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Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect.
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When a surface wave interacts with a vertical vortex in shallow water the latter induces a dislocation in the
incident wave fronts that is analogous to what happens in the Aharonov-Bohm effect for the scattering of
electrons by a confined magnetic field. In addition to this global similarity between these two physical systems
there is scattering. This paper reports a detailed calculation of this scattering, which is quantitatively different
from the electronic case in that a surface wave penetrates the inside of a vortex while electrons do not penetrate
a solenoid. This difference, together with an additional difference in the equations that govern both physical
systems, lead to a quite different scattering in the case of surface waves, whose main characteristic is a strong
asymmetry in the scattering cross section. The assumptions and approximations under which these effects
happen are carefully considered, and their applicability to the case of the scattering of acoustic waves by
vorticity is noted.[S1063-651X99)18610-0

PACS numbse(s): 41.20.Jb, 47.35:i, 47.10+¢g

[. INTRODUCTION studied the case of a fluid of arbitrary depth in a Born ap-
proximation. The interaction between surface waves and ver-
tical vorticity is in many respects similar to that of acoustic
waves and vorticity, a topic that has been much studied over
obeys the nonrelativistic Schiimger equation. They con- f[he years and that recen_tl;_/_has bee_n the SUbj(.aCt of particular
interest due to the possibility of using acoustic waves as a

cluded that for electrons traveling outside an infinitely Iongnonintrusive probe of vortical flows, both laminar and turbu-

cylinder enclosing a magnetic field, the wave fronts outsid .
the cylinder would be dislocated by an amount proportionaeient [5], much in the same way that x rays and neutrons are
used to probe condensed matter structures, both ordered and

to the amount of magnetic flux within the cylinder. Reason-

ing by analo they also concluded that such dislocategisordered' Most treatments, however, rely on a Born ap-
9 by 9y, y roximation[6] whose validity breaks down when a surface

wave fronts should occur for surface water waves when theg/ . . . . o )
ave interacts with a vertical vortex with nonvanishing cir-

encounter a vortex. A simple experiment conclusively dem- . . o
onstrated this effedtl]. culation, leading to a long-range velocity field that decays

In the case of the electronic wave function interacting“ke 1/r wherer is the distance to the vortex core. This is

with a confined magnetic fieldand its unconfined vector precisely t_h.e case that is studied in the presgnt_ paper. The
potentia) Berry et al.[1] also computed the complete solu- decomposition .Of the wave as th.e sum of an |pC|dent and a
tion to the Schrdinger equation that, in addition to the dis- Scattered part is no longer possible if the vortical flow ex-
located wave, includes a scattered wave. Trying to do this it€nds toward infinity. As in Berry’s calculations, we exhibit a
the case of the water waves is, however, more difficult bedislocated wave, which cannot be considered as such a sum.
cause the analogy between de Broglie waves and watdrhe dislocation is essentially a nonperturbative effect, which
waves breaks down when pushing it into a quantitative statecannot be properly taken into account in the Born approxi-
ment. There are two essential differences: The first is that fomation. The scattering of acoustic waves by vortices of non-
an electron the appropriate boundary condition is that the&anishing circulation has been the subject of a number of
wave function vanishes at the surface of the cylinder; in theecent experimental studi¢g].
case of water waves, the waves of course penetrate inside the This paper is organized as follows: Section Il derives the
vortex and it becomes necessary to solve the appropriatequations that describe the scattering of a surface wave by
equations not only outside the vortex but also inside, andertical vorticity in shallow water. We pay particular atten-
match them with continuity conditions. The second is thattion to the assumptions needed to derive those equations.
the wave equations that govern both phenomena, althougbection Il has a reminder on the Aharonov-Bohm effect as
similar, differ in quantitative details. This paper addresseselevant for the present discussion. Section IV presents the
both these issues. computation of the solution to the equations derived in Sec.
The scattering of surface waves by vertical vorticity in Il. Section V presents several illustrative examples and Sec-
shallow water was discussed by Cerda and L{Zjdand by tion VI has concluding remarks. Technical details are con-
Umeki and Lund 3] who discovered that a vortex may sup- tained in two Appendices. A subsequent pdgdistudies the
port spiral wave solutions. Fabrikant and Raevfkyhave first-order corrections to the shallow water approximation.

