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Effects of time-delayed interactions on dynamic patterns in a coupled phase oscillator system
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Taejon 305-600, Korea
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We investigate the effects of time delayed interactions in the network of neural oscillators. We perform the
stability analysis in the vicinity of a synchronized state at vanishing time delay and present a related phase
diagram. In the simulations it is shown that time delay induces various phenomena such as clustering where the
system is spontaneously split into two phase locked groups, synchronization, and multistability. Time delay
effects should be considered both in the natural and artificial neural systems whose information processing is
based on the spatiotemporal dynamic patterns.@S1063-651X~99!07309-2#

PACS number~s!: 05.45.Xt, 87.18.Sn
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I. INTRODUCTION

When information is processed in natural neural syste
there is a time delay corresponding to the conduction time
action potentials along the axons. With this physiologi
background the time delay effects have been theoretic
investigated in several neural oscillator models. In Ref.@1# a
delay has been introduced to investigate the phase dyna
of oscillators in a two-dimensional layer in the context
temporal coding. The two neuron model with a time de
has been analytically studied by Schusteret al. @2# focusing
on the entrainment of the oscillators due to delay. A de
has been shown to influence the existence and the stabili
metastable states in two-dimensional oscillators with near
neighbor coupling@3#. Recently, it has been shown that th
time delay induces the multistability in coupled oscillat
systems which may provide a possible mechanism for
perception of ambiguous or reversible figures@4#.

In this paper we analytically and numerically investiga
the time delay effects on dynamic patterns in globa
coupled oscillators. Dynamic patterns such as phase loc
and clustering represent the collective properties of neur
participating in the information processing. To investiga
the time delay effects on these patterns occurring in the n
ral systems we choose a phase oscillator model. In partic
the phase interactions with more than a first Fourier m
will be considered to describe the rich dynamic patterns. T
significance of higher mode phase interactions may be fo
in the nontrivial dynamics in coupled neurons@5#. The phase
model with first and second Fourier interaction modes wh
will be considered in this paper has been introduced to
derstand the pattern-forming dynamics in brain behavior@6#.
The existence and the stability of clustering state of coup
neural oscillators have been studied in the same model@7#.

In Sec. II, we perform the stability analysis of synchr
nized state. The analytical results do not depend on the n
ber of oscillators. We present a phase diagram of parame
indicating the stable and unstable regions of the wholly s
chronized state. Numerical results are presented in Sec
Various phenomena such as clustering, synchronization,
multistability between the synchronized state and cluste
state induced by time delay are presented. Section IV is
voted to a discussion with summarized results.
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II. STABILITY ANALYSIS OF SYNCHRONIZED STATE

We consider the overdamped oscillator model with fi
and second Fourier interaction which is given by the follo
ing equation of motion@7#:

df i

dt
5v1

g

N (
j 51

N

$2sin@f i~ t !2f j~ t2t!1a#

1r sin 2@f i~ t !2f j~ t2t!#%, ~1!

f i ~i 51,2,...,N, 0<f i,2p! is the phase of thei th oscilla-
tor, v is the uniform intrinsic frequency of the oscillator
g/N is the global coupling of the oscillators scaled down
the number of the oscillators, andt is the time delay. The
interaction of the system is characterized by parametea
and r as well. With the symmetry of the system we safe
takea in the range@0, p#. We also considerg.0 ~the exci-
tatory coupling! in this paper.

The first Fourier mode in Eq.~1! without time delay is an
attractive interaction which yields the synchronization of t
system, while the second tends to desynchronize the sys
The competition between these two interactions gener
nontrivial dynamic patterns. Without time delay the synch
nized system bifurcates into two cluster state at critical
rameter values. For any coupling constant 2r 5cosa defines
the critical line where the instability of the phase locked st
occurs.

We assume a synchronized statef i(t)5F(t)5Vt. Then
Eq. ~1! gives

V5v1g@2sin~Vt1a!1r sin~2Vt!#. ~2!

To analyze the stability of this synchronized state, we de
ate f i and linearize the system around the synchroniz
state. That is, forf i(t)5Vt1df i(t),

d~df i !

dt
5

g

N
@2r cos~2Vt!2cos~Vt1a!#

3(
j 51

N

@df i~ t !2df j~ t2t!#. ~3!
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Converting the above equation to the eigenvalue proble
one obtains

lai5
g

N
@2r cos~2Vt!2cos~Vt1a!#(

j 51

N

@ai2aj

3exp~2lt!#, ~4!

where df i(t)5ai exp(lt). If ( i 51
N aiÞ0, one obtains for

l,0

2r .cosa ~5!

in the t→0 limit. This contradicts to the stability condition
whent50. Therefore,( i 51

N ai50, and

l5g@2r cos~2Vt!2cos~Vt1a!#. ~6!

To visualize the time delay effects on the stability of th
synchronized state, we take a smallt. In thet→0 limit, Eqs.
~2! and ~6! give

l5g@2r 2cosa1sina~v2g sina!t#1O~t2!. ~7!

Therefore, forv.gA124r 2, l50 in Eq. ~6!, the critical
line separating the stable region of the synchronized st
from the unstable one, is in the parameter range of

2r ,cosa. ~8!

