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Glassy dynamics and aging in an exactly solvable spin model
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We introduce a simple two-dimensional spin model with short-range interactions which shows glassy be-
havior despite a Hamiltonian which is completely homogeneous and possesses no randomness. We solve
exactly for both the static partition function of the model and the distribution of energy barriers, giving us the
equilibration time scales at low temperature. Simulations of instantaneous quenches and of annealing of the
model are in good agreement with the analytic calculations. We also measure the two-time spin correlation as
a function of waiting time, and show that the model has aging behavior consistent with the distribution of
barrier heights. The model appears to have no sharp glass transition. Instead, it falls out of equilibrium at a
temperature which decreases logarithmically as a function of the cooling [iB1663-651X99)04311-1

PACS numbegps): 05.50+q, 64.60.Cn, 64.70.Pf, 75.10.Nr

[. INTRODUCTION cause of competition between different types of interactions
[9] or because of the presence of higher-order interactions
A great deal of effort has been devoted in the last twenty10,11. For some models with infinite-range interactions,
years or so to understanding the behavior of spin glasses afide statics, though not the dynamics, can be solved exactly
other glassy modelgl—3)]. In spin glasses, one introduces [12-14.
randomness into the Hamiltonian of some otherwise well- In this paper we introduce prspin model in two dimen-
behaved system, creating a hierarchical distribution of enSions which, under a dynamics which flips single spins, dis-
ergy barriers over state space which prevents the systeR|2yS the classic features of a glassy system. This model
from reaching thermal equilibrium on reasonable time scale80SSesses the considerable advantage over previously studied
below a certain temperature. The slow dynamics dispIaye&nOdels that both its statics and its low-temperature dynamics

by these systems has made their computer simulation Ve\?re exactly solvable, even though it has only short-range in-

o . eractions.
difficult despite the recent appearance of a number of ne The structure of the paper is as follows. In Sec. Il we

and promising algorithm, 5], and the presence of random- define our model. In Sec. Ill we give an analytic solution for

ness in the Hamiltonian has, except in a few special cas . : . :
[6-8], prevented their exact solution. As a result, our undere-[%e partition function and interal energy of the model in

standing of their behavior is, even after many years of effortggu'l'ggfrg'r; nbst(\?vcéelx tvr;I: S;)OI\L/J?];oét;Tg g;s(;rltl?]gtlﬁogvgfstin;n
still very far from complete. It is, for example, still an open gy 9 ying

guestion whether, in the limit of infinitely slow cooling, spin excitations of the model and hence argue that it should dis-

glasses with short-range interactions display a sharp transp-Iay glassy behavior. We compare our predictions with ex-

tion from ergodicity to glassy behavior, or whether the tran'%rﬁgﬁltvebe,\tﬂvsgéen iﬁgot\f’gnullﬁt'%r; ar\1/d \Egd S?Sgellfﬁé E;gri?] e
sition is a gradual ong2]. : : y ging

o : roperties of our model, and in Sec. VI we give our conclu-
However, it is not necessary to have randomness in th8MoP 9

Hamiltonian in order for a system to be glassy. Glassinesg'°"S:

has its origin in the dynamics by which the system is updated

rather than the energy landscape. In fact, no landscape even Il. THE MODEL

exists until we specify the dynamics, since the set of elemen- our model is ap-spin model composed of Ising spins

tary moves by which the system moves from one state to ~ > ap-sp ; , P sing sp

another defines which states are neighbors. Given an apprg—l_ _1. on a trl_ang_ular Iattlc_e with short-r_angv_a Interactions
: . . ) "+ and a single-spin-flip dynamics. The Hamiltonian is

priate choice of dynamics, any system can be ergodic on

short time-scales, regardless of the energies of particular

. . . 1
states. Conversely, it should be possible to find systems HZEJ' . 2 000 (1)
which display glassy behavior without randomness in the ij,kinv
Hamiltonian.

