+(a —[ ( d ) } , (C13 -« F(d) tends toward —J=-1.872 and for d—
+o F(d) approaches 26+1,/B.)/13—J3=1.774.
qy.| 2 The singular behavior df (d) at smalld disappears when
Lo(8Yy)=|1+ _b +{1- 2B Y:(X) = Yp(X)] the controller field d|ff_use_s. For small dl_ﬁusm[n(f(er d)
dx =Yp(x+d)] O©(x+d) is simply replaced in EqQ$C17) and
dy,| 2132 (C18 by the smoother functioly x+d),
b
—B:oY¢}H 1+ —) } (C19
c f} d ’ +o dx’ (X_X!)Z
YSXx;/p)= —exp ———5—
Equation(C13 shows thatsY; = 5,— 7, [Egs. (C6), (C7)] o /p %
sincedY;(0)=0 (as can be checked from its explicit expres- X[Yi(x") = Yp(x)]. (C23

sion). Then, multiplying both sides of EGC14) by £(x) and
integrating fromx=0 to +% gives the desired relation be- For /;<1, one can check that the singular behavior of the
tween the above integrals, self-interaction function is cut off al~/ and the small
distance behavior of (d;/p) is
14+ 1,—Be(l5+2153—15)=0. (C15
F(d;/p)~—0.57a In(/p). (C29
Using rotational symmetry in a similar manner, one ob-
tains thatye(x) =x+ Y;dY;/dx—1 and the other relation In the other limit/p>1, for x of order 1,Y§x;/p)
=1/B.+ 2x/(\/?BC/D). The corresponding behavior of
lg+ BC(IL—Ie)IO. (C16) I3,d;/D and IV,d;/D at small d is I3*d;/D:|310;/D+2|4d/
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(B7/p) + -y as. =y, +21sd/(BJm/p) + ---. o an unbounded increase Mat long time. Therefore, this
4.7 p U p

So the small distance behavior of the spiral self-interactior‘FCh???kv'°|ateS In anhobvuljus way thehsymn:ftrgdlthat we
function is, for/>1 (but still smaller than the scale of the would like to preserve here. In contrast, the modifigdler-

matching regioh Cromep scheme

l4+Bcls d 2,06/ / (€25 Pn+1=Pn—h0y, (D6)
BVl 7o On+1=0nthpnis (D7)

The derivative atl=0 of the spiral self-interaction function exactly conserves the energy of harmonic motion. This can
has been computed numerically for intermediate values obe seen by substituting the ansatz=pyr" and g,=qgr"
/. Itis plotted in Fig. 10. into Egs.(D6) and(D7). Nontrivial solutions then exist only

if

F(d;/p)~2

APPENDIX D: NUMERICAL INTEGRATION OF THE '
WAVE TIP EQUAT'ON r:]._h2/2i|h\/1_h2/4:eilA0, (D8)

In this appendix, we describe a simple scheme to integrateshere
numerically the equation of motion for the wave {ig5),

which is convenient to rewrite as a system of first-order or- Pt hy1—h?/4
dinary differential equations Af=tan 1-n22 | (D9)
da_ D, (D1)  Henceg)=Ae"*’+c.c. is a solution of EqYD6) and(D7)
do with constantA. Let us now extend this scheme to the case
dp where the second term on the right-hand side of (B®) is
3= —q+mF(q(8)—q(6—2)). (D2) included, by simply letting
Pn+1=Pn—hd,+hmKag,—a,-n), (D10)

The difficulty of integrating this equation comes from the

fact that the translational invariance of the underlying Ons1=0n+hpnss- (D1Y
reaction-diffusion equations remains present in 8§), and '

hence in Eqs(D1) and(D2), which are invariant under the Now the key point is thady} =Ae"2%+ c.c. remains an exact
transformation solution of these equations onlydf; —qgy;_\=0, and thus

a(6)=q(0)+Ae’+c.c., (D3) A6=2mIN. (D12

where A is an arbitrary complex amplitude. It is therefore This condition together with EJD9) then uniquely fixes the
desirable to develop a numerical scheme thiatretelypre-  steph for a given number of time stepbl, per basic period
serves this symmetry in order to avoid spurious discrete efof 27, After simple algebraic manipulations, we find thmat
fects resulting from the coupling of this translational mode toshould be equal to

other modes. To see how to construct such a scheme, let us

first consider the case where the second term on the right- h=2 sin(#/N). (D13)
hand side of Eq(D2) is absent. In this case these equations ) ) _ _ _
describe simple harmonic motion with a constant energyn Summary, our integration scheme is uniquely defined by
~|AJ2. Itis well known(and simple to shopthat the simple ~ EGs-(D10) and (D11) with h given by Egs.(D13). For an

Euler explicit scheme arbitrary value oN, this scheme is invariant under the trans-
formation
dn+1=0n+ NPy, (D4) .
mer Gn=0n+AEM 4 c ., (D14)
Pn+1=Pn—hdy, (DY)

which is the direct discrete analog of Hp3). A solution of
whereh is the time(angle step, does not conserve energy, a desired numerical accuracy can then be obtained by choos-
but rather pumps energy into the motion. As a result, it lead#ng N sufficiently large.
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