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Synchronization and coherence in thermodynamic coupled map lattices
with intermediate-range coupling
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In spatially extended systems, intermediate-range interactions arise naturally in some physical contexts. To
study them, we investigate a model of coupled map latti€L’s) with intermediate-range coupling, and
derive analytic conditions for its synchronization. We find that in these CML'’s, if the range of coupling is
fixed, the law of large numbers applies for the mean field. The total normalized power in nonzero components
of the power spectrum of the mean field goes to zero in the thermodynamic limit. We also show that in the
same limit the relevant parameter for synchronization and coherence is the fraction of sites coupled, and not
their number[S1063-651X99)07410-3

PACS numbes): 05.45—-a

The past decade has seen a surge of interest in synchrGML'’s, one couples each site to its nearest neighbors only.
nization and coherence in coupled map latti¢€ML's) Here the coupling is over a finite range, $Ayeighbors on
[1-10. Most work has focused on systems with finite de-either side on a lattice df sites. Sinhaet al.[2] claimed that
grees of freedom and short-range, global or random couthe relevant parameter is the number of sites coufBeend
pling. In this paper, we study the synchronization of one- and10t the fraction of sites couple@/N. This conjecture was
two-dimensional(1D and 2D CML'’s with intermediate- reached on the basis of the observation that power spectra
range couplings in the thermodynamic limit. This study isSaturate as a function &and notB/N. However,B being a
related to systems with finite degrees of freedom studied byelévant parameter as suggested by Siehal. [2] is coun-
Sinhaet al.[2] and Kozmd10]. In these works, each site is efintuitive. The intuitive expectation would be that if the

coupled to a range of neighbors on either side, rather thafystem size goes to infinity while the coupling range remains

just its nearest neighbors. This may be a valid approximatior(fonStam’ we should obtain results similar to nearest-neighbor

in systems where interaction strength decays slowly with dingUpIIng at least in one dimension. We show that this expec-

tance. Just as CML’s with nearest neighbor coupling Coulc}atlon is correct and that certain properties which universally

be considered to be a discretization of partial differentialemerge in global coupling schemes are absent in this case

equation, CML’s with intermediate-range coupling could be[8]' The analysis presented by Lemaigeal. [13] also sup-

ports our claim. Lemaitreet al. showed that coherence can

seen as a discretization of a partial integro-differential equaémerge with short-range coupling in dimensib® 2 but not

tion. In fact, such integro-differential equations have oftensy, =1 (see alsq14]).

been used in modeling certain physico-chemical reactions Recently, Kozmd10] numerically studied synchroniza-
[11]. Elimination of rapidly diffusing components in a sys- tion in these CML’s, and calculated phase diagrams as a
tem of diffusion coupling can also lead to effectively nonlo- fynction of B and strength of coupling for two different val-
cal coupling in resultant equatiorjd2]. CML's in which  yes ofN. These phase diagrams show striking similarity if
coupling between two sites separated by distantecays as the parameter used B/N. In this work, we explicitly prove
power law 1/ with exponenta have also been considered that at least as far as synchronization is concerned, the rel-
as models for biological neural networld]. In the present evant parameter is in fa®/N and notB. Going to larger
work, we derive the analytic conditions for synchronization|attice sizes, we show that the quasiperiodic behavior that
in our CML’s. We find that in the thermodynamic limit the emerges almost universally in globally coupled systems is
relevant parameter for synchronization is trection of sites  absent and the law of large numbers applieh We also
coupled and not their number. We present numerical resultshow that the power spectrum of mean field tends t6 a
which show that for the mean field in the CML'’s with a fixed function with the peak at zero momentum in the thermody-
range of coupling sites for each site, the law of large nUmnamic limit. Thus the structure seen by Sinéigal. disap-
bers applies and the total normalized power in nonzero compears in this limit.

