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Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect.
I. Shallow water
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When a surface wave interacts with a vertical vortex in shallow water the latter induces a dislocation in the
incident wave fronts that is analogous to what happens in the Aharonov-Bohm effect for the scattering of
electrons by a confined magnetic field. In addition to this global similarity between these two physical systems
there is scattering. This paper reports a detailed calculation of this scattering, which is quantitatively different
from the electronic case in that a surface wave penetrates the inside of a vortex while electrons do not penetrate
a solenoid. This difference, together with an additional difference in the equations that govern both physical
systems, lead to a quite different scattering in the case of surface waves, whose main characteristic is a strong
asymmetry in the scattering cross section. The assumptions and approximations under which these effects
happen are carefully considered, and their applicability to the case of the scattering of acoustic waves by
vorticity is noted.@S1063-651X~99!18610-0#

PACS number~s!: 41.20.Jb, 47.35.1i, 47.10.1g
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I. INTRODUCTION

In a remarkable paper, Berryet al. @1# clarified the way in
which a curl-free magnetic vector potential modifies t
wave front structure of an electronic wave function th
obeys the nonrelativistic Schro¨dinger equation. They con
cluded that for electrons traveling outside an infinitely lo
cylinder enclosing a magnetic field, the wave fronts outs
the cylinder would be dislocated by an amount proportio
to the amount of magnetic flux within the cylinder. Reaso
ing by analogy, they also concluded that such disloca
wave fronts should occur for surface water waves when t
encounter a vortex. A simple experiment conclusively de
onstrated this effect@1#.

In the case of the electronic wave function interacti
with a confined magnetic field~and its unconfined vecto
potential! Berry et al. @1# also computed the complete sol
tion to the Schro¨dinger equation that, in addition to the di
located wave, includes a scattered wave. Trying to do thi
the case of the water waves is, however, more difficult
cause the analogy between de Broglie waves and w
waves breaks down when pushing it into a quantitative st
ment. There are two essential differences: The first is that
an electron the appropriate boundary condition is that
wave function vanishes at the surface of the cylinder; in
case of water waves, the waves of course penetrate insid
vortex and it becomes necessary to solve the approp
equations not only outside the vortex but also inside, a
match them with continuity conditions. The second is th
the wave equations that govern both phenomena, altho
similar, differ in quantitative details. This paper addres
both these issues.

The scattering of surface waves by vertical vorticity
shallow water was discussed by Cerda and Lund@2# and by
Umeki and Lund@3# who discovered that a vortex may su
port spiral wave solutions. Fabrikant and Raevsky@4# have
PRE 601063-651X/99/60~4!/4908~9!/$15.00
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studied the case of a fluid of arbitrary depth in a Born a
proximation. The interaction between surface waves and
tical vorticity is in many respects similar to that of acous
waves and vorticity, a topic that has been much studied o
the years and that recently has been the subject of partic
interest due to the possibility of using acoustic waves a
nonintrusive probe of vortical flows, both laminar and turb
lent @5#, much in the same way that x rays and neutrons
used to probe condensed matter structures, both ordered
disordered. Most treatments, however, rely on a Born
proximation@6# whose validity breaks down when a surfa
wave interacts with a vertical vortex with nonvanishing c
culation, leading to a long-range velocity field that deca
like 1/r where r is the distance to the vortex core. This
precisely the case that is studied in the present paper.
decomposition of the wave as the sum of an incident an
scattered part is no longer possible if the vortical flow e
tends toward infinity. As in Berry’s calculations, we exhibit
dislocated wave, which cannot be considered as such a
The dislocation is essentially a nonperturbative effect, wh
cannot be properly taken into account in the Born appro
mation. The scattering of acoustic waves by vortices of n
vanishing circulation has been the subject of a number
recent experimental studies@7#.