In a remarkable paper, Bergt al.[1] clarified the way in
which a curl-free magnetic vector potential modifies the
wave front structure of an electronic wave function that
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Il. SHALLOW WATER WAVES IN INTERACTION
WITH A VERTICAL VORTEX

We consider the problem of the interaction of shallow
water surface waves in an inviscid incompressible fluid o
uniform depthh with a stationary vertical vortex. The coor-

dinates are X,y) =x in the horizontal direction and in the

vertical direction. The velocity and the surface displacemen

are denoted by (x,z,t)=[v, (x,z,t),w(x,z,t)] and 5(x,t),

respectively. We consider surface waves whose frequency
high by comparison with the inverse of the time scale assoP
ciated with any thermal or viscous relaxation effects. As a,
matter of fact, we do not expect qualitative changes due t?w
viscosity, apart from a decrease in the wave amplitude

which is, of course, not predicted in our calculations.
The equations of shallow water waves §9¢

&tn+hVL'VL+VL'(7’VL):Ol (21)

whereh is the fluid depth and/ | is a horizontal gradient,

and
v, +(v, -V,)v,=—gV, 7, (2.2

whereg is the gravity acceleration.

We will consider surface waves with particle velocity
u(x,t) and surface deformatiomy,(x,t) as small perturba-
tions on a background flow consisting of a steady vertica

vortex U(x), with corresponding surface deformatigg(x);
u<U, whereU denotes a typical value df(x), and 7,
<mo. Substituting v, =U(X)+u(x,t) and z=ny(x)
+ 74(x,t) into Egs.(2.2) and (2.1) allows, to zeroth order,
the computation of, in terms ofU for the background flow.
The first-order equations are

du+(U-V )u=—(u-V,)u—gVv, 74, (2.3

et (U-V ) =—hV_ -u=[5oV, -u+(u-V )ne].
(2.9
Taking the horizontal divergence of E@.3), setting A,
=V?, we obtain {,j=1,2)

DV, -utgA, 7:=—2(dU))(9;u;), (2.9

whereD,=¢,+U-V . Taking the difference betwedD, of
Eqg. (2.5 andh times Eq.(2.5) leads to

DZny—C?A; = —Dy[ 7oV, -u+(u-V,)nol+2h(3,U;)

X(é]jui), (26)
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Note that one might be tempted to negleth- ¥, ) 7, with
respect tod;n,; on the grounds thaty<c. However, it is
possible to have Y-V ) »n;~d;n, without violating this

1Lsmall Mach number assumption by consideriag we do in

Sec. IV below a background velocityJ ~wa with length
scalea and frequency scale, together withv>w andka
>1.
3 Equation(2.7) is readily obtained under the same assump-
It'ons in the scattering of acoustic waves by a voft&x The
ysics is the same since acoustic waves and shallow water
waves are bothondispersiveand the results of Secs. IV and
are valid for both types of waves. They depend only on
0 parameters, the dimensionless wave numband the
Mach numberM, and when those parameters are the same
the results that hold for the surface elevatign may be
transposed, quantitatively and with no change, for the scat-
tered acoustic pressure.

IIl. ANALOGY WITH THE AHARONOV-BOHM EFFECT

Wave equation(2.7) possesses a close analogy with the
quantum mechanical wave equation describing the
Aharonov-Bohm effect, in which a magnetic vector potential
influences the dynamics of a charged particle in a region
where the magnetic field vanishes. This cannot happen in
classical electrodynamid4.1]. In its simplest form, this ef-
fect occurs when a beam of particles with chaggend mass
m is incident normally on a long thin cylinder containing a
magnetic fieldB(x) parallel to its axis. The Schdinger
equation in the presence of a magnetic vector poteAtia

£%k?

