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Extension of the mapped Fourier method to time-dependent problems

Ulrich Kleinekathöfer* and David J. Tannor
Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel

~Received 12 April 1999!

A numerical method is described for integration of the time-dependent Schro¨dinger equation within the
presence of a Coulomb field. Because of the singularity atr 50, the wave packet has to be represented on a
grid with a high density of points near the origin; at the same time, because of the long-range character of the
Coulomb potential, the grid must extend to large values ofr. The sampling points are chosen, following E.
Fattal, R. Baer, and R. Kosloff@Phys. Rev. E53, 1217 ~1996!#, using a classical phase space criterion.
Following those workers, the unequally spaced grid points are mapped to an equally spaced grid, allowing use
of fast Fourier transform propagation methods that scale asN ln N, whereN is the number of grid points. As
a first test, eigenenergies for the hydrogen atom are extracted from short-time segments of the electronic
wave-packet autocorrelation function; high accuracy is obtained by using the filter-diagonalization method. As
a second test, the ionization rate of the hydrogen atom resulting from a half-cycle pulse is calculated. These
results are in excellent agreement with earlier calculations.@S1063-651X~99!14210-7#

PACS number~s!: 02.70.Jn, 31.15.2p, 32.80.Rm
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I. INTRODUCTION

Numerous different approaches have been develope
solve the time-dependent Schro¨dinger equation. Fast Fourie
transform~FFT! methods have been proven very powerful
treating nuclear dynamics problems, but their naive appl
tion to electronic problems, which have a Coulomb singul
ity, gives poor results. This is because in the FFT method
grid has to be evenly spaced and, therefore, thousands of
points are already needed in one-dimensional calculat
@1#. Other methods like the finite element method@2–4#, the
expansion in complex Sturmian basis sets@6#, and discrete-
variable–finite-element methods@5# have been relatively
successfully applied to the Coulomb problem, but lack
high efficiency of the FFT method for calculating the kine
energy operator, which scales asN ln N, whereN is the num-
ber of grid points. The favorable scaling of the FFT meth
becomes increasingly important ifN is large, as is the cas
when a few coupled degrees of freedom are involved.

Recently, Fattal, Baer, and Kosloff@7# used a mapped
Fourier method, which combines the advantages of the fi
element method and the Fourier method. It allows the pla
ment of grid points as needed, while allowing use of the F
for evaluation of derivatives bymapping the original, un-
evenly spaced grid to a grid that is evenly spaced. Fa
et al.chose the placement of the original set of grid points
such a way as to optimize the usage of theclassicalphase
space, as estimated by the classical Hamiltonian with a
determined energy cutoff. Those workers applied th
method to a solution of the time-independentSchödinger
equation using the Fourier grid Hamiltonian representat
@8#, and were able to calculate the first twenty bound state
the radial coordinate of the hydrogen atom very accurat
using only 64 grid points. As with earlier mappings likex
5 ln r @9# or x5Ar @10#, Fattalet al.get the number of points

*Present address: Institut fu¨r Physik, Technische Universita¨t,
D-09107 Chemnitz, Germany.
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per lobe of the wave function close to being a constant. T
is because the momentum space required for the calcula
fits within the range set by the Fourier method, so that
use ofphase spaceis optimized rather than just the use
coordinate space. Very recently, Kokooulineet al. @11# ap-
plied this mapping procedure in connection with the tim
independent Fourier grid Hamiltonian method to the calcu
tion of the photoassociation spectrum of Rb2 (0u