However, for strong coupling,v,gA(124r 2), the critical
line lies in the realm of

2r .cosa. ~9!

Therefore, for strong coupling, the stability condition is dra
tically changed even whent is very small. In Fig. 1, we plot

FIG. 1. Plot of critical lines defining the stability of synchro
nized state wheng55.6 andr 50.25. It can be seen that at som
nonzero time delay values the synchronized state fort50 can be
unstable when 2r ,cosa and the dephased state fort50 can be
synchronized when 2r .cosa. The corresponding examples are de
noted as the solid circle and square, respectively.
,

te

-

the phase diagram of Eq.~7! in the parameter space of cosa,
and t for several values ofv with fixed coupling constant.
cosa50.5 in Fig. 1 is the critical line whent50.

III. NUMERICAL RESULTS

In the last section we performed the stability analy
around the synchronized ansatz,f i(t)5f(t)5Vt, whose
results are independent ofN, the number of the oscillators. In
this section we investigate numerically the time delay effe
on the dynamical patterns of the system. To this end,
choose parameter values where the system is realized
synchronized state for vanishing time delay. For fixed p
rameter values the system exhibits various dynamical
terns as time delay values change. We also study the
delay effects at parameter values where the system is de
chronized at zero time delay. In the simulations, we ha
used the fourth-order Runge-Kutta method with discrete ti
step ofDt50.005 with random initial conditions.

We consider the system with the parameter values gi
by v55.0,g55.6,a51.04, andr 50.25, where the synchro
nized ansatz is stable for vanishing time delay value. In F
2 we plot the time evolution of the system att50 for N
5100. The system is always realized as the synchroni
state when there is no time delay.

At t50.15 the system is at clustered state, whose t
evolution is shown in Fig. 3. The average ratio of the osc
lator population in the two groups is 1:1. Clustering in th
paper is induced by time delay which results in the inhibito
coupling effects. The phase difference between the two se
rated groups of oscillators depends on the time delay val
In Fig. 4 we plot the order parameter defined by

O~ t !5
2

N~N21! (i , j
N

sinS uf i2f j u
2 D ~10!

for three different values oft where the system is at clus
tered state.

At t50.5 the system may dwell on a wholly synchroniz
state or clustered state according to the initial conditio
This is a manifestation of multistability. We plotO(t) in Fig.
5 showing the multistability. The dotted line in Fig. 5 repr

FIG. 2. Times evolution of oscillator phases whenv55.0, g
55.6, a51.04, r 50.25, andt50. The dots represent 0 phase tim
ing of each oscillator. The system is at the synchronized state.
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sent the clustering state where the clusters are not unifor
moving. Therefore, the phase difference between the
clusters is not fixed but oscillatorically changed. In Fig. 6
plot the evolution off i ’s corresponding to the dotted line i
Fig. 5. The motion of the clusters is not uniform but t
velocity of the clusters depends on the phase value of
clusters. While in Ref.@4# the multistability exists either be
tween the synchronized state and a desynchronized
where the oscillators are distributed almost uniformly b
tween the synchronized states with different moving frequ
cies, the multistability in this paper is realized between
synchronized state and the clustered state. For 0.6,t,2.5,
the system exists always in the perfectly synchronized st

We study the time delay effects on the desynchroni
state when there is no time delay. We choosea51.25 with
the other parameter values same as above. Whent50.49, the
system shows multistability between the synchronized s
and the clustered state. For 0.5,t,2.5 oscillators are per
fectly synchronized. This is a synchronization induced
time delay.

IV. SUMMARY AND DISCUSSIONS

In this paper we investigated the time delay effects on
dynamic patterns in the coupled phase oscillators with fi

FIG. 4. Plot of the order parameterO(t) for three values of time
delay.O(t) represents the distance of the two clusters. The gra
show that the clusters are uniformly moving at the steady state
that O(t) is constant.

FIG. 3. Time evolution of oscillator phases whent50.15 with
the same parameter values as in Fig. 2. The average ratio o
oscillator populations in the two clusters is 1:1.
ly
o

e

ate
-
-

e

te.
d

te

y

e
t

and second Fourier mode interactions. The analytical st
shows that the time delay drastically changes the stability
the synchronized state. To investigate the time delay effe
on dynamical patterns numerically, we fixed all the oth
parameters than the time delay. The introduction of time
lay into a fully synchronized state induces the clustering, a
the multistability. Time delay also induces synchronizati
of desynchronized state when there is no time delay. T
shows that the time delay may play an important role in
information processing based on the spatiotemporal struc
of neuronal activities@8#. The results in this paper sugge
that the time delay is a route leading to such dynamic p
terns. It is expected that the time delay may provide a r
structure of dynamics which may be used to facilita
memory retrieval when the informations are stored on
basis of dynamics of the system@9#.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Informatio
and Communications, Korea.

s
so

FIG. 5. Plot of the order parameterO(t) for t50.5 showing the
multistability of the system. The dotted line represents the cluste
state where the distance between the two clusters is changing
cause of the nonuniform motion of the clusters.

FIG. 6. Time evolution of oscillator phases corresponding to
dotted line in Fig. 5. The distance between the two clusters chan
periodically.
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