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Extension of the mapped Fourier method to time-dependent problems
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A numerical method is described for integration of the time-dependent @olger equation within the
presence of a Coulomb field. Because of the singularity=a, the wave packet has to be represented on a
grid with a high density of points near the origin; at the same time, because of the long-range character of the
Coulomb potential, the grid must extend to large values. afhe sampling points are chosen, following E.
Fattal, R. Baer, and R. KosloffPhys. Rev. E53, 1217 (1996], using a classical phase space criterion.
Following those workers, the unequally spaced grid points are mapped to an equally spaced grid, allowing use
of fast Fourier transform propagation methods that scal N, whereN is the number of grid points. As
a first test, eigenenergies for the hydrogen atom are extracted from short-time segments of the electronic
wave-packet autocorrelation function; high accuracy is obtained by using the filter-diagonalization method. As
a second test, the ionization rate of the hydrogen atom resulting from a half-cycle pulse is calculated. These
results are in excellent agreement with earlier calculatif®$063-651X99)14210-7

PACS numbsd(s): 02.70.Jn, 31.15:p, 32.80.Rm

[. INTRODUCTION per lobe of the wave function close to being a constant. This
is because the momentum space required for the calculations
Numerous different approaches have been developed fits within the range set by the Fourier method, so that the
solve the time-dependent Schimger equation. Fast Fourier use ofphase spacés optimized rather than just the use of
transform(FFT) methods have been proven very powerful in coordinate space. Very recently, Kokoouliaeal. [11] ap-
treating nuclear dynamics problems, but their naive applicaplied this mapping procedure in connection with the time-
tion to electronic problems, which have a Coulomb singularindependent Fourier grid Hamiltonian method to the calcula-
ity, gives poor results. This is because in the FFT method théon of the photoassociation spectrum of RB;).
grid has to be evenly spaced and, therefore, thousands of grid In the present paper, the mapped Fourier method is ap-
points are already needed in one-dimensional calculationglied to the solution of théme-dependerchralinger equa-
[1]. Other methods like the finite element meth@e-4], the  tion. As a first test, the eigenstates of the hydrogen atom are
expansion in complex Sturmian basis sé and discrete- extracted from spectral analysis of arbitrary wave packets
variable—finite-element method$] have been relatively evolving in a Coulomb field. Results are obtained for the
successfully applied to the Coulomb problem, but lack theone-dimensional1D) radial Schrdinger equation, for the
high efficiency of the FFT method for calculating the kinetic Schralinger equation of the hydrogen atom in cylindrical
energy operator, which scalesisn N, whereN is the num-  coordinates in two degrees of freedom, and for the hydrogen
ber of grid points. The favorable scaling of the FFT methodatom in three degrees of freedom without using any symme-
becomes increasingly importantif is large, as is the case try. For extracting the eigenenergies, the filter diagonaliza-
when a few coupled degrees of freedom are involved. tion method developed by Wall and Neuhaugkt] and im-
Recently, Fattal, Baer, and Koslof?] used a mapped proved by Mandelshtam and Tayl$i3] is applied. The
Fourier method, which combines the advantages of the finiteecond test of the time-dependent mapped Fourier method is
element method and the Fourier method. It allows the placemuch more severe. The ionization probability is calculated
ment of grid points as needed, while allowing use of the FFTfor a hydrogen atom interacting with a half-cycle pulse. First,
for evaluation of derivatives bynappingthe original, un-  a rectangular pulse is applied to a hydrogen atom, which is
evenly spaced grid to a grid that is evenly spaced. Fattghitially in an uphill or downhill Stark state with principal
et al.chose the placement of the original set of grid points inquantum numben; n=5 orn=10. The results are compared
such a way as to optimize the usage of thassicalphase to the calculations of Reinhold and Burgéer [14] of the
space, as estimated by the classical Hamiltonian with a pre&same quantity. Then, a more realistic pulse shape is used and
determined energy cutoff. Those workers applied theithe main quantum number of the initial Stark state is in-
method to a solution of the timedependentSchalinger  creased t;m=17. We use the same parameters as Bugacov
equation using the Fourier grid Hamiltonian representatioret al. [15] to be able to compare directly with their results.
[8], and were able to calculate the first twenty bound states ofhese calculations are in close correspondence with the ex-
the radial coordinate of the hydrogen atom very accuratelyperiments of Jonest al. [16]; although the experiments are
using only 64 grid points. As with earlier mappings like performed with sodium atoms, the theory gives good quali-
=Inr [9] or x= \r [10], Fattalet al. get the number of points tative agreement for the different ionization rates of downhill
and uphill states. Both calculations we compare with the one
of Reinhold and Burgdder [14] and the one of Bugacov
*Present address: Institut rflPhysik, Technische Universita et al. [15], who use an expansion in a complex Sturmian
D-09107 Chemnitz, Germany. basis. In those calculations the time-dependent Sithger
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equations are solved by a split operator technique and by &afhis theorem also implies a good representation ofrtte
implicit Runge-Kutta algorithm, respectively. Besides the su-derivative of the function. It can be shown that the best band
perior scaling of the mapped Fourier methods over thesémited functions are prolate spheroidal wave functig2@.
methods, the kinetic energy operator is also much easier tdhese functions are not easy to handle, and a much simpler
evaluate. but still good set of wave functions are Gaussian wave func-