This paper is organized as follows: Section II derives
equations that describe the scattering of a surface wave
vertical vorticity in shallow water. We pay particular atte
tion to the assumptions needed to derive those equati
Section III has a reminder on the Aharonov-Bohm effect
relevant for the present discussion. Section IV presents
computation of the solution to the equations derived in S
II. Section V presents several illustrative examples and S
tion VI has concluding remarks. Technical details are co
tained in two Appendices. A subsequent paper@8# studies the
first-order corrections to the shallow water approximation
4908 © 1999 The American Physical Society
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II. SHALLOW WATER WAVES IN INTERACTION
WITH A VERTICAL VORTEX

We consider the problem of the interaction of shallo
water surface waves in an inviscid incompressible fluid
uniform depthh with a stationary vertical vortex. The coo
dinates are (x,y)5x in the horizontal direction andz in the
vertical direction. The velocity and the surface displacem
are denoted byv(x,z,t)5@v'(x,z,t),w(x,z,t)# andh(x,t),
respectively. We consider surface waves whose frequenc
high by comparison with the inverse of the time scale as
ciated with any thermal or viscous relaxation effects. As
matter of fact, we do not expect qualitative changes due
viscosity, apart from a decrease in the wave amplitu
which is, of course, not predicted in our calculations.

The equations of shallow water waves are@9#

] th1h“'•v'1“'•~hv'!50, ~2.1!

whereh is the fluid depth and“' is a horizontal gradient
and

] tv'1~v'•“'!v'52g“'h, ~2.2!

whereg is the gravity acceleration.
We will consider surface waves with particle veloci

u(x,t) and surface deformationh1(x,t) as small perturba-
tions on a background flow consisting of a steady verti
vortex U~x!, with corresponding surface deformationh0(x);
u!U, where U denotes a typical value ofU~x!, and h1
!h0 . Substituting v'5U(x)1u(x,t) and h5h0(x)
1h1(x,t) into Eqs.~2.2! and ~2.1! allows, to zeroth order
the computation ofh0 in terms ofU for the background flow.
The first-order equations are

] tu1~U•“'!u52~u•“'!U2g“'h1 , ~2.3!

] th11~U•“'!h152h“'•u2@h0“'•u1~u•“'!h0#.

~2.4!

Taking the horizontal divergence of Eq.~2.3!, setting D'

5“'
2 , we obtain (i , j 51,2)

Dt“'•u1gD'h1522~] iU j !~] jui !, ~2.5!

whereDt[] t1U•“' . Taking the difference betweenDt of
Eq. ~2.5! andh times Eq.~2.5! leads to

Dt
2h12c2D'h152Dt@h0“'•u1~u•“'!h0#12h~] iU j !

3~] jui !, ~2.6!

wherec5Agh is the phase velocity of shallow water wave
We consider the caseU!c. In analogy with gas dynam

ics, we callM5U/c the Mach number. We denote a typic
length scale of the vortex bya, and the wavelength an
frequency of shallow water waves byl andn, respectively.
We will assume that wavelengths are small compared to
tex size@10#: ka[b@1 (k52p/l).

Under these assumptions, the right-hand side of Eq.~2.6!
will be O(M ) or O(b21) compared with the left-hand side
Neglecting these terms, the final equation to be solved is

Dt
2h12c2D'h150. ~2.7!
f

t

is
-

a
to
,

l

.

r-

Note that one might be tempted to neglect (U•“')h1 with
respect to] th1 on the grounds thatU!c. However, it is
possible to have (U•“')h1;] th1 without violating this
small Mach number assumption by considering~as we do in
Sec. IV below! a background velocityU;va with length
scalea and frequency scalev, together withn@v and ka
@1.

Equation~2.7! is readily obtained under the same assum
tions in the scattering of acoustic waves by a vortex@3#. The
physics is the same since acoustic waves and shallow w
waves are bothnondispersive, and the results of Secs. IV an
V are valid for both types of waves. They depend only
two parameters, the dimensionless wave numberb and the
Mach numberM , and when those parameters are the sa
the results that hold for the surface elevationh1 may be
transposed, quantitatively and with no change, for the s
tered acoustic pressure.