One such system is the molecular or configurationalThe sum here runs over all sets of three nearest-neighbor
glass—window glass, for example—but this is a notoriouslyspins i,j,k which lie at the three vertices of one of the
difficult system to study mathematicall{t]. Recently there- downward-pointing triangles on the lattice. Except for this
fore, a number of authors have investigated spin modelsestriction to downward-pointing triangles, our model is the
which are non-random but show glassy behavior either besame as the Baxter-Wu moddl5], although its behavior is
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entirely different. It is also similar to a model used by single-spin-flip dynamics, or as noninteracting spins with a
Barkemaet al.[16] to study the formation of adatom islands constrained dynamics in which we flip three spins at once. In

on (111 surfaces of metals. the remainder of the paper, we will for the most part adopt
For most of our presentation we will find it more conve- the latter description.
nient to rewrite this Hamiltonian in the form The first step in solving for the equilibrium partition func-

tion of the model is to find the set of allowed configurations
_ of the defect variabled;, so that we can perform the sum
H _‘Ji,j,kZ‘n v (Sitsj+s)mod 2, @ over them. Clearly the number of sites on the defect lattice is
the same as that on the spin lattice and hence the maximum
which is identical to Eq(1) except for an additive constant if possible number of defect configurations is the same as the
we map the Ising spins; onto the variables;=3(o;+1), number of spin configurations of our original spin variables.
which take the values @own) or 1 (up). We now show that, for certain boundary conditions, there is
One could also construct a disordered version of thea one-to-one correspondence between spin configurations
model in which the three-spin interactions were chosen ranand defect configurations.
domly to have strengths J. However, this disordered ver-  Consider three spin configurations®}, {s™)}, and
sion can be mapped onto the homogeneous one above via{g?)}, related as follows:
simple gauge transformation, and so the two have identical
behavior.(This transformation is particularly obvious when sP=(sM+s)mod 2. )
viewed in terms of the defect variables introduced below. ) i ) o
The dynamics of the model consists of moves which flip The corresponding defect configurations are similarly re-
single spins. We have chosen to investigate the behavior dated:
the model under the standard Metropolis dynanjitd| in
which moves with energy co®tE take place with rate 1 if

. _BAE .
AE<0, and with rate 8 = if AE>0. However, except for If spin configurations 1 and 2 are to have the same defect

differences in the short-time correlations and a possible over- ~". . (1)_ (2) .
all rescaling of time, we would expect the fundamental prop_coqﬂ%rranondi _did. fo: all "f.'t follfws()that t?e ”dgfect
erties of the model to be the same for any other single-spinyarla €s corresponding fo configuration © must all be zero,

. . - . . j.e., that configuration 0 must be a ground state of the sys-
glpI dynamics which respects both ergodicity and detalleo{em If we ca?q show that there isgonly one such grouzd
alance. )

state—the trivial one in which all spins are zero—then it
follows that{s} and{s®} are identical and the mapping
lll. EQUILIBRIUM SOLUTION OF THE MODEL of spin states to defect states is one-to-one. We can indeed

In the following sections we discuss the glassy behavioshow this in the case of a lattice which has lenigth2* for
of our model. First, however, we give an exact solution of itsintegerk along one dimension and periodic boundary condi-
equilibrium properties. An alternative representation of thetions. The argument runs as follows.
state of the model is as a triangular lattice of defects: the Suppose we have a lattice in the form of a rhombic strip
downward-pointing triangles of the Hamiltonian themselvesof width L= 2. If the configuration is to be a ground state,
form a triangular lattice, and for each site on this latticethen there can be no defects at any site on the lattice. This
which corresponds to a trio of spins of which either one orallows us to calculate the values of the spins in one row
three are up, there is an energy contributionJofo the  given those in the preceding row since, by E8), each one
Hamiltonian. Thus we can represent each state of the lattic@ust be the sum mod 2 of the two above itsif is the jth
by a set of defect variables spin of theith row, then

P~ (¢ +¢?mod 2 ©

di=(si+sj+s)mod 2, (€) Si+1j=(Sij+si j+1)mod 2, )

which take the value 1 when a defect is present and 0 othewheres; . ; is the site belovs;; ands; ;. ;. The spins in the
wise. In terms of these defect variables, the Hamiltoniamext row after this are then

takes the form of a set of non-interacting Ising spins in an

external fieldJ: Sit2;=(Sij+2Sjj+11Sij+2)mod 2

:(Sij+Si'j+2)m0d 2. (8)
[ By iterating this argument it can now be shown that a similar