The paper is organized as follows. In Sec. I, the basidions. Their amplitude outside a finite size interval can be
principles of representation theory are reviewed. In Sec. llimade exponentially small in both coordinate and momentum
the general calculus of mapping and its effect on the kinetispace. One can define a wave packet as a wave function,
energy operator is presented, and the particular mappingrhich is semilocal in phase space.
function used here is described. Section IV presents the cal- Wave functions in general are not strictly band limited
culation of the hydrogen atom eigenenergies, while Sec. \and have no finite support in coordinate space. In the general
describes the calculation of the ionization probabilities bycase, one may analyze the efficiency of the representation
half-cycle pulses. Section VI gives a short summary and diswith the help of the classical or the Wigner-Weyl phase
cussion. Atomic units are used unless otherwise stated.  space[21]. The phase space in the Fourier method has a

rectangular shape and its volume i¥/]
Il. REPRESENTATION THEORY

. _ o V=2hLKmax=Ngh. (5)
On a grid, a continuous wave function is represented by
only a few points. Between these points an analytic set 05o at mosN, quantum states can be represented on the grid.
basis functionsg,(q) may be used to make a continuous if only N, converged eigenstates are represented, the repre-

description, sentation efficiency is
o Ng*l Ne
W) ~P(A)= 2 agda)- (1) =g ®)

The expansion coefficients, are determined by matching Because quantum wave functions decay exponentially out-
the functiony(q) to the true wave functiog/(q) at the grid ~ side the classically accessible phase-spacea good esti-
points. The relation between the grid points and expansiomate of the representation efficiency is given by the ratio of
coefficients is called theollocation relation[17]. If the ba-  the classical phase-space volume, which is accessible to the
sis functions are orthogonal when summed over the gri®Phase-space volume of the Fourier grid

points, the representation is callegseudospectrakpresen-

tation[18]. A specific choice of basis functions, which form _ Q 7
a pseudospectral representation, are the complex exponen- Ne™~ Ngh" @
tials

—— The main idea of the mapping procedure proposed by Fattal,
O(a) =€, k==Ng/2,....0,...Ng/2=1 (2)  Baer, and Kosloff7] is the use of Eq(7). The mapping
i i i ) parameters are chosen in such a way that the efficiency given
This method is named the Fourier method. Since the methogy Eq. (7) is maximal. This gives a physically motivated
is pseudo spectral one gets mapping, which can be determined before the actual calcu-
lation.

=z

1 N .
a—r > wlge @
Ng =1

I1l. MAPPING PROCEDURE

An appealing feature of this representation is the physical The mapping should be a canonical mapping fromithe

meaning of the coefficients, as the discrete representation canonical Cartesian coordinatgeg} to theN curvilinear co-

of the wave function in momentum space. The grid points irordinates{Q;}. The original coordinates are always given in

the Fourier method are equally spaced, with spackgy ~ small letters throughout the paper, whereas the mapped co-