III. ANALOGY WITH THE AHARONOV-BOHM EFFECT

Wave equation~2.7! possesses a close analogy with t
quantum mechanical wave equation describing
Aharonov-Bohm effect, in which a magnetic vector potent
influences the dynamics of a charged particle in a reg
where the magnetic field vanishes. This cannot happen
classical electrodynamics@11#. In its simplest form, this ef-
fect occurs when a beam of particles with chargeq and mass
m is incident normally on a long thin cylinder containing
magnetic fieldB~x! parallel to its axis. The Schro¨dinger
equation in the presence of a magnetic vector potentialA is

1

2m
@2 i\¹2qA~x!#2c~x!5

\2k2

2m
c~x!, ~3.1!

where \ is Planck’s constant. Outside the cylinder,A(x)
5(F/2pr ) û, with F the magnetic flux contained within th
cylinder, andû an azimuthal unit vector. Of course,B50
outside the cylinder.

Both Eqs.~2.7! and~3.1! allow for a solution of the form

exp@2 i ~k•x1au!#,

wherea5nG/(2pc2)5kG/2pc in the fluid mechanics cas
anda52qF/2p\ in the quantum mechanics case. This
an exact statement in the latter case, while in the water w
case it is approximate because Eq.~2.7! is valid only when
M!1 and b@1. Except for integer values ofa, this is a
multivalued solution. Berryet al. @1# showed how fixing this
multivaluedness leads to a solution that is a superpositio
dislocated wave fronts and scattered waves. This w
achieved by solving Schro¨dinger equation~3.1! with impen-
etrable boundary conditions:c50 at the surface of the cyl
inder. The appropriate boundary conditions in the fluids c
are continuity of velocity and of surface elevation. We no
turn our attention to solving Eq.~2.7! under these conditions
One important physical difference between the classical
quantum mechanical cases is that in the latter the phas
the waves cannot be measured, while in the classical ca
can. Table I compares these two cases.
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TABLE I. Aharonov-Bohm effect in quantum and classical mechanics compared and contraste

Quantum mechanics Fluid mechanics

Magnetic field Vorticity
B5“3A v5¹3U
Vector potentialA Velocity U
Magnetic fluxF Velocity circulationG

Wave functionc Surface displacementh
Dislocation parameter Dislocation parameter
a52qF/2p\ a5kG/2pc
Dislocated wave is an exact solution Dislocated wave is approximate solution
Phase is not measurable Phase is measurable
e
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IV. SCATTERING OF DISLOCATED WAVES
BY A VORTEX

As an example, we consider a scattering problem by
circular uniform vortex with vorticityv and radiusa sur-
rounded by an irrotational flow. Using polar coordinat
(r ,u), the background flow is given by@12#

U5H 1

2
vr û if r<a,

G

2pr
û if r .a,

~4.1!

where G5pva2 is the circulation. Equation~2.7! will be
solved separately forr ,a andr .a, and the results matched
with a continuity condition.

Inside the vortex we have from Eq.~2.7!

$@] t1~v/2!]u#22c2@] r
21~1/r !] r1~1/r 2!]u

2#%h150.
~4.2!

We look for solutions that evolve harmonically~with a single
global frequencyn! in time, and Fourier decompose them
the polar angleu:

h15ReF(
n

h̃1nei (nu2nt)G , ~4.3!

where Re stands for the real part. Introducing this express
into Eq. ~4.1! we obtain

S d2

dr2 1
1

r

d

dr
2

n2

r 2 1kn
2D h̃1n50, kn5

un2nv/2u
c

.

~4.4!

Equation~4.4! has both Bessel and Hankel functions@13# as
solutions if knÞ0. Regularity at the origin will exclude the
latter. If 2n/v is an integer,kn(5ku12n/ndu) vanishes for
n5nd[2n/v. In this case, Eq.~4.4! can be solved by as-
sumingh̃1n}r p. Substituting this into Eq.~4.4!, we havep
56n and negative values ofp are excluded, again becaus
of regularity at the origin. Thus we have

h1~r ,u,t !5ReF (
nÞnd

an

Junu~knr !