L o result applies for each row which is a power of 2 away from
This simple form for the Hamiltonian allows us to solve for e initial one. Foll. a power of 2, we then have

the model’s equilibrium behavior exactly. However, there is

a price to be paid for this simplicity in terms of an increased Si+1j=(Sj+sij+)mod 2=(2s;)mod 2=0, (9)
complexity in the dynamics. In the defect representation of

the model, a single spin-flip corresponds to flipping the statesinces; ;.| =s;; because of the boundary conditions. Given
of three defects at the vertices of apwardpointing tri-  that bothi andj are arbitrary, it immediately follows that
angle. Thus our model displays clearly the duality betweerevery spin on the lattice is zero.

dynamics and interactions which is present in all systems; we Thus we have demonstrated that, for lattices of length a
can think of it either as a system of interacting spins withpower of two along at least one dimension, there is a unique
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o O O O finite temperature. Each point represents the final average
-O ™ e @ ™ ./Q\.O - OO internal energy of the system after “Metropolis Monte
oo e o O -0 00O Carlo steps per sité.e., more than 1 steps total As we

can see, the exact solution is again in good agreement with
the simulations for high temperatures, but fails badlyTas
—0.

FIG. 1. A triangle of side & can be flipped by flipping three
triangles of side ¥ 1. The solid circles represent the defects and
the lines indicate the triangles to be flipped at each step.

ground state in which all spins have value zero, which inturn |y THE ORIGIN OF GLASSINESS IN THE MODEL
implies a one-to-one mapping of defect states to spin states.
Given the Hamiltonian(4), the partition function of the We can gain some insight into the model’s loss of ergod-
model is then simply icity if we recall that the flipping of a single spin corresponds
to flipping the states of three defects in an upward-pointing
NN ; N triangle. In the limit of low temperature only those moves
Z=n§_:0 ( n)eB "=[1+e PN (100 which flip the defects in triangles containing either two or
three defects are energetically possible. Triangles with one
The equilibrium internal energy per site is then defect only will _bg exponentially unlikely to change-, gnd
become local minima at=0. Hence there will be a finite
197 J energy, and entropy, dt=0 [20]. _ _
Eeq=— 7B AL (11 In order to demonstrate that our model is truly glassy in
B 1+ef the conventional sense, however, we need to treat the finite
. . . temperature case and investigate the distribution of energy
For lattice SIzes which are not a power of 2, the proof abov.‘?)arriers. As we have demonstrated above, the model has only
no longer applies and more than one grounq state may exigf,q ground state, in which there are no defects and all spins
[18]. In that case, not all defect configurations can OCCUT5re zero. We now show that the elementary excitations of the

However, the ones that do exist all correspond to the same Jdel—those states lying closest to the ground state—are

multiplicity of spin configurations, one for each ground state.irios of defects at the vertices of an upward-pointing equilat-

Since the states of the spins in a particular ground state arg| triangle of length”’=2X on a side with integek.

determined by the spins on any one row of the lattice, the Equation(7) tells us that the spins below an isolated de-
nungbereNof ground states can increase at MosN@suna  fect form a Pascal’s triangle mod 2. If we take a finite region
~e=e" with lattice size. In addition, all of the defect of e Jattice in the form of an upward-pointing equilateral
states can be chosen independently except for those on Ofgyngle, each defect in it produces such a Pascal triangle.
row, which may be restricted to some extent by the requireThen it the spins along the top sides of the triangle are zero,
ment that the spin configuration to be consistent with th§ne pottom row is the sum mod 2 of the corresponding rows
periodic boundary conditions. This means that the partitiony aach of the triangles. We call this row of spins gedow
function can be written as a sum of the region’s defects. The sum of the Pascal triangles of an
N-L upward-pointing triangle of three adjacent defects is zero;
Z=N 2 (N_L)e—ﬁ.](n+ sn) (12) thus a move that flips all three conserves the shadow, and
ground&, ' one defect configuration can be reached from another by a
series of local moves if and only if they have the same
where én is the number of additional defects in that row shadow. In particular, only configurations with a zero
determined by ouN—L choices in the other rows. Since shadow can be local excitations of the ground state. It is then
sn<L= N, logarithmic derivatives of, and therefore bulk straightforward to show that no configurations with one or
properties of the system, converge to those of @) for  two defects can have a zero shadow, and that the only such

