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Radiative transfer in chiral random media

Alexander A. KokhanovsKy
Institute of Particle Technology and Environmental Engineering, Technical University Clausthal, Leibnizstrasse 19,
D-38678 Clausthal-Zellerfeld, Germany
and Institute of Physics, 70 Skarina Avenue, Minsk 220072, Belarus
(Received 19 February 1999

This paper is devoted to the investigation of polarization and radiative characteristics of coherent and
diffused light beams in isotropic media with optically active particles. Simple solutions for the Stokes vectors
of the direct and diffused beams are obtained in the framework of the vector radiative transfer theory. Results
obtained can be used for the generalization of the circular dichroism and optical rotation dispersion spectros-
copy for the case of disperse medi8&1063-651X99)15210-3

PACS numbd(s): 42.70—a

[. INTRODUCTION which provides more information for the solution of the in-
verse problem.

All natural products, which play an essential part in the The main task of this paper is the introduction to the
phenomena of vegetable and animal life, are asymmigific ~modern radiative transfer theory for the analysis of the opti-
As a result, left-handed and right-handed circularly polarizectal properties of disperse media with optically active par-
electromagnetic waves propagate through such media withcles. We formulate the vector radiative transfer equation in
different velocities. This produces the rotation of the polar-chiral media and obtain its analytical solution for thin plane-
ization plane of incident linearly polarized light beams. Chi- paralle! layers in terms of the elements of the extinction and
ral media are also characterized by circular dichroism or dif-SCattering matrices.
ferent absorption of left-handed and right-handed circularly
polarized waves. The circular dichrois(@D) spectra and Il. THEORY
optical rotatory dispersiofORD) are standard tools in the
stereochemistry of organic moleculs.

The interpretation of both the circular dichroism and the The change of the energy and state of the polarization of
optically rotatory dispersion curves becomes much mordh€ photon flux in the chiral plane-parallel slabs can be de-
complex if molecules build agglomerates. The scattering ofC'ibed by the following Boltzman type equatift0—14:

light plays an essential role in this cas-8]. Thus, chem-

A. General equations

ists try to avoid this complication and make measurements M: — ed(Q,2)

for uniform media. However, the scattering of light cannot dz

be avoided in many cases. This is true, e.g., for bioparticles, R o R
including red blood cell membranes, viruses nuclei, mito- +L 0 Q' —0)IQ',2)dQ", (D)

chondria, and ribosoms. One cannot dilute such media with-

out destroying their structural elements. It is important to ..

have a chance to monitor the rearrangement of chemicavhereJ((2,z)=(1,Q,U,V) is the Stokes vector of the light
groups in bioparticles during their lifecycles. beam in the directiorf)(0,¢) at the geometrical depth

The interpretation of ORD and CD spectra of particulates ., is the extinction matrixg.{ Q' — Q) is the differential
media of any geometrical thickness can be done on the basgattering matrix, andgw is the cosine of the observation
of the radiative transfer theoRTT) [9,10] that was initially  angle. The last term in Eq1) describes the process of mul-
applied in the field of astrophysics for studying the photontiple scattering of photons in chiral media. The positXe
transport in planetary atmospheres, interstellar dust, and @irection is pointing from the top to the bottom of a layer.
great variety of astrophysical objects. Note that the components of the Stokes vector can be

The scattered light transforms from the artifact to theexpressed via components of the electric vector of the scat-
valuable source of the information on the microstructure oftered wave, propagating in the directiég=¢&,% &,
media under investigation if one applies the RTT to the prob-
lem in question. It is possible to use both reflection and E=E,&,+E,6,. )
transmission schemes in the CD and ORD spectroscopy for

different angles of observations, wavelengths, and polariza-l-h fi the followi tiofs 15]:
tion states of the incident light in the framework of the RTT, ey are defined by the following equatior#15):

| =E.E} +E,E5 , (3)
*FAX: 49-05323/722830. . N
Electronic address: a.kokhanovsky@ic.ac.uk Q=E;E] —EzE;, (4)
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U:E1E§+E2 I, (5)

