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Dispersive properties of finite, one-dimensional photonic band gap structures:
Applications to nonlinear quadratic interactions

M. Centini,1 C. Sibilia,1,* M. Scalora,2,3,† G. D’Aguanno,1,2 M. Bertolotti,1 M. J. Bloemer,2

C. M. Bowden,2 and I. Nefedov4
1INFM at Dipartimento di Energetica, Universita` di Roma ‘‘La Sapienza,’’ Via Scarpa 16, 00161 Roma, Italy

2U.S. Army Aviation and Missile Command, Weapon Sciences Directorate, AMSMI-RD-WS-ST Redstone Arsenal,
Huntsville, Alabama 35898-5000

3Time Domain Corporation, 6400 Odyssey Drive, Huntsville, Alabama 35898
4Institute of Radio Engineering and Electronics, Academy of Sciences, Saratov Branch, Zelyonaya Street 38, Saratov 410019,

~Received 21 May 1999!

We discuss the linear dispersive properties of finite one-dimensional photonic band-gap structures. We
introduce the concept of a complex effective index for structures of finite length, derived from a generalized
dispersion equation that identically satisfies the Kramers-Kronig relations. We then address the conditions
necessary for optimal, phase-matched, resonant second harmonic generation. The combination of enhanced
density of modes, field localization, and exact phase matching near the band edge conspire to yield conversion
efficiencies orders of magnitude higher than quasi-phase-matched structures of similar lengths. We also discuss
an unusual and interesting effect: counterpropagating waves can simultaneously travel with different phase
velocities, pointing to the existence of two dispersion relations for structures of finite length.
@S1063-651X~99!15010-4#

PACS number~s!: 42.70.Qs, 42.65.Ky
di
he
k
ti
n

nd
a

du

he
te
1D
pr
ca

-

fo

t

3D
ve
o
n
tr

e in
BG

hen
ac-

c
and
of
ugh
nt in

e-
ed.
such

peaks
p-
en

ow

is-
-
BG
eral

a
for
and
I. INTRODUCTION

Recently, one-, two-, and three-dimensional perio
structures@1–3# have attracted a great deal of attention in t
optics community because these structure may hold the
to significant technical advances in the field. The essen
property of these structures, often referred to as photo
band-gap~or PBG! structures, is the existence of allowed a
forbidden frequency bands and gaps, in analogy to the
lowed and forbidden energy bands and gaps of semicon
tors.

The simplest types of PBGs are one-dimensional~1D!,
periodic or quasiperiodic multilayer stacks, which will be t
focus of our discussion. By way of a brief review, we no
that significant potential applications for a broad class of
linear and nonlinear optical devices have recently been
posed. The list of applications include a nonlinear opti
limiter @4# and a diode@5#, photonic band-edge laser@6#,
true-time delay line@7#, a high-gain optical parametric am
plifier for nonlinear frequency conversion@8#, and, more re-
cently, transparent metal-dielectric stacks@9#. Here, we will
not discuss 2D and 3D structures, but point out that,
example, in two dimensions, photonic crystal fibers~PCFs!
were recently developed@10#. In our view, PCFs represen
the most significant advance in guided-wave structures
recent memory because of their unique properties. In
PBG applications in the optical regime still remain elusi
due to the difficulties associated with the fabrication
growth of structures with lattice constants only a few hu
dreds of nanometers in length. However, some demons
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tions of the potential of these structures have been mad
the microwave regime with the recent development of a P
metal substrate for applications to antenna structures@11#.

