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Effects of time-delayed interactions on dynamic patterns in a coupled phase oscillator system
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We investigate the effects of time delayed interactions in the network of neural oscillators. We perform the
stability analysis in the vicinity of a synchronized state at vanishing time delay and present a related phase
diagram. In the simulations it is shown that time delay induces various phenomena such as clustering where the
system is spontaneously split into two phase locked groups, synchronization, and multistability. Time delay
effects should be considered both in the natural and artificial neural systems whose information processing is
based on the spatiotemporal dynamic pattef84063-651X99)07309-7

PACS numbsd(s): 05.45.Xt, 87.18.Sn

I. INTRODUCTION Il. STABILITY ANALYSIS OF SYNCHRONIZED STATE

When inf tion i di wral | ¢ We consider the overdamped oscillator model with first
€n nformation IS processed in natural neural systems, 4 second Fourier interaction which is given by the follow-
there is a time delay corresponding to the conduction time o

ng equation of motioni 77:
action potentials along the axons. With this physiological geq 7]

background the time delay effects have been theoretically dob g N

investigated in s_everal neural pscﬂlaﬁor models. In REfa . bkl N _2 {~sin{ ¢(t)— ¢;(t— ) +a]

delay has been introduced to investigate the phase dynamics dt Ni=1

of oscillators in a two-dimensional layer in the context of )

temporal coding. The two neuron model with a time delay +rsinZ ¢i(t) - ¢j(t=7]1}, @

has been analytically studied by Schusteanl. [2] focusing
on the entrainment of the oscillators due to delay. A delay; (i=1,2,...N, 0<¢;<2m) is the phase of théth oscilla-
has been shown to influence the existence and the stability 4¢r, @ is the uniform intrinsic frequency of the oscillators,
metastable states in two-dimensional oscillators with nearesg/N is the global coupling of the oscillators scaled down by
neighbor couplind3]. Recently, it has been shown that the the number of the oscillators, andis the time delay. The
time delay induces the multistability in coupled oscillator interaction of the system is characterized by parameders
systems which may provide a possible mechanism for th@ndr as well. With the symmetry of the system we safely
perception of ambiguous or reversible figufds takea in the rangg0, 7]. We also consideg>0 (the exci-

In this paper we analytically and numerically investigatetatory coupling in this paper.
the time delay effects on dynamic patterns in globally The first Fourier mode in Eq1) without time delay is an
coupled oscillators. Dynamic patterns such as phase lockingttractive interaction which yields the synchronization of the
and clustering represent the collective properties of neuronsystem, while the second tends to desynchronize the system.
participating in the information processing. To investigateThe competition between these two interactions generates
the time delay effects on these patterns occurring in the neuwontrivial dynamic patterns. Without time delay the synchro-
ral systems we choose a phase oscillator model. In particulanized system bifurcates into two cluster state at critical pa-
the phase interactions with more than a first Fourier modéameter values. For any coupling constant=2osa defines
will be considered to describe the rich dynamic patterns. Théhe critical line where the instability of the phase locked state
significance of higher mode phase interactions may be foundccurs.
in the nontrivial dynamics in coupled neurditd. The phase We assume a synchronized staigt) = ®(t)=Qt. Then
model with first and second Fourier interaction modes whicteq. (1) gives
will be considered in this paper has been introduced to un-
derstand the pattern-forming dynamics in brain beha\Bar Q=w+g[—sinQr+a)+rsin2Q7)]. 2)
The existence and the stability of clustering state of coupled

neural oscillators have been studied in the same madel 14 analyze the stability of this synchronized state, we devi-

_In Sec. Il, we perform the stability analysis of synchro- g1e 4. and linearize the system around the synchronized
nized state. The analytical results do not depend on the NUM44te  That is fou; (1) = Qt+ by (t)
. ) 1 1 )

ber of oscillators. We present a phase diagram of parameters

indicating the stable and unstable regions of the wholly syn-
g g Y Y d(5d) g

chronized state. Numerical results are presented in Sec. Ill. = =[2r cog2Q7)—cogQ7+a)]
Various phenomena such as clustering, synchronization, and dt N

multistability between the synchronized state and clustered N

state mduceq by t|_me dglay are prgsented. Section IV is de- % 2 [S¢bi(1)— S¢p;(t—7)]. 3)
voted to a discussion with summarized results. =1
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FIG. 2. Times evolution of oscillator phases wher-5.0, g
=5.6,a=1.04,r=0.25, andr=0. The dots represent 0 phase tim-
FIG. 1. Plot of critical lines defining the stability of synchro- ing of each oscillator. The system is at the synchronized state.