ponents of the power spectrum goes to zero in the thermo- | et us first consider a linear lattice &f sites with peri-
dynamic limit. This is in sharp contrast with the conjecture odic boundary conditions. We assign a real variab(¢) at

of Sinhaet al. [2]. each sitei, i=1,...N. Let B=N/k be the number of

~ Sinhaet al. showed that some curious properties emergeeighbors on either side for each site. Each site evolves as
in the spatiotemporal dynamics as one increases the range gfilows:

coupling in a 1D systenj2]. In the usual definition of 5

xi(t+1)=<zs)-lj§1[f(xi+j<t>)+f<xi,,-<t>)]. 1)
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fmi()=(2B) ' (x/(t)) if (@ 0<|m—I|<B, or (b) |m ‘ '

+N-I|<B,m=B, or (¢) [IN-m+I|<B,m>N-B; the 0 il
other elements are zero. We assume Mat2B+ 1 to avoid

complications. It is clear that synchronized state, i.e., the 20l i
state in whichx;(t)=x(t)Vi for all timest, is a solution of Z

the system. The reason is that if one starts in a synchronized

state, the system stays synchronized. Let us check the stabil- 10 )
ity of this state. In this state the Jacobian matrix is related to

the interaction matrix byj(t)=I1f'(x(t)), wherel is an 0 ] ' '
N-dimensional interaction matrix with elements such that 2 4 6 8 10

I'm,=1/(2B) if conditions (a), (b), or (c) defined above are

satisfied; the other elements are zero. The long term Jacobian FIG. 1. This figure shows the behavior of the maximum allowed
for the synchronized state is given By=j(t)---j(2)j(1) value ofZ=¢e" as a function of fractiork of sites coupled.

=1 (x)---f'(x2)f'(x;1). Thus the stability of this state

depends on the eigenvalues of the interaction matrix and th&his implies that synchronous chaos is not possible in the
Lyapunov exponent of the map Let \;, i=0,... N—1 thermodynamic limit. Thus, in the thermodynamic limit, the
denoteN eigenvalues of and\ be the Lyapunov exponent System behaves like a nearest-neighbor coupled system. This
of the mapf. In order to find the eigenspectrum of the inter- is what one would intuitively expect. Let us take another
action matrixl, the symmetries are helpful. The interaction €xtreme case, that of global couplifig=N/2 (k=2). One
matrix is a circulant matri%3,15). The Fourier modes are the Should always see a synchronized state in this case. It is easy
eigenmodes of the interaction matrix. Thus the stability ofto find the range 0é*<Z of a single map in which synchro-
any synchronized state can be analyzed by expanding pertutized chaos will be observed. Fo+=5/2, Z=4.27 ... for
bations in terms of Fourier modes. We will analyze synchrok=3, Z=2.418...; and fork=6, Z=1.20.... The
nous chaotic state which is widely observed in these systenfability range approaches unity for largeIn Fig. 1, we

[10]. The only eigenmode which corresponds to the uniformshow the dependence @fon k. We have verified these re-
state is one fog=0, i.e.,[1,1, ... ,1]. Itis easy to show that sults in numerical simulations.

the condition for the stability for synchronous chaos is that Let us consider a case with on-site contribution along
only this eigenmode should survive and the rest should b&ith B nearest neighbors, i.e.,

damped4,5]. Let A be the eigenvalue corresponding to this

eigenmode withg=0 and\ be the Lyapunov exponent of Xi(t+1)=(1—-e)f(xi(t))
the mapf. The necessary con)t\dition for synchrxonous chaos is B
that only one eigenvalue\,e*|>1, with |Ae|<1 for i o o
hat only one eigenvaluthos] INiel +(el28) 2 (106 (0)+ 100 @)
Let us compute the eigenvalues of interaction matrix. Us-
ing the symmetries of interaction matrix, we find The stability analysis can be done on similar lines. The ei-

genvalues change as—(1—¢€)+e\;. However, the be-
havior in the thermodynamic limit does not change.
MZB_lz cog2jl w/N), (2 These conclusions for synchronization remain unchanged

=t even if one considers higher dimensional CML's with
intermediate-range interactions. Let us consider the evolution
of a 2-dL XL lattice of N sites with periodic boundary con-
ditions, whereN=L?:

B

where =0, ... N=1. ThusAy=1 and \;<\q for |#0.