1).
In the present paper, the mapped Fourier method is

plied to the solution of thetime-dependentSchrödinger equa-
tion. As a first test, the eigenstates of the hydrogen atom
extracted from spectral analysis of arbitrary wave pack
evolving in a Coulomb field. Results are obtained for t
one-dimensional~1D! radial Schro¨dinger equation, for the
Schrödinger equation of the hydrogen atom in cylindric
coordinates in two degrees of freedom, and for the hydro
atom in three degrees of freedom without using any symm
try. For extracting the eigenenergies, the filter diagonali
tion method developed by Wall and Neuhauser@12# and im-
proved by Mandelshtam and Taylor@13# is applied. The
second test of the time-dependent mapped Fourier metho
much more severe. The ionization probability is calcula
for a hydrogen atom interacting with a half-cycle pulse. Fir
a rectangular pulse is applied to a hydrogen atom, whic
initially in an uphill or downhill Stark state with principa
quantum numbern; n55 or n510. The results are compare
to the calculations of Reinhold and Burgdo¨rfer @14# of the
same quantity. Then, a more realistic pulse shape is used
the main quantum numbern of the initial Stark state is in-
creased ton517. We use the same parameters as Buga
et al. @15# to be able to compare directly with their result
These calculations are in close correspondence with the
periments of Joneset al. @16#; although the experiments ar
performed with sodium atoms, the theory gives good qu
tative agreement for the different ionization rates of downh
and uphill states. Both calculations we compare with the o
of Reinhold and Burgdo¨rfer @14# and the one of Bugacov
et al. @15#, who use an expansion in a complex Sturmi
basis. In those calculations the time-dependent Schro¨dinger
4926 © 1999 The American Physical Society
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PRE 60 4927EXTENSION OF THE MAPPED FOURIER METHOD . . .
equations are solved by a split operator technique and b
implicit Runge-Kutta algorithm, respectively. Besides the
perior scaling of the mapped Fourier methods over th
methods, the kinetic energy operator is also much easie
evaluate.

The paper is organized as follows. In Sec. II, the ba
principles of representation theory are reviewed. In Sec.
the general calculus of mapping and its effect on the kin
energy operator is presented, and the particular map
function used here is described. Section IV presents the
culation of the hydrogen atom eigenenergies, while Sec
describes the calculation of the ionization probabilities
half-cycle pulses. Section VI gives a short summary and
cussion. Atomic units are used unless otherwise stated.

II. REPRESENTATION THEORY

On a grid, a continuous wave function is represented
only a few points. Between these points an analytic se
basis functionsgk(q) may be used to make a continuo
description,

c~q!'c̄~q!5 (
k50

Ng21

akgk~q!. ~1!

The expansion coefficientsak are determined by matchin
the functionc̄(q) to the true wave functionc(q) at the grid
points. The relation between the grid points and expans
coefficients is called thecollocation relation@17#. If the ba-
sis functions are orthogonal when summed over the g
points, the representation is called apseudospectralrepresen-
tation @18#. A specific choice of basis functions, which for
a pseudospectral representation, are the complex expo
tials

gk~q!5ei2pkq/L, k52Ng/2, . . . ,0, . . . ,Ng/221 ~2!

This method is named the Fourier method. Since the met
is pseudo spectral one gets

ak5
1

Ng
(
j 51

Ng

c~qj !e
2 i2pkpj /L. ~3!

An appealing feature of this representation is the phys
meaning of the coefficientsak as the discrete representatio
of the wave function in momentum space. The grid points
the Fourier method are equally spaced, with spacingDq
5L/Ng in coordinate space and with spacingDk52p/L in
momentum space.

The accuracy of the Fourier representation is determi
by the Whittaker-Kotel‘nikov-Shannon sampling theore
@19,20#. The theorem states that band limited functions~i.e.,
functions that are compact in momentum space!, that have
finite support~i.e., which are compact in coordinate spac!
can be interpolated with no loss of accuracy provided t
Dq,p/kmax. The function values in between the grid poin
are interpolated by

c~q!5 (
2(Ng/221)

Ng/2

c~nDq!
sin@kmax~q2nDq!#

kmax~q2nDq!
. ~4!
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This theorem also implies a good representation of thenth
derivative of the function. It can be shown that the best ba
limited functions are prolate spheroidal wave functions@20#.
These functions are not easy to handle, and a much sim
but still good set of wave functions are Gaussian wave fu
tions. Their amplitude outside a finite size interval can
made exponentially small in both coordinate and moment
space. One can define a wave packet as a wave func
which is semilocal in phase space.

Wave functions in general are not strictly band limite
and have no finite support in coordinate space. In the gen
case, one may analyze the efficiency of the representa
with the help of the classical or the Wigner-Weyl pha
space@21#. The phase space in the Fourier method ha
rectangular shape and its volume is@17#

V52\Lkmax5Ngh. ~5!