In this paper, we first discuss thegenerallinear dispersive
properties that characterize finite 1D structures, and t
study how they affect resonant nonlinear quadratic inter
tions of the type first discussed in Ref.@8#. Growing interest
in second-harmonic generation~SHG! is reflected by the
large number of recent publications on this topic~see Ref.
@8# and references therein!. The importance of parametri
interactions such as SH generation, and frequency up-
down-conversion in general, is due to the unavailability
laser radiation at frequencies that are not accessible thro
more direct processes. SH generation and its enhanceme
periodic structures was first proposed in Ref.@12#. Introduc-
ing a periodic modulation in the refractive index, phas
matching conditions for SH generation may be satisfi
Various phase-matching schemes have been proposed,
as using uniform Bragg grating@13#, local defect modes
within the forbidden band@14–16#, and introducing corruga-
tions in thin-film waveguides @17#. These cavity-
enhancement schemes are based on the use of resonant
for either the pump or the SH field. To our knowledge, o
timal conditions for nonlinear interactions have never be
discussed for structures having asmall number of periods
with large index discontinuities, where it is possible to~a!
resolve individual transmission resonances;~b! have a high
density of modes near the band edge; and, as we will sh
below, ~c! achieve exact phase matching.

Our present work is motivated mainly by the results d
cussed in Ref.@8#. In that work, it was numerically estab
lished that SH generation near the band edge of a finite P
structure with deep gratings may be enhanced by sev
orders of magnitude compared to SH generation from
phased-matched bulk sample of similar length. A scheme
doubly resonant second harmonic generation near the b
4891 © 1999 The American Physical Society
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4892 PRE 60M. CENTINI et al.
edge of a finite, 1D PBG structure was proposed. The pu
and the second harmonic fields are tuned at transmis
resonances near their respective band edges, where the
sity of modes is high, group velocity is low, field localizatio
and overlap are strong, and, consequently, interaction ti
are longer. The idea of using band-edge resonances to
hance nonlinear processes results primarily from an inter
ing effect relating to linear pulse propagation: short, picos
ond pulses can propagate at speeds much less thanc, the
speed of light in vacuum, with minimal distortion and sca
tering losses through the structure@7#. These results strongly
suggested at the time that while phase-matching condit
were important,and not well understood, a high density of
modes was necessary in order to enhance conversion
ciencies well above the values obtained from phase-matc
bulk media. That is, the combination of high mode dens
and phase matching creates the conditions that are nece
to observe the unusually large conversion efficiencies th
retically demonstrated for the first time in Ref.@8#.

We therefore set out to understand the phase propertie
finite multilayer stacks, and for this purpose we introduce
concept of ‘‘complex effective index’’ for a structure of fi
nite length. The concept of effective index is not ne
@12,17,18#. However, we can summarize the innovations
our approach as follows. First, we solve Maxwell’s equatio
by applying boundary conditions in the presence of entry
exit interfaces, i.e., all the variables introduced take into
count the fact that the structure has finite length. Second
method presented is general, and not necessarily restrict
periodic structures. Third, we demonstrate that the comp
effective index derived in this way identically satisfies t
Kramers-Kronig relations, and hence it is causal. Fourth,
emphasize the importance of the density of modes in
calculation of the conversion efficiency in nonlinear intera
tions. To our knowledge, the density of modes has ne
been explicitly invoked simultaneously with phase match
conditions, and we note that the complex effective index t
we introduce is completely determined by the linear prop
ties of the structure. Although nonlinear index shifts are
ways present in the dynamics, typically they remains thre
four orders of magnitude smaller compared to the linear
dex modulation of the structure, which, as in Ref.@8#, is of
order unity. The model can be modified to include band-e
shifts in the case of fiber Bragg gratings, for example,
that is beyond the scope of the current analysis. Finally,
will also briefly mention an interesting related effect al
never noted before, to our knowledge. For a structure
finite length, we show by direct integration of the equatio
of motion that counterpropagating waves can travel with d
ferent instantaneous phase velocities, pointing to the e
tence of two dispersion relations, in part predicted by o
effective index model.