1
[V QA PU0=5 (0, (3

where # is Planck’s constant. Outside the cylindé(x)
= (<I>/27rr)f9, with ® the magnetic flux contained within the
cylinder, and® an azimuthal unit vector. Of cours8=0

outside the cylinder.
Both Egs.(2.7) and(3.1) allow for a solution of the form

exd —i(k-x+ab)],

wherea=vI'/(27c?)=kI'/27c in the fluid mechanics case
and a=—q®/27# in the quantum mechanics case. This is
an exact statement in the latter case, while in the water wave
case it is approximate because E2.7) is valid only when
M<1 and B>1. Except for integer values af, this is a

wherec= \/gh is the phase velocity of shallow water waves. multivalued solution. Berrgt al.[1] showed how fixing this

We consider the cadd<c. In analogy with gas dynam-

multivaluedness leads to a solution that is a superposition of

ics, we callM =U/c the Mach number. We denote a typical dislocated wave fronts and scattered waves. This was
length scale of the vortex bg, and the wavelength and achieved by solving Schdinger equatior{3.1) with impen-

frequency of shallow water waves byand v, respectively.

etrable boundary conditiongi=0 at the surface of the cyl-

We will assume that wavelengths are small compared to vorinder. The appropriate boundary conditions in the fluids case

tex size[10]: ka=B>1 (k=2m/\).
Under these assumptions, the right-hand side of(E®)

will be O(M) or O(B~1) compared with the left-hand side.
Neglecting these terms, the final equation to be solved is

DZ7,—Cc?A; 7, =0. (2.7)

are continuity of velocity and of surface elevation. We now
turn our attention to solving Eq2.7) under these conditions.
One important physical difference between the classical and
guantum mechanical cases is that in the latter the phase of
the waves cannot be measured, while in the classical case it
can. Table | compares these two cases.
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TABLE I. Aharonov-Bohm effect in quantum and classical mechanics compared and contrasted.

Quantum mechanics

Fluid mechanics

Magnetic field

B=V XA

Vector potentialA

Magnetic fluxd

Wave functionys

Dislocation parameter

a=—qd/27h

Dislocated wave is an exact solution
Phase is not measurable

Vorticity
w=V XU
Velocity U
Velocity circulationI”
Surface displacemenj
Dislocation parameter
a=kI'/27c
Dislocated wave is approximate solution
Phase is measurable

IV. SCATTERING OF DISLOCATED WAVES
BY A VORTEX

As an example, we consider a scattering problem by
circular uniform vortex with vorticityw and radiusa sur-

rounded by an irrotational flow. Using polar coordinates

(r, ), the background flow is given hyl2]

1 p if r<a
2wr =d,
U=y | (4.1
— 9 if r>a,
2

whereI'=rwa? is the circulation. Equatiori2.7) will be
solved separately far<a andr >a, and the results matched
with a continuity condition.

Inside the vortex we have from E¢R.7)

{[&t+(w/2)¢99]2—02[8r2+(1/r)8r+(l/r2)a§]}77120(. )
4.2

We look for solutions that evolve harmonicallyith a single

global frequency) in time, and Fourier decompose them in

the polar angles:

7= Re{ > Hne
n

, 4.3

where Re stands for the real part. Introducing this expression

into Eq. (4.1) we obtain

1d n?

d? 5 |lv—now/2|
arzrar vz a0 e =

c
(4.9

Equation(4.4) has both Bessel and Hankel functiddsg] as
solutions ifk,# 0. Regularity at the origin will exclude the
latter. If 2v/w is an integerk,(=k|1—n/ny|) vanishes for
n=ny=2v/w. In this case, Eq(4.4) can be solved by as-
suming 74, rP. Substituting this into Eq(4.4), we havep

=+n and negative values @ are excluded, again because

of regularity at the origin. Thus we have

J‘m(knr) '
r,0,t)=R a,————eli=)
771( ) {n;d n‘]|n‘(kna)
Ng )
+Cay | = e'(”d"“)}, (4.5

where thea, are as yet undetermined coefficients a@d
=1 when 2/w is an integer and vanishes otherwise.

o Outside the vortexr>a, the assumptiorJ?/c?<1 re-
duces Eq(2.7) to

r
I+ Fa,,at—c2[3r2+(l/r)r9r+(1/r2)<9§]} 7:=0.