So at mostNg quantum states can be represented on the g
If only Ne converged eigenstates are represented, the re
sentation efficiency is

hc5
Ne

Ng
. ~6!

Because quantum wave functions decay exponentially
side the classically accessible phase-spaceV, a good esti-
mate of the representation efficiency is given by the ratio
the classical phase-space volume, which is accessible to
phase-space volume of the Fourier grid

hc'
V

Ngh
. ~7!

The main idea of the mapping procedure proposed by Fa
Baer, and Kosloff@7# is the use of Eq.~7!. The mapping
parameters are chosen in such a way that the efficiency g
by Eq. ~7! is maximal. This gives a physically motivate
mapping, which can be determined before the actual ca
lation.

III. MAPPING PROCEDURE

The mapping should be a canonical mapping from theN
canonical Cartesian coordinates$qi% to theN curvilinear co-
ordinates$Qi%. The original coordinates are always given
small letters throughout the paper, whereas the mapped
ordinates, on the evenly spaced grid, are given in cap
letters. Typically, a mapping function is defined, which d
pends on a small number of discrete parameters. The
mann metric tensor is given by

gi j 5(
k

]qk

]Qi

]qk

]Qj
, ~8!

the Jacobian is given by

J5Adet~gi j !, ~9!

and the transformed Laplacian is given by@22#
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D5
1

J (
j

]

]Qj (k
S Jgjk

]

]QkD . ~10!

The use of such a mapping in electronic structure calc
tions was pioneered by Gygi@23#. For atomic systems with
empirical mapping parameters a mapping of coordinates
also recently done by Andrae and Hinze@24#. A mapping
function similar to that of Gygi has been used by Fatt
Baer, and Kosloff@7# for the radial coordinate of the hydro
gen atom

q5N@Q2A arctan~bQ!#, ~11!

with N being a constant that keeps the length of the g
fixed. For small values ofQ this function behaves like

q5N~Q2AbQ1 1
3 Ab3Q31••• !. ~12!

ChoosingAb'1 makes the coordinateq behave like a cubic
function of Q for small values ofQ. Therefore, with an
equally spaced grid inQ, there will be a lot of points near th
singularityq50 ~see Fig. 2 of Ref.@7#!. For numerical rea-
sons, the productAb has to be a little less than unity and i
actual deviation from unity is related to the strength of t
mapping function.

Earlier calculations@23,25,26# used adaptive methods t
calculate the mapping parameters. In contrast to this, F
et al. maximized the representation efficiency of the gr
i.e., maximizedhc in Eq. ~7!, before the actual calculation
For a fixed number of grid points,Ng , this is done by maxi-
mizing V5*pdq. For the mapping function, Eq.~11!, and
fixed product,Ab, the integral is a smooth function of th
parameterb and reaches a plateau, which can be obtai
easily. The results are quite insensitive to the exact valu
b. However, because the ratio of the energy cutoff of
grid with mapping and without mapping goes like

Emapped

Eunmapped
}S Ng

bL D 4

, ~13!

it is preferable to choose the smallest possible value ob
after the plateau is reached. For figures of the classical
ergy shell and the Wigner function with and without ma
ping, see Ref.@7#.

The mapping function, Eq.~11!, can be extended to
higher dimensions in different ways. The simplest possibi
is to do the mapping in every coordinate separately,

qi5N@Qi2A arctan~bQi !# ~14!

or to perform a global mapping that depends on the dista
r from the nucleus

qi5NQi@12 f ~r!#,

f ~r!5
A

r
arctan~br!, ~15!

r5AQ1
21Q2

21•••.

The first choice is much easier to implement because
metrical tensorgi j is diagonal and the mapping parame
-
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can be determined separately for each dimension. How
determine the optimal mapping parameter for the sec
possibility, Eq.~15!, is not obvious~work in this direction is
in progress!. For atomic problems, the efficiencies of the tw
different mapping procedures were found not to differ mu
This was tested by small time-independent calculatio
where the mapping parameter could be determined variat
ally. For cylindrical coordinates the first procedure is sup
rior because the wave functions change a lot along thez axis.
Therefore, a fine grid along this line, as created by the fi
mapping procedure, Eq.~14!, is always advantageous. I
three dimensions both procedures performed equally well
small systems, even when the mapping parameters were
termined variationally.