=L/Ny in coordinate space and with spaciag=2x/L in ~ Ordinates, on the evenly spaced grid, are given in capital

momentum space. letters. Typically, a mapping function is defined, which de-
The accuracy of the Fourier representation is determine@ends on a small number of discrete parameters. The Rie-

by the Whittaker-Kotel‘nikov-Shannon sampling theoremmann metric tensor is given by

[19,20. The theorem states that band limited functidins.,

functions that are compact in momentum spadkat have agk g«
finite support(i.e., which are compact in coordinate space gij= = (9_Q' &_Q‘ ®)
can be interpolated with no loss of accuracy provided that

Ag<m/knax. The function values in between the grid points
are interpolated by

& SiN ka0~ NAQ)] J=detg;), 9

wa)=_ > (nAq) SN
~(Ng/2-1) Kmax(q—NnAQ) and the transformed Laplacian is given 2]

the Jacobian is given by
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(10 determine the optimal mapping parameter for the second
possibility, Eq.(15), is not obviougwork in this direction is
in progress For atomic problems, the efficiencies of the two
Aifferent mapping procedures were found not to differ much.
This was tested by small time-independent calculations
Ahere the mapping parameter could be determined variation-
ally. For cylindrical coordinates the first procedure is supe-
'rior because the wave functions change a lot along tods.
Therefore, a fine grid along this line, as created by the first
mapping procedure, Eq14), is always advantageous. In
q=N[Q— A arctari 8Q)], (12) three dimensions both procedures performed equally well for
small systems, even when the mapping parameters were de-
with N being a constant that keeps the length of the gridermined variationally.
fixed. For small values of) this function behaves like

1 9 _ can be determined separately for each dimension. How to
AZ—E—.E(JQIK )

J T QN aQk
The use of such a mapping in electronic structure calcul
tions was pioneered by Gy§R3]. For atomic systems with
empirical mapping parameters a mapping of coordinates w
also recently done by Andrae and Hing&]. A mapping
function similar to that of Gygi has been used by Fattal
Baer, and Kosloff 7] for the radial coordinate of the hydro-
gen atom

e IV. EXTRACTING THE EIGENENERGIES
q=N(Q—ABQ+3 AL Q +---). (12) OF A HYDROGEN ATOM

ChoosingAB=~1 makes the coordinatgbehave like a cubic A. Radial Schrodinger Equation
function of Q for small values ofQ. Therefore, with an
equally spaced grid i, there will be a lot of points near the
singularityg=0 (see Fig. 2 of Ref[7]). For numerical rea-

First we use the full spherical symmetry of the hydrogen
atom, i.e., we write the solution as

sons, the produdA B has to be a little less than unity and its W om(r, 0,0) =P ()Y m(6,d) (16)
actual deviation from unity is related to the strength of the
mapping function. with Y,(6,¢), the spherical harmonics. After the substitu-

Earlier calculationd23,25,26 used adaptive methods t0 tion ¢(r)=®(r)/r, the radial Hamiltonian is given by
calculate the mapping parameters. In contrast to this, Fattal

et al. maximized the representation efficiency of the grid, 14 1 1(1+1)
i.e., maximizeds, in Eq. (7), before the actual calculation. H=- 55 gt PR (17
For a fixed number of grid point#y,, this is done by maxi- aq® d 2q

mizing Q= [pdqg. For the mapping function, Eq11), and ] S
fixed product,AB, the integral is a smooth function of the N the mapped coordina® the Hamiltonian is given by
parameterB and reaches a plateau, which can be obtained

easily. The results are quite insensitive to the exact value of H=— E(Jli 2_ 1
B. However, because the ratio of the energy cutoff of the 2 JQ N[Q—Aarctani SQ)]
grid with mapping and without mapping goes like (+1)
J’_
Emapped Ng 4 + 2" (18)
—oc(— : (13 2{N[Q—Aarctari 8Q)]}
Eunmapped BL

For evaluating this kinetic energy operator within the Fourier
method, four FFTs are needed sinte*(Q) is local in co-
Brdinate space. By using the identity

it is preferable to choose the smallest possible valugs of
after the plateau is reached. For figures of the classical e
ergy shell and the Wigner function with and without map-
ping, see Ref7]. 9 \2 9 9 N g
The mapping function, Eq(11), can be extended to (Jl—) =.J1(J1—+ )—
higher dimensions in different ways. The simplest possibility 9Q JQ  dQ JIQ
is to do the mapping in every coordinate separately,