Junu~kna!
ei (nu2nt)

1CandS r

aD nd

ei (ndu2nt)G , ~4.5!
a

s

on

where thean are as yet undetermined coefficients andC
51 when 2n/v is an integer and vanishes otherwise.

Outside the vortex,r .a, the assumptionU2/c2!1 re-
duces Eq.~2.7! to

F] t
21

G

pr 2 ]u] t2c2@] r
21~1/r !] r1~1/r 2!]u

2#Gh150.

~4.6!

Inserting form~4.3! of h1 into this equation gives

S d2

dr2 1
1

r

d

dr
2

n212na

r 2 1k2D h̃1n50, k5
n

c
~4.7!

with a5nG/2pc2. We wish this parameter to be of the ord
of 1. Following Berryet al. @1# we write the surface eleva
tion outside the vortex in the form

h15Re~hAB1hR!, ~4.8!

where

hAB5(
n

bn

Jm~kr !

Jm~b!
ei (nu2nt), m[An212na ~4.9!

with b[ka, and

hR5(
n

cn

Hm
1 ~kr !

Hm
1 ~b!

ei (nu2nt). ~4.10!

The coefficientsan , bn , and cn are defined so that the
denote the amplitude of the wave components at the vo
boundaryr 5a. In order to obtain these coefficients, the co
tinuity of h and ¹'h at r 5a is required, which gives two
relations. The third condition comes from the boundary co
dition of h at infinity. We require that the asymptotics ofhAB
coincides with the dislocated wave incident from the rig
plus outgoing waves only. This leads to~see Appendix A!

bn

Jm~b!
5~2 i !m. ~4.11!

Using the notation

gn[
kn

k
5U12

na

b2U ~4.12!
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and the relationshipzZn8(z)5zZn21(z)2nZn(z), where
Zn(z) is any one of the Bessel functions, the following e
pressions foran andcn are obtained, whengnÞ0:

an5
~2 i !mJm~b!

Dn
F2

Hm21
1 ~b!

Hm
1 ~b!

1
Jm21~b!

Jm~b! G , ~4.13!

cn5
~2 i !mJm~b!

Dn
F2

gnJunu21~bgn!

Junu~bgn!
1

Jm21~b!

Jm~b!

2
1

b
~m2unu!G , ~4.14!

where

Dn52
Hm21

1 ~b!

Hm
1 ~b!

1
gnJunu21~bgn!

Junu~bgn!
1

1

b
~m2unu!,

m5An212na. ~4.15!

If gn50, i.e.,n5nd , these formulas are replaced by

and
5

~2 i !mdJmd
~b!

Dnd

F2
Hmd21

1 ~b!

Hmd

1 ~b!
1

Jmd21~b!

Jmd
~b! G ,

~4.16!

cnd
5

~2 i !mdJmd
~b!

Dnd

F2~nd1md!b211
Jmd21~b!

Jmd
~b! G ,

~4.17!

where

Dnd
52

Hmd21
1 ~b!

Hmd

1 ~b!
1~md1nd!b21, md5And

212nda .

~4.18!

These expressions are the main algebraic result of this pa
The limit r→` gives the surface elevation as

hAB→ei (2kr cosu1au2nt)2
iei (kr2nt) sinpa

~2p ikr !1/2cos~u/2!

3~21! [a]ei ([a] 11/2)u1
ei (kr2nt)

~2p ikr !1/2G~u,2p/2!,

~4.19!

where the functionG is defined in Appendix A, and@a#
denotes the integral part ofa. The second term in the right
hand side of the equation diverges foru→p. This is because
this asymptotics is valid everywhere except in a narrow s
tor centered around the forward direction,u5p, of angular
width O(1/Akr), wherehAB cannot be separated into inc
dent and scattered waves@14#, and it does not make sense
speak of a forward scattering amplitude. This peculiarity w
already pointed out by Aharonov & Bohm@11# in the case of
scattering by apoint vortex. In the hydrodynamical contex
the dislocation, as well as all effects studied in the pres
paper, will persist for times short compared with visco
relaxation times.