IV. EXTRACTING THE EIGENENERGIES
OF A HYDROGEN ATOM

A. Radial Schrödinger Equation

First we use the full spherical symmetry of the hydrog
atom, i.e., we write the solution as

Cnlm~r ,u,f!5F~r !Ylm~u,f! ~16!

with Ylm(u,f), the spherical harmonics. After the substit
tion f(r )5F(r )/r , the radial Hamiltonian is given by

H52
1

2

]2

]q2
2

1

q
1

l ~ l 11!

2q2
. ~17!

In the mapped coordinateQ the Hamiltonian is given by

H52
1

2 S J21
]

]QD 2

2
1

N@Q2A arctan~bQ!#

1
l ~ l 11!

2$N@Q2A arctan~bQ!#%2
. ~18!

For evaluating this kinetic energy operator within the Four
method, four FFTs are needed sinceJ21(Q) is local in co-
ordinate space. By using the identity

S J21
]

]QD 2

5J21S J21
]

]Q
1

]J21

]Q D ]

]Q
, ~19!

the number of FFTs needed can be reduced to three, sinc
derivative ofJ21 can be evaluated analytically. The use
three instead of four FFTs does not affect the accuracy
nificantly for one evaluation of the HamiltonianH on a wave
function; however, if many evaluations are needed, e.g.
build up a Krylov space (Cn5HnF0) for time propagation,
the version with four FFTs was found to be much mo
stable. Using the transformation described in Ref.@24# it is
possible to use only two FFTs; however, this transformat
generates an additional potential energy term with mu
more structure than the Coulomb potential, so that for
same number of grid points one actually gets less accu
results this way. Therefore in all calculations described
this paper four FFTs were used for evaluating the kine
energy operator.
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TABLE I. Eigenenergies of atomic hydrogen in atomic units~for convenience the minus sign has be
neglected!. The second column gives the exact values, whereas the other three columns give value
time-dependent runs. For the calculations in the third column, spherical symmetry has been used;
fourth column, cylindrical symmetry; and for the last column, no symmetry at all. The 1D and 2D runs
been optimized for eigenstates withn up to 20, the 3D run forn up to 10.

Exact Mapping
Dimension 1D 2D 3D

Ng 64 642 323

L 1600 1600 400

1 0.500 0000 0.499 91 0.499 92
2 0.125 00 0.125 01 0.125 01
3 5.55631022 5.555731022 5.555731022 5.552031022

4 3.125031022 3.124531022 3.124531022 3.126531022

5 2.000031022 2.000331022 2.000331022 2.003031022

6 1.388931022 1.388731022 1.388731022 1.388431022

7 1.020431022 1.020331022 1.020331022 1.021731022

8 7.812531023 7.811831023 7.811831023 7.892431023

9 6.172331023 6.172431023 6.172431023

10 5.000031023 4.999731023 4.999731023

11 4.132231023 4.132031023 4.132031022

12 3.472231023 3.472131023 3.472131023

13 2.958631023 2.958531023 2.958531023

14 2.551031023 2.550731023 2.550731023

15 2.222231023 2.222231023

16 1.953131023 1.952931023

17 1.730131023 1.730631023
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The time propagation was performed using the short ite
tive Lanczos~SIL! propagator@27#. This propagator allows
for mixed terms ofP andQ in the kinetic energy operator, a
introduced by the mapping. The split operator technique@28#
often used for time propagation does not allow for mix
terms ofP and Q and, therefore, cannot be used here.
additional advantage of the SIL comes from consideration
the energy spectrum of the mapped grid. The curvature of
mapping function introduces high energy components to
grid energies. Typically, these high energy components h
very little amplitude, but can still lead to numerical instab
ity @29# unless a time step on the order ofDt5N/DE is used,
with N being the order of the propagator andDE, the spectral
range of the Hamiltonian. This instability is characteristic
the Chebyshev propagation method and other uniform m
ods. The Lanczos method is unconditionally stable; mo
over, the error is determined only by the component of
initial state at these high energy regions of the spectr
which is typically on the order of 10212. Unfortunately, for
very long propagation times as used in Sec. V, these s
components at high energies reduce the typical time step
value of 2–3 times longer than the time step of a Chebyc
propagator@30#. Attempts to get rid of those components
high energies in Krylov space failed because they reoc
after a few Lanczos iterations or because these method
too time consuming@30#.