0.7
V=i(E,E} —E,E}), (6)

where an asterisk denotes the conjugate complex value. W
omit a common multiplier in Eqs(3)—(6) for the sake of
simplicity. One can see that E() determines the intensity
of the light field. The values of, Q, U, andV completely
characterize the arbitrarily polarized light beam in terms of =
the intensity, degree of polarization, and characteristics ofz
the polarization ellipséthe ellipticity e, the direction of ro-
tation, and azimuthy). The ellipticity e€[ 0,1] is defined as
the ratio of axes of the polarization ellipse. The valuesof
=0 corresponds to the linearly polarized beam. The ease
=1 holds for the circularly polarized light. The azimuth

0.2

angle (radians)

ell

L
bt
W

defines the orientation of the polarization ellipse. One can ~ ~'° w05 e 05 10
introduce the ellipticity angler as well. The absolute value
of this angle is equal to arctanand the sign defines the FIG. 1. The dependence gfon V/IP.

direction of the rotation of the polarization ellipse.

Light beams with the same values of the Stokes vectowhere ¢ e[0,7w], ¢e[—w/4,m/4], sgn(cos)=sgnQ),
cannot be distinguished by polarization measurements deteand the degree of polarizatidghe[0,1]. The Stokes param-
mining quadratic quantitiege.g., (EE*)). However, these €ters (12) describe the completely polarized beam and
radiation fluxes can differ, since they can have different= VQ“+U“+V< in this case. Equationd3) can be applied
high-range field correlators. for partially polarized beamsR# 1) as well. The dependen-

The components of the Stokes vector can be rewritten i§i€s of anglesp, ¢ on the Stokes parameters are presented in
terms of the amplitudes,, a, and phasesr;, o, of a  Figs. 1 and 2. One can see that=V/2IP at|V/IP|<0.4,

simple electromagnetic wave as well: INTCh is often the case. It follows from Fig. 3 ﬂ’%l(p| at
¢|=<0.2.
| =af+as3, (7) The value ofy determines the angle between the major
axis of a polarization ellipsémaximum intensity compo-
Q=a§—a§, (8) neny and the arbitrary direction. Thus, it is coordinate de-
pendent. The ellipticity represents the ratio of small to large
U=2a;a,co080,—03), (9)  axes of the polarization ellipse. This number is coordinate
independent. There are two values af which satisfy Eq.
V=2a;a,sin(o,—0o5), (10 (13) (see Fig. 2 The right value is selected from the condi-

. ) _tion sgn(cos #)=sgn@Q). This means thatye[0,7/4or
where we used the following representation of the electr|c,7l,e]377/4,w] for positve values of Qand ¢ e[ w/4,3m/4]
field components: (the middle line in Fig. 2 at Q<0. The azimuthy is not

i(kz— (kg defined atU = Q=0, which means that there is not a special
— i(kz—ot+0oq) — i(kz— wt+05) . o ] . - : -

Ei=a.e Yo BEp=ae “ 11 preferred oscillation direction in this particular case.
Herek=2mx/\, N\ is the wavelengthz is the distance along . ;hﬁ p((j)sglve \;]aluels Of_P mean that thehpo'a['zf?‘“o_” IS |
the propagation directiods, » = kc is the frequencyg is the right-handed or the electric vector traces the polarization el-
speed of light, and is the time. Note that amplitudes and
phases in Eqs(1l) are not constants for real light beams.
Thus, Eqgs(3)—(10) should be averaged taking into account
many vibrationg9]. 150.0

As it was mentioned before, the components of the Stokes
vector completely define the characteristics of the ellipse of
the polarization(y, ¢). Stokes parameters are related to the g

180.0

120.0

values ofy, ¢ with the following equation$9]. &
2 o900
I=a2?, Q=a’cos2pcos2y, U=aZcos2psin2iy, é
V=aZsin 2¢, (12) e
wherea?=a3+aj3. These formulas provide the geometrical =00 | ]
interpretation of Eqs(7)—(10). It follows from Eqgs.(12)
1 U 1 |V b VQZ+ U2+ V2 *200 %0 20 20 60 100

Y= Earctané, o= Earc5| =k I — uiQ

(13 FIG. 2. The dependence gfon U/Q.
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10 ‘ ‘ ‘ Equation(17) describes the transformation of the intensity
and polarization charateristics of a direct beam. It can be
solved analyticallyf13]:

. o .
JC(QO,z)zexp[— :“ZJJC(QO,O), (18)
2 > >
g 05 where we assumed that the medium is uniform dg(d2,,0)
E is the Stokes vector of the incident wa¥g{(},) at the top of
a layer £=0):
J(96,0=J0(Qy).
The solution of the four integrodifferential equatiofi®)
oo ‘ . ‘ for the diffused light is more complex. It can be done, e.g.,
"-08 03 02 07 with the doubling method16]. In the framework of this
eliptchy angle (radians) method one should calculate the radiation characteristics of a
FIG. 3. The dependence efon ¢. very thin layer with thicknesg; in a single scattering ap-
proximation, neglecting the integral in EQL6):
lipse in the clockwise sense when looking in the direction 4346.2)
from which the light is coming3]. It should be pointed out a2 s < IS N
that there is not a unique mathematical definition of right- “~ dz Texa({1,2)+ 0scd Qo= ) Ie((o,2).
handed and left-handed polarized waves. Thus, one should (19
be careful in this respect while comparing results of different o o ] i
authors. The radiation characteristics of the combined layer with
Thus, the solution of Eq1) allows for the determination thickness 2, can be found, accounting for the interaction
of values ofa, ¢, andy and the degree of polarization between the second and first layers. Repeating this procedure
to the pointz=z,, wherez, is the thickness of a layer, one
JQ2+ U2+ V2 can solve Eq(16). Note that the thickness of adding layers

=— (14)  can be different in principle.
I
Thus, it is important to have the analytical solution of Eq.
The information obtained can be used for the ste-(19 as a starting point for the numerical procedure. It is also
reoochemical analysis of molecules inside small particles. 1f general importance due to the possibility of preparing a
should be pointed out that E¢l) can be applied only for thin Iz_;\yer in a laboratory, making the account for the integral
media with distances between particles being much largde'™m in Ed.(16) unnecessary. The 50|Ut!°” of H49) can be
than the wavelength and the size of scatterers. This ofteRresented in the following formal form:
holds in the optical band of the electromagnetic spectrum. , dz
Let us represent the Stokes vector in Efj.as the sum of Ji(2)= f e e 1B(z) —, (20)
two components: 0 m
3 ! — 3 oY 3 _ 3 + £ 37 N z ~ N dZ
‘](Q ,Z) ‘]C(Q 12)5(0 QO) 'Jd(Q 12)1 (15) ‘]L(z):f e*a'extzl,uB(z);, (21)
> > Z
whereJ ()',z) is the Stokes vector of the dire(r coher- °
end beam, S is the delta function(), is the direction of ~where J|; and J} are Stokes vectors of light fields pro-

propagation of an incident beam, a.ﬁ}gz(ﬁ’,z) is the Stokes  pagated to the top and bottom of a layer, respective(y)

vector of the diffused light in the directiol’ at the deptlz. = Gs.f( Qo— 0)JIo(Qp,2), and we used the boundary condi-
From Egs.(1) and(15) it follows tions
dig(Q,2) . . . Ji(0)=0, (22)
by = Texda(2,2)
Ji(z0)=0, (23

which state that there is no diffused light field incident on the
top [Eqg. (22)] and on the bottoniEq. (23)] of a layer from
+ 5 Qo—N)I(Qp,2) (16)  outer space. Note, that EqR0), (21), and(1) are equivalent,
if one includes the integral multiple scattering term in the
and source functiorB in Egs.(20) and (21).
o Integrals(20) and(21) can be found analyticallf13] for
dJe(Q0.2) P I some specific source functiolz). However, calculations
M =—0exdc(£20,2). (17) ; ;
dz with Egs. (18), (20), and (21) are complex in the general

+ [ - 0)3,0 2100
4
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case. Thus, our primary task will be a derivation of simpli-

fied formulas both for the direcic [see Eq(18)] and singly
scattered diﬁuseﬁd [see Egs(20) and(21)] components in

the special case of disperse media with spherical chiral par-
ticles, surrounded by a uniform isotropic symmetric nonab-

sorbing host medium.