The identitijB:OcosG O)=3[1+sin((B+2)6)/sin(6/2)] im-

plies that \,=21/B[1/2+sin(27(B+3)I/N)/2sin(m/N)]

—(1/B), forI=1. The\,’s are continuous functions &f and B

A4 can be arbitrarily close th,. Let us determine the bounds X (t+1)=(4B)"! FOG e (D) F(X o (T

of stability in terms of\, alone. For largeN, (sin(m/N) (1) =(4B) k§=:1[ i (D) T (1)

~ s1 i

7/IN) and forB> 3 we obtain () T ()],

sin(2m/k)

N~——m—. (3)  The interaction matrix of this system is a block-circulant
2wk

matrix with circulant blocks. Using Ref3], we find that the

. o _ L? eigenvalues are
Thus the eigenvalug, is distinct from\g=1, and this gap

in the spectrum can be used to establish synchronization for B
constantkk even wherN—o. (The bounds fon,’s for =1 N m=(2B)" 1> (cog2jl w/L)+cog2jmm/L)),
can be found, and it can be shown thatremains the value ' j=1

with largest modulus for ank>2.) In other words, it is

possible to find the function with the Lyapunov exponknt wherel=0,...L—1, andm=0,... L—1. Thusipo=1
such thae*>1 but|\,e*| <1 for some value ok. However, and\| <\, for nonzerol and m. The crucial factor in
the situation changes qualitativelyBf number of neighbors synchronization is how closkg g is t0 A g 1=\ 1. Using ar-
at each site, remains constant as considered by Siheh  guments as in the 1D case, one can show thai~1/21
[2]. In this case, aN—w, k—x, 27/k—0, and\;—1. +sin(27/K)/(27/K)]. As in the 1D case, synchronization is
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impossible for constanB in the thermodynamic limit. The 0.01 p— ey
synchronization condition remains the same. : ]

Thus it is clear that synchronization cannot emerge with I 1
short interactions on Euclidean lattices in general. However, 0.001 £ .
one can still ask if some other kind of collective behavior can i 1
develop. Sinhaet al. [2] concluded that coupling with a a*
range larger than some critical length is similar to global 0.0001 L |
coupling, as a result of their numerical simulations. Using an ’ :
extra array of partial sums, we can simulate much larger
lattices. We show thah) unlike the case of globally coupled
maps, the law of large numbers is applicable, d&bdthe 0~0000}000 ' "'1'(')'(')00' ' "'1‘0'(‘)[000' 1000000
power spectrum of the mean field does not have any particu- @) N
lar structure in the thermodynamic limit. 075 o

In CML’s with global coupling it was found that the fluc- ) '
tuations in the mean field do not decay abl Bven though 07 i
all of the Lyapunov exponents were found to be positive and 0.85 - T
there was no apparent order in the power specfrimit was 06 - 7
found that the fluctuations as defined below saturate, signi- P 0.55 - A
fying subtle collective behavior. In particular, if one defines 0.5 - .
the mean field a$1(t)=N*12i’\':1f(xi(t)) then its standard 0.45 - .
deviation o= ((h?)) —((h)?) would decay as N if the 04t 4
f(x(i))'s were independent random numbers. Of course, the 0.35 - i
sites in CML'’s are not independent. However, in one dimen- 0.3 RN R S
sion, if the lattice is spatially and temporally uncorrelated, ) 1000 10}(390 100000

i.e., chaotic and not synchronized, one can see that the law of

large nu_mbers is applicablg. The reason for thi's is that i 515 2. Dpata for the map of Eq4) on a lattice ofN sites with
such a situation the correlation decays exponentially and th?(x):l—l.99<2 B=500, ande=0.1. (a) The variance of the
sites beyond the correlation length are effectively indepeny,aan field,o2, as a function oiN on a log scale(b) Fraction of

dent. This is why dimension and similar quantities are extenpower in nonzero components of the power spectrfénas a func-
sive in this casd17]. We expect the correlation length of tion of N on a semilog scale.