(4.9
Inserting form(4.3) of #, into this equation gives
d2 1d n?+2na o) v
gzt~ 7 TK =0, k=, 4.7

with o= vI'/27rc?. We wish this parameter to be of the order
of 1. Following Berryet al. [1] we write the surface eleva-
tion outside the vortex in the form

7 =Re& At 7R), (4.9
where
Im(kr)y >
ﬂAB:E by7——— €M m=n’+2na (4.9
n In(B)
with B=ka, and
Ham(kr)

— i(no—wt)
7R ; S hiip) © : (4.10
The coefficientsa,,, b,, andc, are defined so that they
denote the amplitude of the wave components at the vortex
boundaryr =a. In order to obtain these coefficients, the con-
tinuity of » andV | » atr=a is required, which gives two
relations. The third condition comes from the boundary con-
dition of » at infinity. We require that the asymptotics pfg
coincides with the dislocated wave incident from the right

plus outgoing waves only. This leads (@ee Appendix A

LI (4.1
In(B) ' '
Using the notation
K, Na
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and the relationshipzz,(z)=22, .(z)—vZ,(z), where

Z,(z) is any one of the Bessel functions, the following ex-

pressions fol,, andc, are obtained, whery,#0:

(=)™n(B] Hn 1B  In 1(B)
TR, TR e |4
c :(—i)me(B)[_ Yndjn)-1(B¥n) N Im-1(B)
A A, J\n|(B7’n) Im(B)
—l - 4.1
z(m InD) |, (4.14
where
. H#_l(ﬁ) 'YnJln\—l(B')’n) 1
ST W) T I B
m=/n’+2na. (4.15
If y,=0, i.e.,n=ny, these formulas are replaced by
DM (B[ HE (B  Ing1lB)
MeT TA, HLB) | IngB)
(4.19

(=) () I
Cny= A—nd —(ngt+mg)B "+ W ;
(4.17
where
Hin,-1(B) 2
And:_Hl—(lB)_i_(md"—nd)Bilv md=\/nd+2nda.
My

(4.18

These expressions are the main algebraic result of this paper.

The limit r —o gives the surface elevation as

ie' k=" sinra
(2mrikr)2cog 6/2)

i (kr = vt)
WG(G. —ml2),

(4.19
where the functionG is defined in Appendix A, and«]

i(—krcosf+ab—vt) _

ag— €

X ( _ 1)[a]ei([a] +1/2)0+
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2

|(kr vt)
”R_’( wikr) 2

|(n0 Tm/2)
m(B) '
(4.20

The sum of the last term of Eq$4.19 and (4.20 is the
correction to the Aharonov-Bohm scattering amplitude that
comes from the matching of the surface elevation and of its
gradient inside and outside the vortex core.

Berry et al. have calculated a correction for different
boundary conditions. They consider the finite radius of the
scattering solenoidal field, which is considered as impen-
etrable. In the quantum mechanical context, the scattering is
due to the magnetic field inside the solenoid, and in a hydro-
mechanical context it could be a solid body rotating in a
perfect fluid. Their result read4]

‘]‘” "‘|(B) gl (no— wln— al)

5 2 1/2 " )
erry_ | r—uwt
R (wikr) > Hhw(B)

(4.21

Since the usual scattering cross section is not defined in
the forward direction, it is interesting instead to compare the
difference in the far-field correction to the Aharonov-Bohm
wave function(obtained in the limit of zero cylinder thick-
ness$ calculated by Berryet al. on the basis of the Schro
dinger equation, and our own calculations obtained on the
basis of the fluids equations. The general asymptotic form of
the scattered wave is1/\r. In the following section, we
will compare the correction to the Aharonov-Bohm scatter-
ing amplitude for a vortex, that is,

G(6,—ml2)+2, o

im, (4.22

n
Hm(B)
with the correction for an impenetrable solenoidal field,

22 ‘]‘” “|(B) gl(no—mln—al)