B. Direct light

The general structure of matricés,,; and &Sce(ﬁ’—ﬁ)

ALEXANDER A. KOKHANOVSKY

PRE 60

and
e™M 0 0 0
. 0 e’ 0 0
=1 o 0 e o0 (29
0 0 0 eis

Here,s=17/¢, 7=¢2, £=cosdy, Yy is the incidence angle,
and\=1—a, A\py=1+a andA3=1+i8, \y,=1-ipB are
eigenvalues of the extinction matr&[Eq. (24)]. Note, that

for isotropic media with spherical chiral scatters can be preit follows for the inverse matri®® ! [see Eq(28)]:

sented in the following fornj4,10-14.

1 0 0 «
. o 0 1 B 0
Oex=€E, E=| g g1 0] (24
a 0 0 1
Osca= I:(W_iZ)a'zci-(_il)v (}icaIUf}:
1 b, b; bg
~ | b1 a b, be
7= “b, —b, as by 25
bs bg —b, a,

Note that rotation matricek(—i;) and L(7—i,) perform

the transformation of the coordinate system related to th&olutions (26) and (31) for

scattering plane. The matrixS.,is defined in the coordinate

-1 0 0 1

~ ., 11 0 01 0
2l o i 10
0 —-i 10

Thus, the transformation matrik in Eq. (26), which coin-
cides with the matricant in Eq18), has the following form
[see Eqs(28)—(30)]:

coshas 0 0 —sinhas
A 0 cosBs —sinBs 0
T=e 0 sinBs  cosBs 0
—sinhas 0 0 coshas
(31)

the direct component
jC(IC,Qc,UC,VC) are much simplier than Eq18). They

system, related to a scattering plane. One can find definitionsave the following explicit form:

for these matrices and anglesandi, in the Appendix. The
relationships between elements of matri¢2d) and (25)
with parameters of particlegheir size, complex refractive
indiceg are presented in the Appendix as well.

First of all, let us consider the solution of four linear
differential Egs.(17) with the extinction matrix(24). Ana-

lytical solution of this system can be obtained with standard

methodg 11,17
Je(Q0)=TIo(Qp), (26)

whereT=P®P~1. The matrixP is composed of eigenvec-
tors of the extinction matri [Eq. (24)].

-1 1 0
= 0 = 0 = —i
:1: 0 [l ﬂ:2: 0 [ ﬁ:3: 1 [
1 1 0
0
= i
:'4: 1 ’ (27)
0
namely,
-1 1 0 O
~ [ 0 O =i i
P=l 0 0 1 1 (28)
1 1 0 O

I.=(lgcoshas—V,sinhas)e ™S, (32
Q.=(QpcosBs—UgysingBs)e 3, (33
U.=(QpsinBs—UycosBs)e 3, (34
V.= (—lgsinhas+V,coshas)e™s. (35

Equations(32)—(35) and Eq.(13) can be used for the inves-
tigation of the polarization characteristics of the direct beam
under different types of the illumination of a turbid layer.

It is interesting that the transformation of compongi@s
U) and(l, V) is independent in the case under investigation.
Thus, circularly polarized wave$Q,=Uy=0, Vo= *1g)
propagate in isotropic chiral media without changing the
state of the polarization. For instance, it follows for the left-
handed circularly polarized beam,

IOZC, VOZ —C, QO:UOZO, (36)
wherec is constant. One obtains from Ed82)—(36),
l;=c’, V.=-c', Q.=U.=0, (37)

wherec=ce ™5, |t follows for the right-handed circularly
polarized circular incident wave,

lo=Vo=¢, Qp=Up=0. (38
Thus, the components of the direct beam will be
IC:VC:C”! QC:UC:OI (39)



PRE 60 RADIATIVE TRANSFER IN CHIRAL RANDOM MEDIA 4903

wherec”=ce 25, One can see that the value Bfcan be obtained from mea-
Note that only two eigenvectors in E¢27) have nonzero surements of CD and ORD spectra. On the other hand, it

first elements. They correspond to left-handed and rightfollows from results presented in the Appendix for chiral

handed circularly polarized waves. These waves can be depheres with radia,

fined as eigenwaves in chiral isotropic media.