Also,
er.

c-

s

nt
s

hR→S 2

p ikr D
1/2

ei (kr2nt)(
n

cn

Hm
1 ~b!

ei (nu2pm/2).

~4.20!

The sum of the last term of Eqs.~4.19! and ~4.20! is the
correction to the Aharonov-Bohm scattering amplitude t
comes from the matching of the surface elevation and of
gradient inside and outside the vortex core.

Berry et al. have calculated a correction for differen
boundary conditions. They consider the finite radius of
scattering solenoidal field, which is considered as imp
etrable. In the quantum mechanical context, the scatterin
due to the magnetic field inside the solenoid, and in a hyd
mechanical context it could be a solid body rotating in
perfect fluid. Their result reads@1#

hR
Berry→S 2

p ikr D
1/2

ei (kr2nt)(
n

Jun2au~b!

H un2au
1 ~b!

ei (nu2pun2au).

~4.21!

Since the usual scattering cross section is not define
the forward direction, it is interesting instead to compare
difference in the far-field correction to the Aharonov-Boh
wave function~obtained in the limit of zero cylinder thick
ness! calculated by Berryet al. on the basis of the Schro¨-
dinger equation, and our own calculations obtained on
basis of the fluids equations. The general asymptotic form
the scattered wave is}1/Ar . In the following section, we
will compare the correction to the Aharonov-Bohm scatt
ing amplitude for a vortex, that is,

G~u,2p/2!12(
n

cn

Hm
1 ~b!

einu~2 i !m, ~4.22!

with the correction for an impenetrable solenoidal field,

2(
n

Jun2au~b!

H un2au
1 ~b!

ei (nu2pun2au). ~4.23!

V. NUMERICAL EXAMPLES

The solutions we have obtained are parametrized by
dimensionless numbers:a5nG/2pc2 and b5ka. That is,
for a given incident wave, they depend on vortex radius a
circulation as independent parameters. The Mach numbe
related toa andb througha5Mb. Scaling radial distance
with the vortex radius,r 8[r /a, the analytical expression o
the surface displacement is summarized as follows:

h15Rehc , 0,r 8<1

hc5 (
nÞnd

an

Junu~gnbr 8!

Junu~gnb!
ei (nu2nt)1C~nd!and

r 8ndei (ndu2nt),

~5.1!

h15Re~hAB1hR!, r 8.1

hAB5(
n

~2 i !mJm~br 8!ei (nu2nt), ~5.2!
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hR5(
n

cn

Hm
1 ~br 8!

Hm
1 ~b!

ei (nu2nt), ~5.3!

wherem5An212na.
We have numerically computed the total surface displa

ment given by Eqs.~5.2! and ~5.3! for several values of the
parametersa and b. In order to approximate the series
Eqs. ~5.2! and ~5.3! by a finite sum, it is necessary to es
mate their convergence. This is done in Appendix B, wh
it is shown thathc is an absolutely and uniformly converge
series, and thathAB andhR are both absolutely and simpl
convergent series. As an illustration, absolute values of
coefficientsan andcn are plotted in Fig. 1.

Since convergence of the series expansions forhAB and
hR is not uniform, the number of terms to keep in the infin
series depends on the value ofr 8. In practice, we compute
the patterns of the surface displacement in the reg
ux8u,uy8u<5@(x8,y8)5(r 8 cosu,r8 sinu)# by the finite sum of

FIG. 1. Plot of the heperian logarithm of the absolute value
the coefficientsan ~a! andcn ~b! versusn in a log-linear scale for
(a,b)5(0.5,10) denoted by dots, (a,b)5(1.5,10) denoted by
empty circles, (a,b)5(0.5,5) denoted by filled circles, an
(a,b)5(1.5,5) denoted by empty squares. Note the asymm
with respect ton→2n.
-

e

e

n

Eqs.~5.2! and~5.3! with unu<50 for b510 andunu<30 for
b55, but we keep more terms,unu<90 in Eq.~5.2!. Figure 2
shows the resulting displacements forb55 anda50.5, 1,
1.5, and 2, and Fig. 3 forb510 and the same values ofa.
The dislocation of the incident wave fronts by an amou
equal toa is clearly visible. The outward traveling scattere
wave is also visible. Note the strong interference patte
between scattered and incident wave.