(19

the number of FFTs needed can be reduced to three, since the
q;=N[Q,—Aarctari 8Q)] (14)  derivative ofJ~1 can be evaluated analytically. The use of
three instead of four FFTs does not affect the accuracy sig-
or to perform a global mapping that depends on the distancaificantly for one evaluation of the Hamiltonidhon a wave

p from the nucleus function; however, if many evaluations are needed, e.g., to
build up a Krylov space,=H"d,) for time propagation,
di=NQ[1-f(p)], the version with four FFTs was found to be much more

stable. Using the transformation described in Re4] it is
(15) possible to use only two FFTs; however, this transformation
generates an additional potential energy term with much
more structure than the Coulomb potential, so that for the
p= ‘/Q?1+ Q2?+ el same number of grid points one actually gets less accurate
results this way. Therefore in all calculations described in
The first choice is much easier to implement because thehis paper four FFTs were used for evaluating the kinetic
metrical tensorg;; is diagonal and the mapping parameterenergy operator.

A
f(p)= ;arctamﬂp),
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TABLE |. Eigenenergies of atomic hydrogen in atomic urifar convenience the minus sign has been
neglectedl The second column gives the exact values, whereas the other three columns give values from
time-dependent runs. For the calculations in the third column, spherical symmetry has been used; for the
fourth column, cylindrical symmetry; and for the last column, no symmetry at all. The 1D and 2D runs have
been optimized for eigenstates withup to 20, the 3D run fon up to 10.

Exact Mapping
Dimension 1D 2D 3D

Ng 64 64 32

L 1600 1600 400

1 0.500 0000 0.499 91 0.499 92

2 0.125 00 0.12501 0.12501

3 5.556x 102 5.5557 102 5.5557 102 5.5520< 102
4 3.1250<10 2 3.1245x< 102 3.1245x 102 3.1265< 10?2
5 2.0000< 1072 2.0003x 10?2 2.0003< 10?2 2.0030< 10?2
6 1.3889< 102 1.3887x 102 1.3887x 102 1.3884x 102
7 1.0204x 1072 1.0203< 1072 1.0203< 1072 1.0217x 1072
8 7.8125¢ 1078 7.8118<10°3 7.8118<10°3 7.8924x 1073
9 6.1723<10°8 6.1724< 103 6.1724< 103

10 5.0000x 102 4.9997 1073 4.9997 1073

11 4.132%10°3 4.1320x10°3 4.1320x 1072

12 3.472210°° 3.4721x 1073 3.4721x 1073

13 2.9586¢10°° 2.9585< 1072 2.9585< 1072

14 2.5510< 103 2.5507x 1072 2.5507x 1072

15 2.222X% 1073 2.2222<10°3

16 1.9531x 102 1.9529< 102

17 1.7301x 1078 1.7306< 102

The time propagation was performed using the short iteraThe most common way to extract energies out of the auto-
tive Lanczos(SIL) propagatof{27]. This propagator allows correlation function is by standard Fourier transfof&g],
for mixed terms of? andQ in the kinetic energy operator, as but this requires propagation of the wave packet for a time
introduced by the mapping. The split operator techni@8  t=1/AE, where AE is the energy separation between the
often used for time propagation does not allow for mixeddesired state and its nearest neighbor. A method far superior
terms of P and Q and, therefore, cannot be used here. Ang this is the filter diagonalization method first developed by
additional advantage of the SIL comes from consideration o{y/5)| and Neuhausdn2] and improved by Mandelshtam and

the energy spectrum of the mapped grid. The curvature of theayjor [13]: the latter version is used here. The basic idea is
mapping function introduces high energy components to the

i ies. Tvoically. th hiah h o fit a time signal to a sum of complex exponentials, where
gri el_rtltelrrgles.l_tyglcaby,tt eseﬂ;g: e(:jn;ergy com_poln_entts b_"livfﬁe fitting parameters are the complex amplitudes and fre-
;@r[yzé] L?nlaens]g ;l:in?é sltjepczg tshle o?ger;ﬁiul\rl?zrllzci :Jnsseg - quencies. In general, this is a difficult nonlinear search in a
with N being the order of the propagator até, the spectral many-dimensional space; the significance of Wall and