Let us consider now the case of the illumination of a layer N (=
by a vertically polarized light beamy(= 7/2) with Stokes T(v= e fo AA0)f(a)da, (48)
parameters:lo=b, Qu=—b, and Uy=V,=0, where b
= const. It follows from Eqs(32)—(35) in this case, where
l.=bcosl{as)e”s, (40 *
AiA0)= 2, (2n+1)c(an,m,mg),
Q.= —bcogps)e s, (41) n=t
_ ) s f(a) is the particle size distribution, and is the number
Uc=—bsin(Bs)e >, (42 concentration of scatterers. Coefficients for uniform
spheres are presented in the Appendix. There is a similar
Vc=—bsinhas)es, (43)  expression for layered chiral scatt¢@. Thus, the value of
Am=m_—mg can be retrieved from the solution of the in-
and[see Eq(13)] verse problem associated with integral equatidg). This
solution is simplified for monodispersed particles, media
P=1, (44) with known patrticle size distributions, and/or special types of
particles when the kerneA;,(0) can be represented as a
Bs simple analytical functioffe.qg., it follows for Rayleigh scat-
V=t 5, 49 ters [8]: A(0)=(ka)*Am/(2+m?), m=2m_mg/(m_
+mg)].
¢=—0.5arcsilgtanhus), (46)

C. Diffused light

larized incident b | —b “b U=V The intensity of the direct beam reduces considerably
Po arlzed inct enh earrr: a|1§ Wela 0_| ' 'Qod_b, 0 "0 with an increase in the optical thickness. The characteristics
=0, andy,=0). Thus, the linearly polarized beam is trans- ¢ 1,4 giffused light are of importance in this case. Let us

formeq to the eIIiptichIy polarized beam i.n the case under o nsider the diffused light now. The analytical solution for
investigation. The major axes of the polarization ellipse are

shifted from the direction of the oscillations of the incident the ‘.’a'“‘?Jd in ths fral;mgwodrkf of thﬁ single sce:cttl_erlng ap-
linearly polarized beam. This shift is characterized by the?roximation can be obtained from the system of linear non-

value Bs/2. Note that it follows asys—0 from Eq.(46): un'{%f{";;’:g'\;ﬁg g';f(e{g)n};]aiﬁgl;;:g’vﬁig)'form_

where o= /2. Equationg44)—(46) hold for a horizontally

asS

p=——. (47) X=—&X+W, (49)
One can see that matrix elemenisand 8 in Eq. (24) are where
responsible for producing the ellipticifCD) and the rota- 43
tion o_f the polarization planéORD) of the direct beam, re- X = _d, X:jd' 8=Goule, s=ezlpu,
spectively. ds

The main interest of the CD and ORD spectroscopy is the
spectral dependence of the valden=m_—mg, wherem_ S A A Wop(6)
and mg are refractive indices for left-handed and right- W=y03de, 05=0scdo, y=—7—- (50
handed circularly polarized waves, respectively. This differ-
ence can be retrieved from measurements of the ORD and We introduced the single scattering albedo
CD spectra.

Let us introduce the complex number Wo= 0 gcdl €, (52
T(N)=8"(M)—ia’(N), and the phase function
where Ao
p(6)=——, (52
sca
, 2¢ cosdy ,
a'(N)=as=— = B'(N)=pPe normalized by the following condition:

_ 2(— p)cosdy

1 (= )
Z Efo p(#)singdo=1, (53
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which follows from the definition of the scattering coeffi- where we accounted for boundary conditiq@®) and (23)
cient, and
w So=¢eZp/ 1, 61
O o= 27 f o(0)sin 6do. (54) 0T B0l it (61
° f(1)=P lys POP1],. (62)

Here, 6 is the scattering angle. o ,
Let us introduce a new vector It follows after substitution of Eqs61) and (62) into Egs.