H\n a|(ﬁ) (423

V. NUMERICAL EXAMPLES

The solutions we have obtained are parametrized by two
dimensionless numbersi= vI'/27rc? and B=ka. That is,
for a given incident wave, they depend on vortex radius and
circulation as independent parameters. The Mach number is
related toa and B8 througha=M B. Scaling radial distance
with the vortex radiust'=r/a, the analytical expression of

denotes the integral part of The second term in the right- the surface displacement is summarized as follows:

hand side of the equation diverges #r 7. This is because

this asymptotics is valid everywhere except in a narrow sec-

tor centered around the forward directidgh= 7, of angular

width O(1/\kr), where 5,5 cannot be separated into inci-
dent and scattered wavgs4], and it does not make sense to 7:=
speak of a forward scattering amplitude. This peculiarity was

already pointed out by Aharonov & Bohpi1] in the case of

scattering by @oint vortex. In the hydrodynamical context,
the dislocation, as well as all effects studied in the present
paper, will persist for times short compared with viscous

relaxation times.
Also,

m=Ren., 0<r'=l

J|n|('ynﬁr,)

a ei(n&—vt)+c n )a r/ndei(ndé)—vt)’
n;d " J\n\(')’nIB) (M Mo

(5.9

m=Re(nagt nr), r'>1

nAB=§ (—)™In(Br')e =), (5.2
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FIG. 2. Density plot of the surface elevation for the total wave
patterns for3=5, «=0.5(a), a=1 (b), a=1.5(c), anda=2 (d).
The grayscale is linear with surface amplitudebitrary units. The
dark circle indicates the vortex location. VVortex rotation is counter-
clockwise. The box size is 2010 in units of the vortex radiua.
The incident wave comes from the right edge of the box. Note the
dislocated wave and the asymmetric scattering that occurs practi-
cally within a single quadrant.

Egs. (5.2 and (5.3 with |n|<50 for =10 and|n|<30 for
B=5, but we keep more termi)|<90 in Eq.(5.2). Figure 2
shows the resulting displacements =5 anda=0.5, 1,
1.5, and 2, and Fig. 3 fo8=10 and the same values af
The dislocation of the incident wave fronts by an amount
equal toa is clearly visible. The outward traveling scattered
wave is also visible. Note the strong interference patterns
between scattered and incident wave.

Another illustration is given in Fig. 4, where we subtract

FIG. 1. Plot of the heperian logarithm of the absolute value offrom the total field the dislocated wave. The scattered wave

the coefficientsa, (a) andc, (b) versusn in a log-linear scale for
(a,B)=(0.5,10) denoted by dots,a(B)=(1.5,10) denoted by

appears as an outgoing cylindrical wave, with a clearly vis-
ible dislocation in the forward direction. This is the part of

empty circles, &,5)=(0.5,5) denoted by filled circles, and g \\ave thatloes notdecrease as ¢kr, and that ensures

(a,B8)=(1.5,5) denoted by empty squares. Note the asymmetr

%lngle valuedness of the total field. Note that the representa-

with respect tan— —n.

. @ (b)
nR=2, C m(lB ) elnf=), (5.3 < 1 s 1
= " HL(B) B3 E
-3 -3
wherem=\n?+2na. _s _s
We have numerically computed the total surface displace- -5-3-1 1 5 -5-3-1 1
ment given by Eqgs(5.2) and(5.3) for several values of the x/a x/a
parametersy and 8. In order to approximate the series in
Egs. (5.2 and (5.3 by a finite sum, it is necessary to esti- 5 === 5 ==
mate their convergence. This is done in Appendix B, where 3 (c) 3 (d)
it is shown thaty, is an absolutely and uniformly convergent | < 1
series, and thap,g and 7 are both absolutely and simply = i, = _q
convergent series. As an illustration, absolute values of the
coefficientsa,, andc, are plotted in Fig. 1. -3 -3
Since convergence of the series expansionszigs and ‘5_5 31 1 S 311

7R IS not uniform, the number of terms to keep in the infinite
series depends on the valuerdf In practice, we compute

x/a

x/a

the patterns of the surface displacement in the region FIG. 3. Same as Fig. 3 fo=10, «=0.5 (a), =1 (b),

[x"],ly’"|<5[(x",y")=(r' cosé,’ sin6)] by the finite sum of

a=1.5(c), anda=2 (d).