Lo _ Y o Neuhauser’s work was to show how this problem could be
range of the Hamiltonian. This instability is characteristic thturned into a small linear algebra problem
the Chebyshev propagation method and other uniform meth- i i L
y bropag Table | shows the eigenenergies of the radial Sdimger

ods. The Lanczos method is unconditionally stable; more- e ) . ) s .
over, the error is determined only by the component of the&&quation in comparison with the exact eigenenergies. Atomic

. . . _ 2 . .
initial state at these high energy regions of the spectrumtnits are used, in whick,= —1/(2n°). The grid was opti-
which is typically on the order of 102 Unfortunately, for mized to represent the first 20 eigenstates. As can be seen in
very long propagation times as used in Sec. V, these smafable 1, the accuracy is qun_e good. The remaining error is
components at high energies reduce the typical time step to™#t dué to the time propagation but due to the representation
value of 2—3 times longer than the time step of a Chebyche®Or incurred by the use of a finite gnd._The energies were
propagatof30]. Attempts to get rid of those components at OPtained by propagating arbitrary Gaussian wave packets on
high energies in Krylov space failed because they reoccurth_e grid, and extracting their spectral frequencies via filter

after a few Lanczos iterations or because these methods afégonalization. Typically, the wave packets were propa-
too time consuming30]. gated for a time of 10 000 a.u., after which the filter diago-

For the extraction of the eigenenergies, the autocorrela?@lization method gives converged energies. A time step of 1
tion functionS(t) =( $(0)| 4(t)) has to be calculated. Since a.u. was used. Generally, the propagation of one wave packet
the Hamiltonian is time-independent a trick can be used tdS N0t €nough because it does not have enough overlap with
constructS(2t) out of the wave function at time[31], all the desired eigenstates. Therefore, a few different starting

wave packets need to be propagated. These results already

S(2t) =((0)|p(2t)) =(p* (1)| p(1)). (200 show that the mapped Fourier method is not limited to time-
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independent calculations but can also be used efficientlgince the mappings iR andZ are completely decoupled, the
within a time-dependent framework. The real advantagesnapping parametesg, Br andAz, Bz can be determined
however, will become apparent in higher dimensional probseparately. Each of these parameters can be calculated in the
lems below. same way as described for the radial Scimger equation.
Again, the grid is constructed to represent the first 20 eigen-
A. Cylindrical coordinates states accurately. A time step of 0.5 a.u. is used with a total
) _ . ... propagation time of 10 000 a.u. The eigenenergies are ex-
This subsection shows how the mapping in cylindricalyacteq and listed in Table I. Once more the error is due to
coordinates can be combined with time propagation. This i$ya |imits of the grid representation and not due to time

especially important for atoms in linearly polarized fields o yaation. This calculation indicates that the mapping is
and diatomic molecules. The time-independent version of th@icient also for propagation in cylindrical coordinates.

mapping was already used successfully to calculate the
eigenenergies of the hydrogen molecular iof#h The cal-
culation of ionization rates in a linearly polarized electric
field is described in the next section. The transformation Finally, we show that with the mapping it is possible to do
from Cartesian to cylindrical coordinates and the mappinga time-dependent Fourier propagation in the Coulomb poten-
are combined into a single step here. The original Cartesiatial without using any symmetry. For simplicity, we perform
coordinates {q;}) will be calledx, y, andz here and the the mapping in each Cartesian coordinate separately as given

B. Full 3D calculation

mapped cylindrical coordinate$@;}) R, Z, and®: by Eg. (14). Again, the mapping pqrameters can be deter-
mined as in the case of the radial Sdatirger equation. The
Xx=Ngr[R—Ag arctari BgR) Jcos®, (218 metrical tensog is diagonal and the Jacobian is just a prod-
uct of three Jacobians of the form used in the radial 8eho
y=Ng[R—Ag arctart SgR)]Jsin®, (21b  inger equation. The results are quite accurate, as seen in
Table I. It is worth noting that the 1-D radial Schilinger
z=Ny[Z—A; arctari 8,2)]. (210 equation could have been solved using the Fourier method