II. DISPERSION RELATION FOR FINITE PBG

We consider 1D, linear PBG materials. We seek an
plicit dispersion relation for a structure of finite length, a
we begin by writing the complex transmission coefficient
the structure:

t~v!5x~v!1 iy~v!5ATeif t, ~1!
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where

f t5tan21~y/x!6mp

is the total phase accumulated as light propagates through
medium. The transmissiont(v) can be easily calculated us
ing the well known matrix transfer method.f t contains all
the information relating to the layered structure, such as
fractive indices, number of layers, and layer thickness. T
integerm is uniquely defined assumingf t(v) is a monotoni-
cally increasing function, and the condition thatm50 asv
→0 is satisfied. This is important in order to calculate t
proper phase of the field as a continuous function and
define the true effective index, as we will see below.

Beginning with the analogy of propagation in a homog
neous medium, we can express the total phase assoc
with the transmitted field as

f t5k~v!D5
v

c
neff~v!D, ~2!

wherek(v) is the effective wave vector and consequen
neff is the effective refractive index that we attribute to t
layered structure whose physical length isD.

The presence of gaps in the transmission spectrum, w
the propagation of light is forbidden, suggests that the eff
tive index of the structure should be complex. In particul
the index should have a large imaginary component ins
the gap, to allow for nearly 100% scattering losses, i.e.,
flections, and evanescent field modes. Thus we simply re
the transmission function as follows. First, we assume t
AT5utu5e2gD. This implies that an incident field of uni
amplitude is ‘‘attenuated’’ by an amounte2gD, where g
5(v/c)ni , andni is the imaginary component of the inde
According to this picture, we writeAT5elnAT and the com-
plex transmission becomest5elnATeif t5eif5x1 iy . There-
fore,

if5 if t1 lnAT5 i S v

c
n̂effD D , ~3!

where we still havef t5tan21(y/x)6mp, as before. Equation
~3! then becomes:

n̂eff~v!5~c/vD !@f t2~ i /2!ln~x21y2!#. ~4!

Equation ~4! suggests that at resonance, whereT5x21y2

51, the imaginary part of the index is identically zero. Insi
the gap, where the transmission is small, scattering losse
expected to be high, leading to evanescent waves.

We can also define the effective index as the ratio
tween the speed of light in vacuum and the effective ph
velocity of the wave in the medium. We have

k̂~v!5
v

c
n̂eff~v!. ~5!

Once the effective index has been defined, Eq.~5! represents
the general dispersion relation of the layered structure, w
out any specific condition of periodicity. It is interesting
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note that from the dispersion equation we can also defin
‘‘group index’’ in terms of the real part of the effective inde
in the usual way:

ng~v!5c
dk

dv
5neff~v!1v

dneff~v!

dv
. ~6!

Usually, the dispersion relation for periodic structures is o
tained by applying periodic boundary conditions to the wa
equation for an infinite,periodic structure. According to
Bloch’s theorem, Eq.~5! reduces to cos@k(v)d#51/2Tr@M #,
or

cos@k~v!d#5FcosS n1va

c D cosS n2vb

c D
2

n1
21n2

2

2n1n2
sinS n1va

c D sinS n2vb

c D G . ~7!

Here,M is the scattering matrix for the elementary unit ce
n1 andn2 are the refractive indices of layers of thicknessa
andb respectively;d5a1b. Equation~7! is valid strictly for
a periodic structure with an infinite number of layers.
contrast, our approach was developed principally for fin
structures. We note, however, that our model is in comp
agreement with the results of Eq.~7!, provided the structure
is periodic and the number of periods is large. The validity
Eqs.~4, 5! is general because it holds for any kind of layer
structure, periodic or not.