n

large N. configurations with three defects are those arranged in an
In Fig. 1 we show our solution for the internal energy asupward-pointing triangle of side2
a function of temperaturésolid line), along with Monte Next, we ask what the energy barrier is for flipping a

Carlo results from the simulation of the modélashed triangular excitation of a given size. The minimum-energy
lines). The simulations were performed on a ¥2828 rhom-  path for flipping a triangle of side*2nvolves flipping three
bic system with)=1 using a Bortz-Kalos-Lebowitz continu- triangles of side & ! in series, as shown in Fig. 1. Since the
ous time algorithn{19]. Each curve represents the internal intermediate state on this path has four defects rather than
energy as a function of temperature during an annealing exhree, the total energy barrier for the proces3 égher than
periment using an exponential cooling schediikeToe ”*  that for flipping a triangle of half the size. This in turnJs
with To=1 and cooling rates(top to bottom of vy higher than the barrier for flipping triangles of hétiat size,
=10"2,10"3,104,10°% and 10° in units of inverse and so on, down to triangles of side 1 which have barrier
Monte Carlo steps per spin. As the figure shows, the model’'gero. Thus the total height of the barrier which must be
behavior is in good agreement with the equilibrium solutioncrossed in order to create or remove a triangular excitation of
at high temperatures, but falls out of equilibrium at lowerside /'=2* is Jlog,”=kJ, increasing logarithmically with
and lower temperatures as the cooling rate is decreased, insize[21].
manner characteristic of glassy systems. In a system of linear dimensidn<2X*?, the largest pos-

In the inset, we show the results of numerical experimentsible excitation is a triangle of side*2andkJ=Jlog,L is
in which the same system is quenched frdm« to a fixed the largest energy barrier the system must cross to achieve
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FIG. 2. The time it takes the system to eliminate a single trian-. FIG. 3 The |nterna_1l energy per site asa function of te_mperatgre
in a series of annealing simulations using an exponential cooling

gular excitation of size /=2,4,8,16 for temperaturesT : . .
=0.15,0.20,0.25. Each set of points follows the expected pOweﬁchedule(dashed lingscompared to the exact solution at equilib

law. Inset: the exponent of the power law as a function of invers rium (solid ling). Inset: the internal energy following a quench from

temperaturgd. The predicted value g8J/In2, Eq.(13), is shown as er.:w to. a finite temp_era;ure._The pomts_ are data ”0”.1 Monte Carlo
the dotted line. simulations, the solid line is the equilibrium solution, and the

dashed line is a fit of the forr(lL5). The steps in the fitted function

. . . . correspond to the time scaleg, Eq. (14). Their heights are set b
ergodicity. The conventional view is that a glassy system, . e garametemk but theif pogitions are absol?.lte. y

should have energy barriers which scale as a powelk. of

Since InL is a limiting case of the power law when the . )
exponent tends to zero, our model can be considered margiﬁpd.theA'? assigned by a}, Ieast”sq.u.ares_ fit .to Fhe data. Of
V\Partlcular interest are the “steps” visible in this fit. The tem-

ally glassy. At low temperatures, assuming an Arrhenius la . .
TocyegAE t)r/1e correlatior? time goes as 9 peraturesT, at which these occur are solutions gf=t:

7~ gBIlogzL | B2 (13 T =JK/Int, (16)

i.e., as a power-law in the system size, with the exponenyith k taking integer values up to lglg. Thus the tempera-
increasing linearly with3. At high temperature, the fact that ture at which the system fails to equilibrate is inversely pro-
there are several pathways for annealing away a triangulajortional to the logarithm of the cooling tinte This goes to
excitation reduces the free energy barrier somewhat, but wgero more slowly than any power law agoes to infinity.
believe that there is no sharp glass transition.