intermediately coupled CML’s not to change if one fixes the

number of neighbor8. We simulated Eq(4) for B=500, at  =|i—j| if |i—j|<N/2 andr; ;=N—li—j| if [i—j|>N/2 for

which the variance in the mean field of globally coupled =1 and 2. Unfortunately, it is not possible to go to very

maps is near the asymptotic vall; Sinhaet al.[2] used |arge system sizes in this case since we did not find any

the same value d in their simulations. However, we see no technique to increase the speed of numerical simulations.

signs of saturation in our simulations of intermediate-range{owever, we found that the fluctuations do not decay &s 1/

Coupling. This is eXpeCted if correlation Iength a function Of(but some anomalous poWeNhen Couplings decay asrl/

B alone. Figure &) ShOWS that Va.ria.nce'2 as a funCtion Of and they do decay as N/when Coup”ngs decay as ri/

N. The law of large numbers clearly holds. These results are shown in Fig. 3. It seems that the couplings
Given that the deviations around mean field decay Bis 1/ jn which synchronization is possible also give rise to large-

in this scheme, one would expect that the contribution to th&cale coherences. This is reasonable since synchronization is

zeroth component in the power spectrunh(f) would keep  an extreme case of cohereniéwe assume that correlations
increasing at the cost of other components. This is because

the zeroth component represents the mean. Figule 2 0.1 ¢ — T ————rr
shows the fraction of power in nonzero components as a : 3
function of N. We find that the total normalized power in
nonzero components of the power spectrum decreases con-
tinually asN increases. Thus, in the thermodynamic limit, ]
the power spectrum tends todafunction in the zeroth com- o2  0.001 b
ponent as expected. One does not expect any long range :
order in one dimension with short-range interaction. The -
structure observed by Sinted al. [2] in the power spectrum 0.0001 ¢
disappears in the thermodynamic limit. 3

CML’s with power-law couplings can sometimes be ex- 1e-05 I e
pected to have behavior similar to CML’s with short-range 100 1000 10000
couplings. Even a tf interaction does not produce synchro- N

nization[6]. [',\Al‘ proof can be given with the formalism used FIG. 3. The variance of the mean fielg?, as a function oN on

- . N Pp—
above andX_,i 2005(277|/N)_>2i=1|. 2 .for large N.] We_ a log scale for the coupling with; ;= (1/r})/[25 32 (1k*)],
have checked the mean square deviation of the mean field &gx)=g3(x), g(x)=1—ax?, anda=1.99. Strong chaos is chosen

a function of N for unsynchronized CML'’s in which the to avoid synchronization. The upper line shows datadferl, and
couplings decay asl;;=r;*/(22k ®) where r;;  the lower line shows data far=2.

0.01
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in the chaotic case decay as fast as couplings, then a systarullection of polygons. In one dimension, if the correlation
whose couplings decay asri/or faster would have finite length is finite, blocks of size larger than the correlation
correlation length independent of system size. Thus the pariength should be effectively independent. Since the sub-
of system larger than the correlation length can be considblocks determine the bigger block, nontrivial collective be-
ered independent. This could be the reason for different behavior is not expected to emerge in one dimension for a large
haviors at different values af.) A detailed analysis of such System. _ . o
systems is being pursued. In short, intermediate-range coupling with fix&dis not

We would like to point out here that in 1D cellular au- qualitatively different from nearest neighbor coupling in the

tomata, one can rigorously formulate a local structure theor)/l.hernFOdynat?']f? I'g]ét' Thusl_l.:,tlleltes prlldlntermed|ate—drange
In this theory, it is possible to decompose the probabilities of OUPIING WIth TixedB are uniik€ly 1o yield any new under-

blocks into that of subblocks due to the shift invariant natureStandmg' However, experimentally, the infinite lattice limit

of evolution ruleg/18]. In CML's, given their shift invariant is not realistic and for coupling ranges comparable to system

O . size, such studies can be useful.
nature, a similar theory should be possible. However, oné

should note that such a rigorous decomposition in blocks ofWe would like to thank J. G. Dushoff for a critical reading
arbitrary size is not possible in higher dimensions, even irof the paper. This work was supported in part by the Na-
principle. According to Ref[18] this is related to the unde- tional Science Council of the Republic of Chif&aiwan
cidability of whether a plane can be tessellated with a giverunder Grant No. NSC 88-2112-M-001-011.
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