For the extraction of the eigenenergies, the autocorr
tion functionS(t)5^f(0)uf(t)& has to be calculated. Sinc
the Hamiltonian is time-independent a trick can be used
constructS(2t) out of the wave function at timet @31#,

S~2t !5^f~0!uf~2t !&5^f* ~ t !uf~ t !&. ~20!
-
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The most common way to extract energies out of the au
correlation function is by standard Fourier transform@32#,
but this requires propagation of the wave packet for a ti
t>1/DE, where DE is the energy separation between t
desired state and its nearest neighbor. A method far supe
to this is the filter diagonalization method first developed
Wall and Neuhauser@12# and improved by Mandelshtam an
Taylor @13#; the latter version is used here. The basic idea
to fit a time signal to a sum of complex exponentials, whe
the fitting parameters are the complex amplitudes and
quencies. In general, this is a difficult nonlinear search i
many-dimensional space; the significance of Wall a
Neuhauser’s work was to show how this problem could
turned into a small linear algebra problem.

Table I shows the eigenenergies of the radial Schro¨dinger
equation in comparison with the exact eigenenergies. Ato
units are used, in whichEn521/(2n2). The grid was opti-
mized to represent the first 20 eigenstates. As can be se
Table I, the accuracy is quite good. The remaining erro
not due to the time propagation but due to the representa
error incurred by the use of a finite grid. The energies w
obtained by propagating arbitrary Gaussian wave packet
the grid, and extracting their spectral frequencies via fil
diagonalization. Typically, the wave packets were prop
gated for a time of 10 000 a.u., after which the filter diag
nalization method gives converged energies. A time step
a.u. was used. Generally, the propagation of one wave pa
is not enough because it does not have enough overlap
all the desired eigenstates. Therefore, a few different star
wave packets need to be propagated. These results alr
show that the mapped Fourier method is not limited to tim
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independent calculations but can also be used efficie
within a time-dependent framework. The real advantag
however, will become apparent in higher dimensional pr
lems below.

A. Cylindrical coordinates

This subsection shows how the mapping in cylindric
coordinates can be combined with time propagation. Thi
especially important for atoms in linearly polarized fiel
and diatomic molecules. The time-independent version of
mapping was already used successfully to calculate
eigenenergies of the hydrogen molecular ion in@7#. The cal-
culation of ionization rates in a linearly polarized elect
field is described in the next section. The transformat
from Cartesian to cylindrical coordinates and the mapp
are combined into a single step here. The original Carte
coordinates ($qi%) will be called x, y, and z here and the
mapped cylindrical coordinates ($Qi%) R, Z, andF:

x5NR@R2AR arctan~bRR!#cosF, ~21a!

y5NR@R2AR arctan~bRR!#sinF, ~21b!

z5NZ@Z2AZ arctan~bZZ!#. ~21c!

The coordinatesR andZ are mapped in the same way as t
coordinateq in the radial Schro¨dinger equation. The azi
muthal coordinateF is not mapped and is of no conce
because we are interested in problems with azimuthal s
metry here. Using the abbreviations

J15NRS 12
bRAR

11~bRR!2D , ~22a!

J25NR@R2AR arctan~bRR!#, ~22b!

J35NZS 12
bZAZ

11~bZZ!2D , ~22c!

the metric tensor looks like

g5S J1
2 0 0

0 J2
2 0

0 0 J3
2
D ~23!

and the Jacobian

J5Augu5J1 J2 J3 . ~24!