PRE 60 SCATTERING OF DISLOCATED WA\E . .. . I. ... 4913

I
: \\
S WY

@ 4(b)__,_,___
PEEEEEEE ' o el e "
e S gq : :
> ‘_-"—::,:, B I’, -2 ,""’ PRl o

-15 -10 -5 0 - -15 -10 -5 0 5
Scattering amplitude Scattering amplitude

@

1
X/a

)

=5 -3 -1 1
X/a

-20 -15 -10 -5 0 5
Scattering amplitude

FIG. 5. Polar plot of the absolute value of the correction to the
Aharonov-Bohm(i.e., poin} scattering amplitude, in the case of an
impenetrable cylindefdashed ling and in the case of a vortex
(solid ling) for =10 anda=0.25(a), «=0.5 (b), =1 (c), and
a=1.5(d).

_ _ _ when the vortex core performs solid body rotation; the wave-
) FlG 4, DenSIt_y p|0t of the surface elevation for a. d|Slocated|ength is small Compared to the vortex core radius and the
incident wave with parametera=15, B=5 (respectively, 3 particle velocities associated with the wave are small com-
=10) (a) [respectively(c)], and for the difference between the total ;04 \yith the particle velocities associated with the vortex.
wave field with the same parameters, represented in Fay.[&e- When the parametes= JT/2m¢2 is of the order of 1 or

spectively, Fig. &)] and the dislocated wau®) [respectively(d)]. . .
(b) and(d) correspond to the scattered wave generated by an incib'gger' the wave fronts become dislocated. The scattered

dent dislocated wave. Such a scattered wave s itself dislocated ¥Waves interact strongly with the dislocated wave fronts and
the forward direction, thus ensuring Sing|e valuedness. produce interference patterns. The differential Scatte”ng

cross section is strongly peaked along a direction at an angle
tion is for a ha|f-integer value of, and the Scattering am- with respect to the incident direction. This is in contrast with
plitude is exactly zero in the directiofi== [1]; the com-  Previous calculations of Berrgt al.[1] in the case of quan-
parison between the two figures clearly shows the exaddm mechanical scattering by an impenetrable cylinder of
compensation of the dislocation in this direction, because ofinite radius. In the sequel to this pag8t, we will show that
destructive interference, to yield a single valued total wavéhese properties roughly persist when the depth of the water
field. increases. This is important because deep water waves are

Finally, Fig. 5 shows the absolute value of the correctionmuch more amenable to actual experiments.

to the Aharonov-Bohm scattering amplitude, compared to
the correction calculated by Bergt al. For «=0.5, the pa-
rameterm is imaginary for small negative. This induces ACKNOWLEDGMENTS
very different partial amplitudes for exp{né) and expin6)
when n is small. Our calculations thus predict a forward ., ! ; s
scattering with a strong asymmetry, which increases with f1§i|6 089k2 an(Ij 3 Qdedra Prtefldenggloesn_g(ljeﬂfcl:a\(s_.rWe grate-
as shown in Figs. (6) and §d). This asymmetry effect is ully acknowledge a grant from '
observed both in experiments on water wave scattering by a
vortex [15] and in direct numerical simulations of sound
scattering by a vortekl6]. As can be seen from the dashed APPENDIX A: ASYMPTOTICS
curves in Fig. 5, this asymmetry is absen.t in the calculation | this appendix, we study the asymptotic behavior of
of Berry et al. For «=<0.5, the parametan is real for alln  nction (4.9). To this end, we use the computations in the
and the scattering in the forward' direction is much 'eSSAppendix of the paper of Berrgt al. [1]. In order to avoid
asymmetric[Figs. 5a) and §b)]. This asymmetry may be confusion, we use the following notations: Our definition of

observed in the purely geometncal acoustics limit when ong, is calledm, .,= Jn?+ 2na, whereas the function used in

calculates ray propagation. However, we are able to obtaip, . . led —In+ Similarl b th

the interference pattern, and are much closer to the actu jr] IS calle mo,d—_|n a|. Similar y, We noteb, the con-
stants in the series representation ®fg in our paper,

experimental conditions. All calculations were performed us- h h g b
ing MATHEMATICA [17]. whereas the constants faiyg "~ are notedb,, .