nized state wherg=>5.6 andr=0.25. It can be seen that at some
nonzero time delay values the synchronized staterfod can be  the phase diagram of E(7) in the parameter space of cas
unstable when 2<cosa and the dephased state for-0 can be  and 7 for several values of with fixed coupling constant.
synchronized whenr2>cosa. The corresponding examples are de- cosa=0.5 in Fig. 1 is the critical line when=0.
noted as the solid circle and square, respectively.
Converting the above equation to the eigenvalue problem, Il NUMERICAL RESULTS
one obtains In the last section we performed the stability analysis
around the synchronized ansaig,(t) = ¢(t)=Qt, whose
results are independent Nf the number of the oscillators. In
this section we investigate numerically the time delay effects
on the dynamical patterns of the system. To this end, we
xXexp(—A7)], (4)  choose parameter values where the system is realized at a
N . synchronized state for vanishing time delay. For fixed pa-
where 6¢i(t)=a; expt). If =iZ,a8#0, one obtains for rameter values the system exhibits various dynamical pat-
A<0 terns as time delay values change. We also study the time
delay effects at parameter values where the system is desyn-
chronized at zero time delay. In the simulations, we have
used the fourth-order Runge-Kutta method with discrete time
step of At=0.005 with random initial conditions.
We consider the system with the parameter values given
by ®=5.0,0=5.6,a=1.04, and =0.25, where the synchro-
_ _ nized ansatz is stable for vanishing time delay value. In Fig.
\=g[2r cog 20l r) —cog 7+ a)]. ®) 2 we plot the time evolution of the system &t0 for N
=100. The system is always realized as the synchronized

To visualize the time delay effects on the stability of the State when there is no time delay.

synchronized state, we take a smalln the 7— 0 limit, Egs. At 7=0.15 the system is at clustered state, whose time
(2) and (6) give evolution is shown in Fig. 3. The average ratio of the oscil-

lator population in the two groups is 1:1. Clustering in this
A=g[2r—cosa+sina(w—gsina)r]+0O(7?). (7)  paperisinduced by time delay which results in the inhibitory
coupling effects. The phase difference between the two sepa-
Therefore, foro>g+\1—4r?, A=0 in Eq. (6), the critical rated groups of oscillators depends on the time delay values.
line separating the stable region of the synchronized statl Fig. 4 we plot the order parameter defined by
from the unstable one, is in the parameter range of

N
)\ai=%[2r cog207)—cog Q7+ a)]_zl [a—a,
=

2r>cosa (5)

in the 7— 0 limit. This contradicts to the stability condition
when 7=0. Therefore= ;a,=0, and

N
2 [ |bi— &l
2r<cosa. (8) O(t) = mzj sm(T (10)
However, for strong couplingp<g+(1—4r?), the critical _ .
line lies in the realm of for three different values of where the system is at clus-
tered state.
2r>cosa. 9) At 7=0.5 the system may dwell on a wholly synchronized

state or clustered state according to the initial conditions.
Therefore, for strong coupling, the stability condition is dras-This is a manifestation of multistability. We pl@t(t) in Fig.
tically changed even whenis very small. In Fig. 1, we plot 5 showing the multistability. The dotted line in Fig. 5 repre-
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FIG. 5. Plot of the order parametéxqt) for 7=0.5 showing the
ngltistability of the system. The dotted line represents the clustered
state where the distance between the two clusters is changing be-
cause of the nonuniform motion of the clusters.
sent the clustering state where the clusters are not uniformly

moving. Therefore, the phase difference between the tWCz)ind second Fourier mode interactions. The analytical stud
clusters is not fixed but oscillatorically changed. In Fig. 6 we ' y y

plot the evolution ofg;’s corresponding to the dotted line in SNOWS that the time delay drastically changes the stability of
Fig. 5. The motion of the clusters is not uniform but the the synchr_omzed state. To |nv_est|gate thg time delay effects
velocity of the clusters depends on the phase value of th@n dynamical patterns numerically, we fixed all the other
clusters. While in Ref[4] the multistability exists either be- parameters than the time delay. The introduction of time de-
tween the synchronized state and a desynchronized stakay into a fully synchronized state induces the clustering, and
where the oscillators are distributed almost uniformly be-the multistability. Time delay also induces synchronization
tween the synchronized states with different moving frequenof desynchronized state when there is no time delay. This
cies, the multistability in this paper is realized between theshows that the time delay may play an important role in the
synchronized state and the clustered state. For862.5,  information processing based on the spatiotemporal structure
the system exists always in the perfectly synchronized stateyt o ronal activitieg8]. The results in this paper suggest
We study the time delay effects on the desynchronize hat the time delay is a route leading to such dynamic pat-

state when there is no time delay. We choasel.25 with . : . .
the other parameter values same as above. Wh€&49, the terns. Itis expected.that thg time delay may provide a rich
structure of dynamics which may be used to facilitate

system shows multistability between the synchronized stat . s )
and the clustered state. For &.5<2.5 oscillators are per- memory retrieval when the informations are stored on the

fectly synchronized. This is a synchronization induced byPasis of dynamics of the systej@].
time delay.

FIG. 3. Time evolution of oscillator phases when0.15 with
the same parameter values as in Fig. 2. The average ratio of t
oscillator populations in the two clusters is 1:1.
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FIG. 4. Plot of the order parametéx(t) for three values of time
delay.O(t) represents the distance of the two clusters. The graphs FIG. 6. Time evolution of oscillator phases corresponding to the
show that the clusters are uniformly moving at the steady states sdotted line in Fig. 5. The distance between the two clusters changes
that O(t) is constant. periodically.
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