Another illustration is given in Fig. 4, where we subtra
from the total field the dislocated wave. The scattered w
appears as an outgoing cylindrical wave, with a clearly v
ible dislocation in the forward direction. This is the part
the wave thatdoes notdecrease as 1/Akr, and that ensures
single valuedness of the total field. Note that the represe

f

ry

FIG. 2. Density plot of the surface elevation for the total wa
patterns forb55, a50.5 ~a!, a51 ~b!, a51.5 ~c!, anda52 ~d!.
The grayscale is linear with surface amplitude~arbitrary units!. The
dark circle indicates the vortex location. Vortex rotation is count
clockwise. The box size is 10310 in units of the vortex radiusa.
The incident wave comes from the right edge of the box. Note
dislocated wave and the asymmetric scattering that occurs pr
cally within a single quadrant.

FIG. 3. Same as Fig. 3 forb510, a50.5 ~a!, a51 ~b!,
a51.5 ~c!, anda52 ~d!.
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tion is for a half-integer value ofa, and the scattering am
plitude is exactly zero in the directionu5p @1#; the com-
parison between the two figures clearly shows the ex
compensation of the dislocation in this direction, because
destructive interference, to yield a single valued total wa
field.

Finally, Fig. 5 shows the absolute value of the correct
to the Aharonov-Bohm scattering amplitude, compared
the correction calculated by Berryet al. For a>0.5, the pa-
rameterm is imaginary for small negativen. This induces
very different partial amplitudes for exp(2inu) and exp(inu)
when n is small. Our calculations thus predict a forwa
scattering with a strong asymmetry, which increases wita
as shown in Figs. 5~c! and 5~d!. This asymmetry effect is
observed both in experiments on water wave scattering b
vortex @15# and in direct numerical simulations of soun
scattering by a vortex@16#. As can be seen from the dashe
curves in Fig. 5, this asymmetry is absent in the calculat
of Berry et al. For a<0.5, the parameterm is real for alln
and the scattering in the forward direction is much le
asymmetric@Figs. 5~a! and 5~b!#. This asymmetry may be
observed in the purely geometrical acoustics limit when o
calculates ray propagation. However, we are able to ob
the interference pattern, and are much closer to the ac
experimental conditions. All calculations were performed
ing MATHEMATICA @17#.

VI. CONCLUDING REMARKS

We have computed the surface displacement due to a
face wave interacting with a vertical vortex in shallow wa

FIG. 4. Density plot of the surface elevation for a dislocat
incident wave with parametersa51.5, b55 ~respectively, b
510) ~a! @respectively,~c!#, and for the difference between the tot
wave field with the same parameters, represented in Fig. 2~c! @re-
spectively, Fig. 3~c!# and the dislocated wave~b! @respectively,~d!#.
~b! and ~d! correspond to the scattered wave generated by an
dent dislocated wave. Such a scattered wave is itself dislocate
the forward direction, thus ensuring single valuedness.
ct
of
e

n
o

a

n

s

e
in
al
-

ur-
r

when the vortex core performs solid body rotation; the wa
length is small compared to the vortex core radius and
particle velocities associated with the wave are small co
pared with the particle velocities associated with the vort
When the parametera5nG/2pc2 is of the order of 1 or
bigger, the wave fronts become dislocated. The scatte
waves interact strongly with the dislocated wave fronts a
produce interference patterns. The differential scatter
cross section is strongly peaked along a direction at an a
with respect to the incident direction. This is in contrast w
previous calculations of Berryet al. @1# in the case of quan-
tum mechanical scattering by an impenetrable cylinder
finite radius. In the sequel to this paper@8#, we will show that
these properties roughly persist when the depth of the w
increases. This is important because deep water waves
much more amenable to actual experiments.
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APPENDIX A: ASYMPTOTICS

In this appendix, we study the asymptotic behavior
function ~4.9!. To this end, we use the computations in t
Appendix of the paper of Berryet al. @1#. In order to avoid
confusion, we use the following notations: Our definition
m is calledmnew[An212na, whereas the function used i
@1# is called mold[un1au. Similarly, we noteb̃n the con-
stants in the series representation ofhAB in our paper,
whereas the constants forhAB

Berry are notedbn .
Solutions to Eq.~4.7! are Bessel functions of ordermnew.