Solutions to Eq(4.7) are Bessel functions of ordefq,.
Moreover, the dislocated wave

The work of F.L. was supported by Fondecyt Grant No.

VI. CONCLUDING REMARKS

We have computed the surface displacement due to a sur- ~
face wave interacting with a vertical vortex in shallow water exd —i(k-X+af+vt)] (A1)
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is a solution of Eq(2.7) asymptotically, that is, fokr> a. _ , ,
Consequently, it is appropriate to take as a boundary condi- G(o,t)= ; e'"f(Mnelt=2) — giMaia(t=712))  (A4)
tion at large distances from the vortex that the solution Inj<N
should approach this dislocated wave.

. is an analytic function oft because it is a finite sum of
Let us consider

analytic functions(exponentials Also, it is dominated by

Jo (k) the contribution from lown’s. For kr—o, nag can still be
77AB:2 B Mnew el (no—vt). evaluated using steepest descent. S{Badoes not have any
"I o (B) poles, the pole contribution t@,g is the same as that of

Berry et al,, namely, Eq(A4) of [1]. This is good since it is
Coefficientsb, should be determined from the boundary just the dislocated incident wave. AlsB(t=/2)=0 forall
condition thatz,g should tend asymptotically to EGAL) 0, including the forward and backwards directions. This

plus purely outgoing cylindrical waves. The representation means that there are no further contributions from the
= /2 saddle point. This is also good, since the outgoing

1 (a+ie : character of the scattered wave is preserved. On the other
Jm(z): 7[ e|(mtfzsmt)dt (AZ) hand
27 ) - ptix !
is still valid for m=m,,,, even for thosen’s that are purely G(6,—wl2)= ; eiNf( e~ Mnew — g~ iMoiam)
imaginary(Ref.[13] p. 954, formula 8.412)6 This happens [n[<N

when « is bigger than 0.5, and for thoges satisfying
This is different from zero for alp, including the forward
—2a<n<0. and backwards directions and we have, outside a small an-

_ _ gular sector around the forward direction, the following
Next, we note that as grows witha@~O(1), thediffer-  asymptotic behavior at large distances:

ence betweenm,y and m,., decreases rapidly. Conse-

quently, there will be alN, such that ifn>N, the difference . ikr
between the twan's will be smaller than any preassigned nap(f—%)=7ha(r — o)+ ———=G(6,— 7/2).
value. Let us write V2mikr
(A5)
—_ ppoint | 5 e (KT) b Tmgik7) gind This result differs from that obtained by Berey al. [1] on
4B~ "B |,,;N "I (B " dm (B the basis of Schiinger’'s equation.

Let us turn back to the behavior & at largeN. We

_ Iy, (kT) I, (k) consider the behavior of

* (”" B T B

) e (A3)

p |RN|<\n§N |(=i)Mew M) (2) = (2)], (A6)

ERN

The waver?a"is the original result of Aharonov and Bohm

[11], and represents the scattering bypaint vortex, hence
the notation. DecompositiofA3) is interesting only if the
last sumRy, is small wherN is sufficiently large. We will
see that it is indeed the case, and we temporarily drop it from
the calculations.

wherez=Kkr is a fixed number. Using the asymptotic expres-
sions of Bessel functions for large values of the indegf.
[13], formula 8.452.1, we have

e\ n+ a|(tanhd;— &7)