As an example, let us consider the 20-period, quar
wave/half-wave structure already discussed in Ref.@8# @see
Fig. 1#. We construct the transmission functiont(v) and use
the results to calculate the effective index, as given by
~4!. In Fig. 1 we plot the components of the effective ind
of refraction. We note that the real part of the index displa
anomalous dispersion inside the gap. The imaginary com
nent is small and oscillatory in the pass bands; it attains
maximum at the center of each gap, where the transmis
is a minimum, and it is identically zero at each transmiss
resonance, as expected. We will have more to say on
similarities and differences between our effective wave v
tor and Bloch’s vector in a separate publication. Suffice it
say here that the Kramers-Kronig relations for the effect

FIG. 1. Mixed quarter-wave/half-wave 1D PBG,n151, n2

51.42857,N520 periods. Continuous line, transmission spectru
dotted line, imaginary part of the effective index; dashed line, r
part of the effective index. We note that for this layer configurat
the first- and second-order gaps are separated by approximat
factor of 2. In contrast, in a quarter-wave stack the first- a
second-order gaps are separated by a factor of 3.
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index are identically satisfied, as we will see below. That
given the imaginary part of the effective index as Im(neff)

5( 1
2)ln(x21y2), the real part of the effective index is recov

ered.
The validity of the effective index can be demonstrated

direct numerical integration of Maxwell’s equations. A pul
transmitted through a PBG structure ‘‘sees’’ an effective
dex given by the simple approach that we have presen
above~an example is given in Fig. 2 for the same parame
of the layered structure of Fig. 1!. In the calculation, we use
a Gaussian input pulse that is approximately 1 ps in durat
tuned to the first resonance near the first-order band edg
v/v050.591 @see Fig. ~1!#. Pulse length is hundreds o
times longer compared to the length of the structure@8#,
pulse bandwidth is much smaller than band-edge transm
sion resonances so that most of the pulse is transmitted w
out scattering losses of distortions,and the interaction is
linear. In Fig. 2~a!, we plot the Fourier transformuEv(k)u2 of
the incident pump field as a function of the wave vectok
when the peak of the pulse has reached the structure. In
dynamics, four components can be identified. Two cor
spond to free-space propagation, at6k0 , i.e., portions of the
pulse have been transmitted and reflected from the struc
The other two components are transient, and they are cle
visible as long as energy lingers inside the structure.
analysis of the other two components reveals that the lo
tions of the ‘‘center of gravity’’ of the forward moving wave

;
l

y a
d

FIG. 2. Fourier components for pump wave packets at a t
when the peak of the pulse reaches the structure of Fig. 1.~a! For
pump tuned to a low-frequency band edge,v/v050.591; 6k0 are
free-space components associated with the part of the pulse loc
in the free space surrounding the structure;2k8 and k9 are the
carrier wave vectors inside the structure, are transient, and co
spond to the effective wave vectors.~b! Pump is tuned to the high
frequency band edge,v/v050.738. Note that the relative locatio
of the reflected peaks is shifted with respect to the forward-mov
components, and with respect to the reflected components o~a!
above. This comes as a result of anomalous dispersion acros
photonic band gap.
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packetk9 and the backward moving wave packet2k8 are
consistent with the simple effective index calculations.
the same time, we note that the2k8 component is slightly
shifted, indicating the existence of a different dispersion
lation for forward and backward waves.

The wave packets of Fig. 2~a! are quite broad, and thei
widths correspond to a range of wave vectors. Unlike
free-space components at6k0 , the widths of the wave pack
ets at2k8 andk9 are independent of incident pulse width, a
effect that persists in the quasimonochromatic wave regi
We interpret this effect as a consequence of the sudden
finement of the incident wave to a space of widthD, which
excites a range of wave vectors such thatdk>1/D.

In Fig. 3, we depict the effective indices upon transm
sion for a 2-, a 10-, and a 20-period structure, and comp
with the results of the dispersion relation for infinite stru
ture. This figure makes it clear that the effective, dispers
properties of the structures are modified by the numbe
periods, and converge to the infinite-structure results incre
ing the number periods.