We have confirmed these results in simulations of our
model. In Fig. 2 we show the time taken to equilibrate the
system starting from a state consisting of a single triangular We have also looked at the aging behavior of the model
excitation of a given size for three different temperaturespy examining the behavior of the two-time spin-spin con-
with J=1. The expected power-law is obeyed closely. Thenected correlation functio(t,,,t) as a function of waiting
lines should cross at the origin, since the time to get rid of anime t,,. This function is defined by
excitation of size#’=1 is unity, and to a reasonable approxi-
mation they do this. The exponent of the power law is shown iy o _
as a function of3 for five different temperatures in the inset. Cltw.D=8(tw)s( = si(twsi(1), @9
The expected value @J/In2 is shown as the dotted line and
agrees well with our measurements.

We are now also in a position to explain the form taken
by the Monte Carlo results in Fig. 3. Writing the time scale
for equilibration on length-scales up t6=2* as

V. AGING

where the bar indicates an average over the lattice. If a sys-
tem relaxes to equilibrium exponentially fagtjs a function
only of t—t,,. In our model, however, as is typical in sys-
tems with slow relaxationC depends on,,. In Fig. 4 we
showC as a function of the ratit/'t,, for a variety of values

=8, (14  of ty. The figure has a number of notable features. The
“steps” in the correlation function arise because all barriers
we can write the energy of the system after titrees in the model are multiples ad. This is true in some other

glassy models as well, such as the Edwards-Anderson Ising
spin glass[2,4] with random bonds+J. However, in that
model, the height of the highest barrier, and hence the den-
sity of steps per unit volume, increases as a power of the size
where the quantitie®\, are temperature-independent con- of the system, so that for a system of moderate size, the steps
stants. The dashed line in the inset of Figure 3 is of this formn C(t,,,t) are small enough to be indistinguishable to the
with E¢q taken from Eq.(11), t=10° as in the simulations, eye. In our model the height of the highest barrier in the

E(t)=Eeqt X Ace U™, (15)
k



5072

1.0
0.8

2

s I

S 06}

S

= I e

E 04— '”

8 L

9 L

E r
02 &
0.0 Do voad ool vvd ol wrisad viad ol vl i

10° 10° 10° 10° 10° 10"

rescaled time #f,
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horizontal(time) axis is logarithmic.

system increases only logarithmically with system size, s

that the steps are still visible even for quite large lattices.
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at the previous one, so that the corresponding time-scales
increase by a constant factimee Eq.(14)]. (By contrast, a
plot in which the time is not scaled by the factgrgives no
collapse of the correlation function, whereas in a nonglassy
system such a plot should collapse perfectur model is
instructive in this respect, since it makes the origins of the
aging behavior particularly clear.

VI. CONCLUSIONS

To conclude, we have introduced a two-dimensional spin
model with no randomness and only short-range interactions.
Under single-spin-flip dynamics it displays glassy behavior,
with barrier heights growing logarithmically with system
size. We have given an exact solution for both the equilib-
rium properties of the model and the distribution of energy
barriers. We have performed numerical simulations which
confirm our analytic results to within the available precision.
The model seems to have no sharp glass transition, and falls
out of equilibrium at a temperature which decreases logarith-
mically as a function of the cooling time. It also displays
(S:Iear aging behavior consistent with our understanding of the
distribution of energy barriers.

Ignoring the steps in the correlation function, the figure
shows that the rate of decline of the correlation function as a
function oft/t,, is roughly independent df,, although there The authors would like to thank Nelson Minar for per-
is no actual collapse of the curves onto one another as theferming some of the early simulations of this system, and
is in some other modelgl1]. This is precisely the type of Richard Palmer, Heiko Rieger, David Sherrington, and Paolo
behavior which one would expect to see in this system, sincSibani for useful discussions. This work was funded in part
the energy barriers we need to cross at each succeedimy the Santa Fe Institute and DARPA under Grant No. ONR
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