without mapping, but this would have required thousands of
The coordinate® andZ are mapped in the same way as thegrid points. However, without mapping, the 2-D calculations
coordinateq in the radial Schrdinger equation. The azi- are already beyond the capabilities of current computers and
muthal coordinateP is not mapped and is of no concern the 3-D calculations are beyond the capabilities of any com-
because we are interested in problems with azimuthal synmputers projected for the next generation. In 3-D, the time-
metry here. Using the abbreviations dependent calculations of the eigenenergies start to have sig-

nificant advantages over the time-independent methods. This

BrAR is because in time-independent methods huge Hamiltonian
J1=Ng| 1- T+ (BR2) (228 matrices have to be set up and to be diagonalized. This is not
(Br the case in time-dependent calculations, which operate only
3,=No[R—Ag arctar 8sR)], (22b) with vectors of the formrHW.
V. IONIZATION BY HALF-CYCLE PULSE
BzAz , _ _ ,

J3=Nz| 1- ——— |, (220 Until now no external field was involved in the calcula-
1+(Bz2) tions. As a next test we apply the time-dependent version of
the metric tensor looks like the mapped Fourier method to the hydrogen atom in the
presence of a half-cycle pulse. Half-cycle pulses are espe-
J% 0 0 cially interesting because they can ionize a Rydberg wave

packet far away from the core. A variety of experiments on
g=| O J% 0 (23 alkali-metal atoms with half-cycle pulses have been per-
0 0 J2 formed recently[33,16. In some experimentgl6] a very
3 weak static electric fielé 4. was aligned along the positize
axis. This field splits the Rydberg manifold into Stark states
[34]. For pure hydrogenic systems the Stark states are eigen-
_ _ states of the Hamiltonian in parabolic coordinates with the
3=\lg1=319,35. (24 quantum numbers;, n,, and m. The principal quantum

Because of the azimuthal symmetry the wave function can bBUMbPer is given byn=n; +n,+[m|+1. The energies of
the Stark states within the static field are @&(n,

and the Jacobian

written as ) . o
—n,)F4c.. Forny>n, the electron is mainly on the positive
V(R,Z, V)= ¢(R,Z)eM® (25)  side of thezaxis and therefore on the uphill side of the small
potential F4.. These states are called uphill states. Ror
and so the Laplacian is given by <n, the electron is mainly on the negative side of #eis;
these are called the downhill states. As in the experiment,
1 /(3 d ) 1 9 ( 1 9 ) m2 06 only the most uphill 6;=n—1, n,=0) and the most down-
=l —=|t—=|T =] 26 hill (n;=0, n,=n—1) states are considered. The very weak
J1d2 R\ Jy IR} I3 9215 2 J% field F4. can be neglected in the calculations.
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10 - - - - - F(t)=29.56F[17.75t/7)%e 887"
0 - . s | —0.413t/7)% 47, t=0 (28b)
. - A 8
Downhill ﬁﬂ with 7=1 psec, approximating the form of the experimental
06 r . ® 1 pulse. The initial state is taken &s=17. After the pulse is
L over the wave packet is projected onto the bound states. At
04 : @ . the eqlges of the grid the_wave functions are multiplied by a
- QQ Uphill n=10 damp!ng funcgon to avoid reflection or wrap around. The
E oo L L8 | damping function used has the fofi®5]
z o
g B:QQ? : : : : f(xi)=sin2 g(xmasijXmask Xi) XS Xmask
= A L] 8 mask
8 - ) (29
§1 08 ] 6 1 . . . . . T
.g Downhil e= Ty Xmask 1S the point at WhIC.h the mgskmg funct!on is initiated
= oc L . o | a_mdAxmaskzxmax—xmaskl_s the quth over Whl_ch the func-
. $ tion decays from 1 to O with,,, being the maximum length
o 55 of the grid in that direction.
04 r e 1 The determination of the mapping paramegeis not as
e n=>5 clear as it was in the case of the bound state calculations
02 | 599 Uphill i without electric field. A good starting point is to use the
5 same procedure as described in Sec. lll, but then the grid
00 . . , , . must be extended in coordinate as well as in momentum
0.0 0.2 04 0.6 0.8 1.0 12 space to allow for the evolution of the wave packet due to
F, the pulse. To reduce the grid range needed in momentum

space the velocity gauge was used, i.e., the Hamiltonian in
FIG. 1. lonization probability for the extreme Stark states with ynscaled coordinates reads

n=5 as well asn=10 andm=0. The filled symbols show the

results by Reinhold and Burgder [14] and the open symbols 1. .
show the present calculations. Circles refer to the most uphill states H==(p—A)?-
and squares refer to the most downhill states. 2