It can be shown numerically that the real and imagin
parts of the complex effective index identically satisfy t
Kramers-Kronig~KK ! relations. Starting with the imaginar
part of the effective indexnI(v), @see Fig. 1~a!# which is
proportional to lnAT, we apply the usual KK relations an
obtain the real part of the effective index as follows:

nR~v!2nR~`!5
2

p
PE

0

` v8nI~v8!dv8

~v8!22v2 , ~8!

where nR(`)'(( i 51
N nidi)/(( i 51

N di), where ni and di are
the refractive index and the thickness of thei th layer, respec-
tively. We note that the effective index has asymptotic b
havior at high frequencies. Therefore, beginning with
knowledge of the imaginary part, i.e., the modulus of t
transmission, it is possible to recover the real part of
index for any kind of layered structure by simple applicati
of Eq. ~8!. This equation explicitly shows that the transm
sion coefficientt(v) is a causal function, i.e., its Fourie
transform is identically zero for negative times@19#, and in-
trinsically implies the monotonic growth of the phase as
function of frequency. These results lend further credenc
the validity of the effective index approach.

III. PHASE MATCHING THROUGH EFFECTIVE INDEX
FOR A FINITE PERIODIC STRUCTURE

The effective index approach that we have developed
the preceding sections allows us to define and evalu
phase-matching conditions for parametric interactions in
kind of layered structure in a simple way. We emphasize t
up to this point we have made use of the linear propertie
the structures. In a second-harmonic generation process
posing phase-matching conditions is equivalent to impos
the condition of equal phase velocities for the fields pro
gating inside the structure. That is, we require@17#

n&eff~v1!5n&eff~v2!. ~9!

For afinite, N-periodstructure, the real part of the effectiv
index can also be expressed in terms of the geometrica
t
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rameters of a structure with an infinite number of periods,
Bloch phase in particular@20#, defined asb5KbL. Here,
Kb is the Bloch vector defined in Eq.~7! above, where
k(v)[Kb and L5a1b is the length of the unit cell. The
results in Ref.@8# suggest that the nonlinear interaction
maximized at the resonances near the band edge. We w
like to test the predictions of the effective index model r
garding the existing phase-matching conditions and comp
with the results of Ref.@8#. We tune the pump at a resonan
peak where the transmission is unity and the imaginary p
is zero. According to the results in Ref.@20#, we can write an
explicit analytic expression for the real part of the effecti
index. That is, Eq.~4! becomes

neff5
1

a
tan21@y/x#6

mp

a
5

1

a H 6pm

1tan21F y1 sinNb

x1 sinNb2~x1
21y1

2!sin~N21!b
G J .

~10!

y1 andx1 are the imaginary and real parts of the transmiss
of the elementary cell of the structure, which is repeatedN
times,a5(v/c)D. m is an integer number that is not arb
trary; it is a function of frequency, due to the fact that t
phase shift in transmission between consecutive resona
is p. It can be obtained following the assumption thatm
50 at v50, as before, andf t(v) is a monotonically in-
creasing function. It is also possible to expressm as a func-
tion of the Bloch phase: if we consider that the transmiss
T(b) is a periodic function of periodp/N, and two consecu-
tive resonances correspond toDb5p/N andDm51, then

m5 intFNb

p
1

1

2G . ~11!

Here int is the integer part, with a range of definition of t
tangent function between2p/2 and 1p/2. Therefore, the
phase of the transmitted field in terms of the Bloch phas

f t5tan21@z tan~Nb!cotg~b!#1 intFNb

p
1

1

2Gp, ~12!

FIG. 3. Same refractive indices as Fig. 1, but withN
52,10,20, and an infinite numberN of periods, as indicated by the
arrows. Note the dependence onN of the dispersion around the
band edges. There is a noticeable kink aroundv/v051 due to the
sudden onset of dispersion, which is necessary in this case to
the resonances as depicted in Fig. 1.
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wherez5y1 /x1 . Equation~10! essentially states that know
edge of the properties of the unit cell, the number of perio
and the Bloch phase completely determines the effective
dex of theN-period, finite structure. Equation~12! contains
additional information regarding the location of the res
nances where phase-matching conditions for seco
harmonic generation can be realized. Locating the fun
mental field at the first resonance near the band edge
have

b15
p

N
~N21!. ~13!