Because of the azimuthal symmetry the wave function can
written as

C~R,Z,C!5f~R,Z!eimF ~25!

and so the Laplacian is given by

D5
1

J1J2

]

]R S J2

J1

]

]RD1
1

J3

]

]Z S 1

J3

]

]ZD2
m2

J2
2

. ~26!
ly
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Since the mappings inR andZ are completely decoupled, th
mapping parametersAR , bR andAZ , bZ can be determined
separately. Each of these parameters can be calculated i
same way as described for the radial Schro¨dinger equation.
Again, the grid is constructed to represent the first 20 eig
states accurately. A time step of 0.5 a.u. is used with a t
propagation time of 10 000 a.u. The eigenenergies are
tracted and listed in Table I. Once more the error is due
the limits of the grid representation and not due to tim
propagation. This calculation indicates that the mapping
efficient also for propagation in cylindrical coordinates.

B. Full 3D calculation

Finally, we show that with the mapping it is possible to d
a time-dependent Fourier propagation in the Coulomb po
tial without using any symmetry. For simplicity, we perfor
the mapping in each Cartesian coordinate separately as g
by Eq. ~14!. Again, the mapping parameters can be det
mined as in the case of the radial Schro¨dinger equation. The
metrical tensorg is diagonal and the Jacobian is just a pro
uct of three Jacobians of the form used in the radial Sch¨d-
inger equation. The results are quite accurate, as see
Table I. It is worth noting that the 1-D radial Schro¨dinger
equation could have been solved using the Fourier met
without mapping, but this would have required thousands
grid points. However, without mapping, the 2-D calculatio
are already beyond the capabilities of current computers
the 3-D calculations are beyond the capabilities of any co
puters projected for the next generation. In 3-D, the tim
dependent calculations of the eigenenergies start to have
nificant advantages over the time-independent methods.
is because in time-independent methods huge Hamilton
matrices have to be set up and to be diagonalized. This is
the case in time-dependent calculations, which operate o
with vectors of the formHC.

V. IONIZATION BY HALF-CYCLE PULSE

Until now no external field was involved in the calcula
tions. As a next test we apply the time-dependent version
the mapped Fourier method to the hydrogen atom in
presence of a half-cycle pulse. Half-cycle pulses are es
cially interesting because they can ionize a Rydberg w
packet far away from the core. A variety of experiments
alkali-metal atoms with half-cycle pulses have been p
formed recently@33,16#. In some experiments@16# a very
weak static electric fieldFdc was aligned along the positivez
axis. This field splits the Rydberg manifold into Stark sta
@34#. For pure hydrogenic systems the Stark states are ei
states of the Hamiltonian in parabolic coordinates with
quantum numbersn1 , n2, and m. The principal quantum
numbern is given byn5n11n21umu11. The energies of
the Stark states within the static field are (3/2Z)n(n1
2n2)Fdc . For n1.n2 the electron is mainly on the positiv
side of thez axis and therefore on the uphill side of the sm
potentialFdc . These states are called uphill states. Forn1
,n2 the electron is mainly on the negative side of thez axis;
these are called the downhill states. As in the experim
only the most uphill (n15n21, n250) and the most down-
hill ( n150, n25n21) states are considered. The very we
field Fdc can be neglected in the calculations.
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The half-cycle pulse is first modeled by a rectangu
pulse@F(t)5Fp for 0,t,Tp# with a scaled peak fieldF0
5n4Fp and a scaled pulse durationT05Tp /Tn5Tp /(pn3)
50.5. The parameters are chosen as in the article by R
hold and Burgdo¨rfer @14#. The ionization rate is calculated a
one minus the bound state rate

Pion512 (
n51

N

(
l 50

n21

u^fnl,m50uc~Tp!& z2. ~27!

Figure 1 shows the present results in comparison to the
sults of Reinhold and Burgdo¨rfer @14#. The agreement is very
good. The small deviations most probably result from diff
ent ways of determining the ionization rate. In the pres
calculation the final wave packet was projected onto bo
states with main quantum numbers up ton535.

Due to experimental difficulties it is hard to create a pu
half-cycle pulse. In addition to the strong positive lobe t
experimental pulses also have a long but much weaker n
tive tail. We repeat the calculations of Bugacovet al. @15#,
which incorporate this more realistic form for the pul
shape. Those workers used a different technique, expan
the wave function into a Sturmian basis and integrating b
Runge-Kutta algorithm. The pulse profile is given by@15#

F~ t !50, t,0 ~28a!