1

T (30

The half-cycle pulse is first modeled by a rectangularWlth the vector potentiah given by

pulse[F(t)=F, for 0<t<T,] with a scaled peak fiel&, )
=n*F, and a scaled pulse durati@ip="T,/T,=T,/(mn?) At)= _J E(t")dt’. (31)
=0.5. The parameters are chosen as in the article by Rein-

hold and Burgdder [14]. The ionization rate is calculated as

one minus the bound state rate This gauge is advantageous compared with the length gauge

because it compensates for much of the momentum trans-
ferred from the pulse to the electron. Still, there was some
1 intensity in the momentum distribution ne@rk=0. To deal a
|(¢n,,m:0|¢(Tp)>|2. (27) little better with this effect, an additional constant shift in
0 momentum space was introduced.
Figure 2 shows the comparison of the present results with

Figure 1 shows the present results in comparison to the rdhose of Bugacoet al. [15]. Again, the ionization rate was
sults of Reinhold and Burgdter [14]. The agreement is very calculated by projecting onto bound states but this time many

good. The small deviations most probably result from differ-More bound states were required. For the downhill states,
ent ways of determining the ionization rate. In the presenProjecting onto about 80 bound states gave converged results

calculation the final wave packet was projected onto boundUt for the uphill states about 150 bound states were re-
states with main quantum numbers upnte 35. quired. This is because the wave function in the uphill state

Due to experimental difficulties it is hard to create a purescatters from the core before ionization, and therefore is

half-cycle pulse. In addition to the strong positive lobe thePushed into higit states. In Fig. 2, only those points of

experimental pulses also have a long but much weaker neg Jugacovet al. which Were_calculated explicitly, are shown
tive tail. We repeat the calculations of Bugacetal. [15], 36]. In Ref.[15], these points were connected with smooth

which incorporate this more realistic form for the pulse"”es that is fine for the uphill initial state, but misleading for

shape. Those workers used a different technique expandiﬁae downbhill initial state, where the full curve oscillates as a
the wave function into a Sturmian basis and integrating by dunction of energy. The oscillations can be traced to the ef-

Runge-Kutta algorithm. The pulse profile is given [45] fective one-dimensional ionization of the downhill states,
which contrasts with the bona fide two-dimensional ioniza-

tion of the uphill states, as discussed i#]. The converged
F(t)=0, t<O0 (2839 calculations required 432 points in tteedirection and 96

n—

N
Pion=1— E
n=1
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FIG. 2. lonization probability for the extreme Stark states with
n=17 andm=0. The filled symbols show the results by Bugacov
et al. [15] and the open symbols show the present calculations.

points in ther direction. Absorbing boundary conditions
were used to reduce the grid range.
The calculation of the ionization rate in Fig. 2 required

AND DAVID J. TANNOR PRE 60

merically on the grid. This projection procedure could poten-
tially have introduced significant numerical errors into the
calculation. A similar numerically intensive projection pro-
cedure was required by Bugacet al. [15]. Under the cir-
cumstances, the degree of agreement with the results of
Bugacovet al.is very gratifying, to the point of being almost
surprising.

VI. CONCLUSIONS

We have shown in this paper that the mapped Fourier
method as developed by Fatetlal. [7] can be extended to
time-dependent calculations. As in the time-independent
method, the mapping leads to a much more efficient repre-
sentation of the phase space on an evenly spaced grid of
points. As we have applied it here, the mapped Fourier
method is optimized only for a certain number of bound
states. However, for a general time-dependent Hamiltonian,
the spectral components of the wave packet change in time,
and it is difficult to estimate the phase space that will be
needed in advance. Moreover, in the presence of ionization
or dissociation the phase space is unbound. Nevertheless, we
have shown in this paper that the method can still be applied
profitably to these types of problems.
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