(59) and (60) that

Y=P X. 55 o -
©9 Y =P 1y¢a By, (63)
It follows from Egs.(49) and(55),
. where
PY=—ePY+W (56) Bll=pEIlp-1 (64)
or . . o
, The nonzero elements of the diagonalized matriegshave
Y=—AY+P 1w, (57)  the following analytical forms:
=Ny 7€ _ a— Ni[(E+Ln)mo— 7/
! Ni(7+¢) ’
A\, 0 0 O
. 0 », 0O O . e NTn_ghiTlé
A= 58 O
0 0 X 0 58 Ve (69
0 0 0 ),
_ where r=gz, and n»=|u|. It follows from Eg. (66) at »
andY=dV/ds. —¢ that
One can see that we have four decoupled equafisers . re N7
Egs.(57)] instead of more complex system of E¢49) now. Fl= 2 (67
These equations can be solved with familiar techniq@&g
s [ Thus, one obtains for the diffused intendisee Eqs(55),
Yi=e 'Sfoe fi(v)dy, (59 (59 and(60)],
. j&i:MwNleo, (68)
YiT:e—MSf eNvfi(v)dv, (60)
So where
|
043 yéE . ~
MI=—— M!=——, Nll=58', 69
n+é n—¢& s (69

b1y 0 0 by
Bil= , (70)

by O 0 by

B [cosi{ap)+ asinhap)]e” P—[cosH aq)+ a sinh(aq)]e™

11 1_a2 (71)
[sinh( aq) + « cosi{aq)]e” 9—[sinn ap) + a cosHap)]e P
14= 1- a2 , (72)
_[cogBp)—pBsin(Bp)]e P—[cog Bg) — Bsin(Bg)]e 1
22— 1+ﬁ2 ’ (73)
[sin(Ba)+ B cog Ba) e —[sin(Bp)+ B cod Bp)le P (7

237 1+ 52 )
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p=1l¢, q=T1o(Ln+1/§)— 7/ n for the upward light BT)
andp= /7, q=7/¢ for the downward light B!). At é= 7
it follows for the transmitted lighfsee Eqgs(63), (67), and
(30)] that

|V|1='yTeX[X—T/§),

b,,=cog Bp),

b,;=cosiap),

b14=—sinN(ap), by=—sin(Bp).

Equations(32)—(35) and Eqs(68)—(74) are much more use-

ful for applications than general solutio(fs8), (20) and(21).

One should just multiply the Stokes vector of the inciden

light by the matrixN and scalaM to find the intensity and

polarization characteristics of a diffused light field inside op-
tically thin chiral diperse media. The characteristics of the

direct beam can be found from Eq26) and (31) or Egs.
(32—(35).

Note that it follows for the transmitted diffused light at a

bottom of a layer t=1q): p=79/7n, q=79/& General

equations(71)—(74) do not simplify in this particular case.

However, they do simplify for the reflected light=0, p
=0, andq=7o(1/n+ 1/§)]:

1—[cosiaq)+ asinh(ap)le @

1= T . (1
14:[sinh(aq)+alc:DZfz(aq)]e‘q—a, 76
by [cosiﬁq)ljr l; ;in(ﬁq)]e’q | 7
b, _[SMAD+peosple - p

1+p2

Let us check Eq(68) for the special case when the ex-
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b11=byp=q—p, b1s=by=0. (81)

Thus, the diffused intensity does not depend on the extinc-
tion matrix in this case. It is determined only by the differ-
ential scattering matrix as it should be.

IlI. CONCLUSION

The mirror symmetry is broken in living things. Proteins
are constructed only from “left-handed” amino acids,
whereas nucleic acidNA or RNA) contain only “right-
thanded” sugars. Thus, most of biological media are asym-
metric.

Light beams can be used for monitoring bioparticles dur-
ing their lifecycles. Polarization characteristics of transmitted
and reflected light are of special value. The power of chiro-
optical methods was well demonstrated for uniform media
[2]. However, application of same schemes for particulate
media of a biological origin is not widespread due to com-
plexities related to the accounting for single and multiple
scattering of photons in such media.

This paper presents a system of analytical formulas,
which can be used in studies of light interaction with particu-
late optically active media. The presentation is based on the
vector radiative transfer theory. Simple analytical solutions
for the polarization characteristics of direct and diffused light
(in the single scattering approximatjoare presented.
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APPENDIX: EXTINCTION AND SCATTERING
MATRICES

Extinction and scattering matrices in radiative transport
equation(1) specify the local optical properties of a scatter-

tinction matrix is reduced to a scalar value. It follows from ing medium. They depend on the wavelength, size of par-

Egs.(71) and(74) in this case that
D11=b2, b14=b23=0 (79
and[see Eq(68)]
Jit=b M5 J,, (80)

wherebq;=exp(—p)—exp(—q). This formula coincides with

well-known equation 18], derived for isotropic symmetric

media(e.g., water clouds
One obtains from Eqs(71)—(74) at the small optical
depth