FIG. 1. Ionization probability for the extreme Stark states w
n55 as well asn510 andm50. The filled symbols show the
results by Reinhold and Burgdo¨rfer @14# and the open symbols
show the present calculations. Circles refer to the most uphill st
and squares refer to the most downhill states.
r

in-

e-

-
t
d

a-

ng
a

F~ t !529.56F0@17.75~ t/t!3e28.87/t

20.412~ t/t!5e24.73/t#, t>0 ~28b!

with t51 psec, approximating the form of the experimen
pulse. The initial state is taken asn517. After the pulse is
over the wave packet is projected onto the bound states
the edges of the grid the wave functions are multiplied b
damping function to avoid reflection or wrap around. T
damping function used has the form@35#

f ~xi !5sin2S p

2

~xmask1Dxmask2xi !

Dxmask
D , xi>xmask

~29!

xmask is the point at which the masking function is initiate
andDxmask5xmax2xmask is the width over which the func-
tion decays from 1 to 0 withxmax being the maximum length
of the grid in that direction.

The determination of the mapping parameterb is not as
clear as it was in the case of the bound state calculat
without electric field. A good starting point is to use th
same procedure as described in Sec. III, but then the
must be extended in coordinate as well as in momen
space to allow for the evolution of the wave packet due
the pulse. To reduce the grid range needed in momen
space the velocity gauge was used, i.e., the Hamiltonia
unscaled coordinates reads

H5
1

2
~pW 2AW !22

1

r
~30!

with the vector potentialAW given by

AW ~ t !52E t

EW ~ t8!dt8. ~31!

This gauge is advantageous compared with the length ga
because it compensates for much of the momentum tr
ferred from the pulse to the electron. Still, there was so
intensity in the momentum distribution nearR50. To deal a
little better with this effect, an additional constant shift
momentum space was introduced.

Figure 2 shows the comparison of the present results w
those of Bugacovet al. @15#. Again, the ionization rate was
calculated by projecting onto bound states but this time m
more bound states were required. For the downhill sta
projecting onto about 80 bound states gave converged re
but for the uphill states about 150 bound states were
quired. This is because the wave function in the uphill st
scatters from the core before ionization, and therefore
pushed into high-n states. In Fig. 2, only those points o
Bugacovet al. which were calculated explicitly, are show
@36#. In Ref. @15#, these points were connected with smoo
lines that is fine for the uphill initial state, but misleading f
the downhill initial state, where the full curve oscillates as
function of energy. The oscillations can be traced to the
fective one-dimensional ionization of the downhill state
which contrasts with the bona fide two-dimensional ioniz
tion of the uphill states, as discussed in@14#. The converged
calculations required 432 points in thez direction and 96

es
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points in the r direction. Absorbing boundary condition
were used to reduce the grid range.

The calculation of the ionization rate in Fig. 2 require
projecting onto hundreds of bound states, represented

FIG. 2. Ionization probability for the extreme Stark states w
n517 andm50. The filled symbols show the results by Bugac
et al. @15# and the open symbols show the present calculations
. A

m

-

s

u-

merically on the grid. This projection procedure could pote
tially have introduced significant numerical errors into t
calculation. A similar numerically intensive projection pro
cedure was required by Bugacovet al. @15#. Under the cir-
cumstances, the degree of agreement with the result
Bugacovet al. is very gratifying, to the point of being almos
surprising.

VI. CONCLUSIONS

We have shown in this paper that the mapped Fou
method as developed by Fattalet al. @7# can be extended to
time-dependent calculations. As in the time-independ
method, the mapping leads to a much more efficient rep
sentation of the phase space on an evenly spaced gri
points. As we have applied it here, the mapped Fou
method is optimized only for a certain number of bou
states. However, for a general time-dependent Hamilton
the spectral components of the wave packet change in t
and it is difficult to estimate the phase space that will
needed in advance. Moreover, in the presence of ioniza
or dissociation the phase space is unbound. Nevertheless
have shown in this paper that the method can still be app
profitably to these types of problems.
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