Substituting Eq.~13! into Eq. ~12!, we obtain an expressio
for the phase of the fundamental field:

f15 intFNb

p
1

1

2G5p~N21!. ~14!

Now, imposing the phase-matching condition for the seco
harmonic generation process, namely, 2K1(v1)5K(v2), we
obtain

n1~v1!5
f1

a
5n2~v2!5

f2

2a
, ~15!

which leads to

p~N21!5 1
2 tan21@z2 tan~Nb2!cotg~b2!#

1 intFNb2

p
1

1

2G p

2
, ~16!

where the subscript 2 refers to the second-harmonic field.
denote the value of the integer part of the second term on
right-hand side of Eq.~16! asM. Consequently, we have

tan21@z2 tan~Nb2!cotg~b2!#5p~2N222M !. ~17!

As before, the range of the inverse tangent function is sa
fied whenM22N1250. Therefore,

b25
p

N
~2N22!. ~18!

Taken together, Eqs.~13! and ~18! state that the pump field
should be tuned to theN21 transmission resonance, whic
corresponds to the first resonance near the first-order b
edge, and the second harmonic field should be tuned to
2N22 resonance, which corresponds to the second r
nance away from the second-order band edge for the m
half-wave/quarter-wave structure. This phase-matching c
dition that we find using the effective-index approach
identical to the results reported in Ref.@8#, where a system-
atic study was undertaken using short pulses in order to
the optimal conversion efficiency. From Eqs.~13! and ~18!,
we thus arrive at the following simple, phase-matching c
dition:

b2~2v!52b1~v!. ~19!

Equation~19! is not a totally unexpected result. Accord
ing to the formalism we have developed above, the effect
s,
n-

-
d-
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e
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e
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nd
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index approach takes into account effects due to the fi
size of the structure. More importantly, the approach
cludes the influence of all the interfaces that make up
structure, including input and output interfaces, regardles
their geometrical disposition. In this way, we can predict th
for the optimal, phase-matched SHG process in a finite,
riodic structure, the pump field should be tuned to the lo
frequency band edge, where the density of modes is a m
mum, and the second harmonic field should be tuned to
second-transmission resonance near the second-order
edge@8#, precisely as Eqs.~13!, ~18!, and~19! suggest.

In general, we also predict similar behavior at the hig
frequency band edge, and expect that this approach ca
applied to any problem where some kind of phase-match
condition is required for efficient nonlinear frequency co
version, including third-harmonic generation, and in t
more general case of parametric up- and down-convers
which we are currently studying.

To conclude this section, we note that Fig. 1 also dep
the real part of the effective index of refraction, and we no
that the effective-index model accurately predicts that pha
matching conditions are satisfied exactly as predicted by
rect integration of the nonlinear propagation equations in
layered structure@8#.

IV. EXAMPLES OF PHASE MATCHING CALCULATION
IN THE PRESENCE OF MATERIAL DISPERSION

As discussed in Ref.@8#, under phase-matching condition
the enhancement of second-harmonic generation in PBG
attributed to the high density of modes near the band ed
As we saw above, the combination of high density of mod
and exact phase-matching conditions can be achieved
mixed half-quarter wave periodic PBG in such a way that
density of modes is high at both the fundamental and seco
harmonic frequencies. Therefore, the geometry can be u
to tune the fields with respect to the band edge, as in Fig
If considerable material dispersion is present, pha
matching conditions can easily be spoiled and convers
efficiencies will be low even if the density of modes is hig
@8#. Nevertheless, one can still achieve phase matching
manipulating the geometry of the structure, in particul
layer thicknesses, angle of incidence, number of periods,
symmetry properties.