Moreover, the dislocated wave

exp@2 i ~kW•xW1au1nt !# ~A1!

FIG. 5. Polar plot of the absolute value of the correction to
Aharonov-Bohm~i.e., point! scattering amplitude, in the case of a
impenetrable cylinder~dashed line! and in the case of a vortex
~solid line! for b510 anda50.25 ~a!, a50.5 ~b!, a51 ~c!, and
a51.5 ~d!.
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is a solution of Eq.~2.7! asymptotically, that is, forkr@a.
Consequently, it is appropriate to take as a boundary co
tion at large distances from the vortex that the solut
should approach this dislocated wave.

Let us consider

hAB5(
n

b̃n

Jmnew
~kr !

Jmnew
~b!

ei (nu2nt).

Coefficients b̃n should be determined from the bounda
condition thathAB should tend asymptotically to Eq.~A1!
plus purely outgoing cylindrical waves. The representatio

Jm~z!5
1

2p E
2p1 i`

p1 i`

ei (mt2z sin t)dt ~A2!

is still valid for m5mnew, even for thosem’s that are purely
imaginary~Ref. @13# p. 954, formula 8.412.6!. This happens
whena is bigger than 0.5, and for thosen’s satisfying

22a,n,0.

Next, we note that asn grows witha;O(1), thediffer-
ence betweenmold and mnew decreases rapidly. Conse
quently, there will be anN, such that ifn.N, the difference
between the twom’s will be smaller than any preassigne
value. Let us write

~A3!

The wavehAB
point is the original result of Aharonov and Bohm

@11#, and represents the scattering by apoint vortex, hence
the notation. Decomposition~A3! is interesting only if the
last sum,RN , is small whenN is sufficiently large. We will
see that it is indeed the case, and we temporarily drop it fr
the calculations.

We know that if

bn

Jmold
~b!

5~2 i !mold,

then hAB
point gives a dislocated wave front plus an outgoi

cylindrical wave. Next, if

b̃n

Jmnew
~b!

5~2 i !mnew,

we may write

hAB5hAB
point1E

2p1 i`

p1 i`

dte2 ikr sin tG~u,t !,

where
i-
n

m

G~u,t ![ (
unu,N

einu~eimnew(t2p/2)2eimold(t2p/2)! ~A4!

is an analytic function oft because it is a finite sum o
analytic functions~exponentials!. Also, it is dominated by
the contribution from lown’s. For kr→`, hAB can still be
evaluated using steepest descent. SinceG does not have any
poles, the pole contribution tohAB is the same as that o
Berry et al., namely, Eq.~A4! of @1#. This is good since it is
just the dislocated incident wave. Also,G(t5p/2)50 for all
u, including the forward and backwards directions. Th
means that there are no further contributions from tht
5p/2 saddle point. This is also good, since the outgo
character of the scattered wave is preserved. On the o
hand,

G~u,2p/2!5 (
unu,N

einu~e2 imnewp2e2 imoldp!.

This is different from zero for allu, including the forward
and backwards directions and we have, outside a small
gular sector around the forward direction, the followin
asymptotic behavior at large distances:

hAB~r→`!5hAB
point~r→`!1

eikr

A2p ikr
G~u,2p/2!.

~A5!

This result differs from that obtained by Berryet al. @1# on
the basis of Schro¨dinger’s equation.

Let us turn back to the behavior ofRN at largeN. We
consider the behavior of

uRNu, (
unu.N

u~2 i !mnew2moldJmnew
~z!2Jmold

~z!u, ~A6!

wherez5kr is a fixed number. Using the asymptotic expre
sions of Bessel functions for large values of the index~Ref.
@13#, formula 8.452.1!, we have

Jun1au~z!;
eun1au(tanhd12d1)

A2pun1autanhd1

, un1au[z coshd1

~A7!