1 0 0 0

, 0 cosd; -—sin2; O
L(=1)=1] ¢ sin2i; cosd; 0]’

0 0 0 1

ticles, and their refractive indices. One can calculate these
matrices with the following system of equations in the case
of optically active spherel3,4]:

1 0 0 «a
. O 1 B O
Text™ €| ¢ -8 1 0]

a 0 0 O

Gee= L(m—ip) a3 OL(—iy),

where
1 0 0 0
L .. | 0 cos2, =—sin2i, O
(m=12)=| 0 sin2i, cosd, 0]"
0 0 0 1

cosd;=2codi;—1, sin2;=2y1-cosi,cosi;,
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. — p+ u cosh . — '+ ucoséd
CoSi; = , COSi,= ,
Y sJ(1-cof o) (1-1'?) > sJ(1-cof 6)(1- 1?)
s=sg¢p—¢' —m), j=12, cof=uu'+(1-p)(1-p'?)codp—¢’'), p=cosd, u'=cosd,
4 IM[A1(0)] R A150)]
8:_2Rq811(0)]l a= - ’ = ’
k RegA14(0)] R A11(0)]
|Ag?+]Ax? |AL?— Az
%—HAQP % RE (A11—AAT,]l  Im[(Agy+ Ay AT
|AL]2=[Az)? | A2 +[Az)?
55 —K2 & 5 2 = 5 2 —|A? RE (A1t ARAT]  IM[(Ay—Axp)AT,]
sca
—Re (A1~ A)AY]l  —RE(An+AAY]  ReAT A, —|A? Im(A11A3,)
IM[ (A1 Az ATl IM[ (A1~ Az ATyl —Im(A;,A%) Re(AT1A) + A
Ao _i 2n+1 Db )
u(0)= 2, {5y {8n7n(COSE) +bna(coso)},

©

2n+1
Al 0)=2 (31 (Bam(C0S0) +by7(coso)},

n=1

©

Az 0)221 mcn(ffmL )
PV (cosh) dPW(cosh)
m,(COs) = “sing T,(Cc0sh) = 47
_ Va(R)AR(L) +Vi(L)An(R) Wi (L)B(R) +W,(R)Bp(L) Wi(R)AR(L) = Wo(L)AL(R)

AT WL (DVa(R) FVa(DWa(R)' " Wo(L)V(R) + V(LW (R) ' " Wo(L)V,(R) + V,(L)W,(R)’

Wi(J) =mn(m;x) grll(x) —&n(X) ‘M}(mJX)v V()= hn(M;X) §H(X) —mén(x) qu(mdx)y
An(J) =M (MyX) i (X) = Pn(X) P (MyX),  Bp(J) = iy (MyX) ), (X) — Mafn(X) g, (MyX) ,

ere _wa()f( d —fo(u)f( )d
e= egla a)da, ea= gla)ala a)da,
Yn(X)=V(mx/2) I 4 1/2(X), 0 0

En(X) = V(mXI2)Hp 1 1/2(X),

Jni12 @and H,. 1, are Bessel and Hankel functions, and
P((cos) is the associated Legendre polynomial. Vectors B
0(0,4) andQ'(0',4’) define the observation and propa- §=NJ {(a)f(a)da,
gation directiongsee Eq.(1)]. Note that it follows,(0) 0
=7,(0)=n(n+1)/2. Values ofJ are equal toL or R, m_
=N_/n, mg=Ng/n, m=m mg/m, andm=(m_+mg)/2,n
is the refractive index of a host mediury, and Ny are
refractive indices of particles for left-handed and right-

sB=Nf:e<a>ﬁ<a>f<a)da,

where values of represent elements of the differential scat-
tering matrix. The number concentration of particldsis
related to the volumetric concentrati@y, by the following

handed polarized waves, are-27ran/\ is the size param- formula;

eter. Note that it is supposed that the magnetic permittivity of c

particles and a host medium is the same. N=——— ¥
It follows for polydispersed media with the particle size 4_77 wa3f(a)da

distribution f(a) that 3 Jo
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