By way of example, we consider a periodic structure co
posed of AlN/SiO2. We consider a range of wavelengths
have SHG in the blue spectral region, i.e., we tune the f
damental field atl150.794mm; the SH field is tuned a
l250.397mm. The dispersive properties of AlN are de
scribed in Ref.@21#. In the selected wavelength range w
may neglect absorption. SiO2 also exhibits dispersion, which
is also taken into account. Phase-matching conditions
second-harmonic generation for a mixed half-quarter st
can then be obtained by choosing a suitable reference w
length, in this case isl050.48mm, and a suitable number o
periods:N514. The fundamental field~FF! is tuned at the
first resonance near the band edge, and the SH field is tu
at the second resonance near the second-order band ed
a manner similar to the depiction in Fig. 1; Fig. 4 shows p
of the spectrum, i.e., the respective transmission resona
peaks for FF and SH as a function of the normalized f
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quencyv/v0 ; Fig. 4 also shows the real part of the effecti
index ~dotted curve! and shows that the phase-matching
quirements imposed by Eq.~9! are satisfied. We note tha
calculation of the density of modes can also easily be acc
plished using the matrix transfer method@20#.

Up to now we have considered periodic structures. If m
terial dispersion is strong, departures from periodicity m
help achieve both phase-matching conditions and the ne
sary high density of states near the band edge. For exam
adding one layer to a periodic structure will make it symm
ric. Phase matching will then occur under a new set of
rameters, which can be summarized as follows:l0
50.445mm; the FF wavelength is tuned tol150.731mm;
and the SH is tuned tol250.3655mm.

As a final example, we briefly consider a 35-period sta
composed of GaAs and AlAs layers. In order to have a n
zero nonlinear quadratic coefficient, it is necessary to us
suitable orientation of the GaAs crystal. This restricts
input angle for the pump field@22# ~we have considered a
incidence angleu0548°!. In this case it is difficult, but not
impossible, to compensate material dispersion with the g
metrical dispersion introduced by layer arrangement. Bu
ing the stack beginning with GaAs/AlAs and ending with
GaAs layer to make it symmetric leads to good pha
matching conditions and high density of modes as befo
provided the pump is tuned near 3mm and the SH is tuned
near 1.5mm. In this case, the fundamental and seco
harmonic fields are once again tuned as in Fig. 1, near t
respective band edges. Figure 5~a! shows a range of value
for the density of modes for first~continuous curve! and
second harmonic~dotted curve! field, and for transverse elec
tric ~TE! polarization as a function of the wavelength. T
vertical bar represents the location of the wavelengths
which phase-matching conditions are satisfied. We note
phase-matching conditions are not exact, but reason
good. On the other hand, we find exact phase-matching
ditions for transverse magnetic~TM! polarization@Fig. 5~b!#
provided we use 27 periods plus one layer, and an in
angle of 51°. Figure 5~b! also shows the density of mode
versus wavelength for FF~continuous curve! and SH~dotted
curve!. As before, the vertical bars represent the waveleng
for which phase-matching conditions are satisfied.

FIG. 4. Effective index~dotted line! superimposed on the trans
mission resonances~continuous line! at v and 2v, for N514 peri-
ods of AlN/SiO2 layers. FF atl150.79mm, and SH atl2

50.397mm.
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V. PHASE OF THE FIELD UPON REFLECTION

In this section we analyze finite-size effects on the refl
tive properties of the structure near the band edge. We b
with the dispersion relationk(v)5(v/c)neff(v). We can cal-
culate the effective dispersion relation for reflected wav
according the matrix transfer formalism, as we did for tran
mitted waves. For the reflected spectrum we can write

r 5AReifr5r x1 ir y . ~20!

We note that the phase accumulated by the reflected w
traveling from left to right~LTR! through the structure can
be written as

f r5tan21~r y /r x!6mp. ~21!