, Jjn+al(2)~ ., |n+al=zcoshs,;
We know that if V2m|n+ a|tanhs,
(A7)
b, :
=(—i)Mold,
Jmold('B) e\/n2+ 2na(tanh5,— 8,)
. JVhz2na(2)~ ,
then 723%™ gives a dislocated wave front plus an outgoing \/277\/n2+ 2na tanhd,
cylindrical wave. Next, if
- Jyn?+2na=zcoshé, (A8)
L =(—i)Mnew
Im o (B) ' where~ means that we consider only the dominant behavior
at largen. An important point is that these expressions sup-
we may write pose thah>z. The following study concerns simple conver-
gence of the serieRy, for a fixed value ofz, not uniform
; mHio P convergence valid for alt. We define
7aB= ni’\%““rf y dte K sNG(g,t), J
—tioe

2

where €~ 2Zn+a] =0(L),
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so that largen behavior means smadl It is easy to show that
5,~ 6,—elsinhs;, and that\n?+2na~|n+a|—ez. We
then deduce that

LT
Mpew™ Mold~ 1+1— €Z,

(—0) 5

Jyn?+2na(tanhs,— 8,) ~|n+ a|(tanhd, — 6;) + €26,

and that
Vyn?+2na tanhs,~ |n+ atanhs; — ez coshé, /sinh 6, ,
|n+ a|
61= argcoshz— =0(Inn),

so that
€26,=0(Inn/n)<1
for largen. We have thus
(—1)Mnew™Mold] 777 572(2) = Jjn of(2)
~€2(0,+i1m/2)J)01 4(2)
:o('n_n )
"
Using only the very rough inequality linyn<1, we can

now conclude on the asymptotic behaviorRy at largeN.
Beginning with Eq.(A6), we obtain

|RN|<§N: N "<N~N (A9)

up to prefactors that we have dropped. The important point is

that indeedry is a very small correction at large, which
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so that most clearly serig8.2) is absolutely simply conver-
gent.

In the coefficientsa,, andc,,, some functions depend on
vnB, and from Eq.4.12 we gety,8~nM whereM <1 is
the Mach number. Thusy,B<n, so that to get the
asymptotic behavior at large of J,(y,8) we use the same
formula[Eg. (A7)] as before, but the angléis now a con-
stant of the order of 1. We then deduce the asymptotic be-
havior of A, from expressior{4.15),

__Ho B I (Bya) L
A, = 5 (3) TGt 5(m = nl) = O(n).
=0(1) =0(n) =0(1/n)

(B1)

We have seen in the preceding paragraph that the conver-
gence ofJ,(B) is extremely fast, which ensures conver-
gence ofa,. For O<r’<1, the termJ;, (ynBr')/Jjn(¥nB)
takes the maximum value at=1 for sufficiently large val-
ues ofn. Then, the absolute convergence of s(?) is
guaranteed by the absolute convergence of the coefficients
a, . Since the support ofj. is compact, this convergence is
uniform.

Rather easily, we get that the asymptotic behaviar,ab
that of J,,(B), which converges very rapidly. Let us intro-
duce

Br'=mlcoshd,, B=ml/coshs,.

We have tha®;< d,, both being asymptotically of the order
of Inn. Using one more time formul@7), and its equivalent
for Neumann functiongRef. [14], formula 8.452.2, we get

HL(Br') E,—iF,
HL(B)  E,—iF,

~exgm(é;—8,)],

validates the preceding analysis. As a last remark, we insist

on the fact that all calculations are done fofixed valueof
z, and thatN, at a prescribed accuracy, may dependzon

APPENDIX B: CONVERGENCE

In this appendix, we discuss the convergence of numerical

series(5.2) and (5.3). The simplest case is that af,g. In
this case, the variable may extend toward infinity, and we

fix its value in the calculations. Therefore, we can conclude
only on simple convergence of the series, not uniform con-

vergence. For large, m~n. Using formula(A7), a fixed
value ofz’=gr’, and the angleé=0O(Inn), we get

el’]
ﬁ)’

‘]m(z’)"’

n

where (=1,2)

expimtanhs;—ms;)

v2mmtanhd;

E

exp(ms; —mtanhs;)

yammtanhé;/2

F.

which converges exponentially fast becauge- 5,<0. We
deduce thatyg is an absolutely converging series. However,
in this casey’ takes values in an infinite interval so that the
convergence is only simple.
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