JAn212na~z!;
e
An212na(tanhd22d2)

A2pAn212na tanhd2

,

An212na[z coshd2 ~A8!

where; means that we consider only the dominant behav
at largen. An important point is that these expressions su
pose thatn.z. The following study concerns simple conve
gence of the seriesRN , for a fixed value ofz, not uniform
convergence valid for allz. We define

e5
a2

2zun1au
5O~1/n!,
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so that largen behavior means smalle. It is easy to show tha
d2;d12e/sinhd1, and thatAn212na;un1au2ez. We
then deduce that

~2 i !mnew2mold;11 i
p

2
ez,

An212na~ tanhd22d2!;un1au~ tanhd12d1!1ezd1 ,

and that

An212na tanhd2;un1autanhd12ez coshd1 /sinhd1 ,

d15argcosh
un1au

z
5O~ ln n!,

so that

ezd15O~ ln n/n!!1

for largen. We have thus

~2 i !mnew2moldJAn212na~z!2Jun1au~z!

;ez~d11 ip/2!Jun1au~z!

5OS ln n

n

n2n

An
D .

Using only the very rough inequality lnn/nAn,1, we can
now conclude on the asymptotic behavior ofRN at largeN.
Beginning with Eq.~A6!, we obtain

uRNu,(
N

`

N2n,N2N ~A9!

up to prefactors that we have dropped. The important poin
that indeedRN is a very small correction at largeN, which
validates the preceding analysis. As a last remark, we in
on the fact that all calculations are done for afixed valueof
z, and thatN, at a prescribed accuracy, may depend onz.

APPENDIX B: CONVERGENCE

In this appendix, we discuss the convergence of numer
series~5.2! and ~5.3!. The simplest case is that ofhAB . In
this case, the variabler 8 may extend toward infinity, and we
fix its value in the calculations. Therefore, we can conclu
only on simple convergence of the series, not uniform c
vergence. For largen, m;n. Using formula~A7!, a fixed
value ofz8[br 8, and the angled5O(ln n), we get

Jm~z8!;
1

An
S e

nD n

,

J.
is

ist

al

e
-

so that most clearly series~5.2! is absolutely simply conver-
gent.

In the coefficientsan andcn , some functions depend o
gnb, and from Eq.~4.12! we getgnb;nM whereM!1 is
the Mach number. Thusgnb!n, so that to get the
asymptotic behavior at largen of Jn(gnb) we use the same
formula @Eq. ~A7!# as before, but the angled is now a con-
stant of the order of 1. We then deduce the asymptotic
havior of Dn from expression~4.15!,

~B1!

We have seen in the preceding paragraph that the con
gence ofJm(b) is extremely fast, which ensures conve
gence ofan . For 0<r 8<1, the termJunu(gnbr 8)/Junu(gnb)
takes the maximum value atr 851 for sufficiently large val-
ues of n. Then, the absolute convergence of sum~5.2! is
guaranteed by the absolute convergence of the coeffici
an . Since the support ofhc is compact, this convergence
uniform.

Rather easily, we get that the asymptotic behavior ofcn is
that of Jm(b), which converges very rapidly. Let us intro
duce

br 8[m/coshd1 , b[m/coshd2 .

We have thatd1,d2 , both being asymptotically of the orde
of ln n. Using one more time formula~A7!, and its equivalent
for Neumann functions~Ref. @14#, formula 8.452.2!, we get

Hm
1 ~br 8!

Hm
1 ~b!

;
E12 iF 1

E22 iF 2
;exp@m~d12d2!#,

where (i 51,2)

Ei[
exp~m tanhd i2md i !

A2pm tanhd i

,

Fi[
exp~md i2m tanhd i !

Apm tanhd i /2
,

which converges exponentially fast becaused12d2,0. We
deduce thathR is an absolutely converging series. Howev
in this case,r 8 takes values in an infinite interval so that th
convergence is only simple.
.
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