FIG. 5. Mixed quarter-wave/half-wave PBG structure compos
of GaAs/AlAs. FF atl53 mm and SH at 1.5mm. ~a! Spectral
density of modes forN535 periods11 layer of high refractive
index, TE polarization, input angle of 48°.~b! Same as~a!, with
N527 periods11 layer of high refractive index, TM polarization
input angle of 51°.
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The reflected effective index can be obtained as follows:

f r5k0n̂eff~r !D, ~22!

whereneff(r) is the real part of the reflected effective inde
seen by the LTR reflected wave~see Fig. 6!. More care must
be exercised when calculating the dispersion relation for
reflected fields. Using symmetry considerations betw
LTR and RTL~right to left! incident waves, it can be show
that @23,24# r 2(v)52$r 1(v)%* @ t(v)/t* (v)#, where 6
refers to LTR and RTL, respectively. Defining LTR and RT
reflection coefficients in a manner similar to the definition
the transmission coefficient in Sec. II, namely,r 6

5ur ueifr
6

, it follows that

f̃~v!5
f r

1~v!1f r
2~v!

2
5f t~v!6

p

2
j , j 51,3,5 . . . .

~23!

Equation~23! suggests that LTR and RTL phases cannot
related unambiguously, and the solution to Eq.~23! is not
unique. Alternatively, Eq.~23! allows us to define upper an
lower bounds for the average reflected phase. Suffice
say here that, in general, RTL and LTR propagation can
be considered separately, and that ambiguities can be
moved by solving Maxwell’s equations in the time doma
as we do here. In general, the phase and amplitude of
transmission coefficient are the same for LTR and R
propagating waves; the related effective indices will also
indistinguishable for RTL and LTR propagation. This is ge
erally not true for reflected waves. The ambiguity can
extended to the effective index directly from Eq.~23!:

neff~r !5neff~ t !6
p

2k0D
j , j 51,3,5, ~24!

where~t! and~r! refer to the transmitted and reflected field
respectively. Because of the sign ambiguity, we find that i
not possible to verify the Kramers-Kronig relations for t
reflected effective complex index.

Equation ~24! suggests that the ambiguity can only
eliminated in the case of structures of infinite length. W

FIG. 6. Schematic representation of the waves traveling fr
left to right ~LTR! and right to left~RTL! for symmetrical~A! and
periodic ~B! geometry.
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show the convergence properties of the effective indices
Figs. 7, where we plot the index calculated from the aver
phase in Eq.~22! for 20 @Fig. 7~a!# and 200 periods@Fig.
7~b!#. In the limit of large number of periods, there is virtu
ally no difference between RTL and LTR propagation va
ables, regardless of the symmetry properties of the struct

The evidence that indeed forward and backward effec
indices are different can once again be found in the dir
integration of Maxwell equations in the time domain. A
example is given in Fig. 2. The pulse is tuned at the fi
resonance near the low-frequency band edge~see Fig. 1!, and
we plot the Fourier transform of the field. As we mention
in Sec. II, the center of gravity of the wave packets cor
sponding to transient componentsk8 andk9 leads us to con-
clude that forward and backward components indeed pro
gate with different phase velocities. We find that the resu
obtained by direct integration of the equations of moti
generally agree with the effective index calculation, and
conclude that these results come about as a direct co
quence of truncating the structure, and breaking the tran
tional invariance of the system. This point is further emph
sized in Fig. 2~b!. This figure is a pictorial representation o
the Fourier components of an input pulse as in Fig. 2~a!, but
tuned to the first transmission resonance near the h
frequency band edge. Comparison of Figs. 2~a! and 2~b!
clearly shows that the relative location of the center
gravity of the backward-propagating wave vector chan
with respect to the freely propagating components. That
in Figs. 2~a! and 2~b!, the magnitude of the location o
the center of gravity of the reflected wave packet at2k8
is larger at the low-frequency band edge. This behav
is unexpected, but is consistent with the results of the sim
effective index model, which predicts anomalous dispers
across the photonic band gap, and discrepancies betw
forward and backward wave vectors in the case of fin
structures.

FIG. 7. Example of reflected upper~dotted! and lower~dashed!
boundary values, and transmitted~solid! effective index, for the
structure of mixed quarter-wave/half-wave structure,n151, n2

51.42857, for~a! 20 periods, and~b! 200 periods.
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VI. CONCLUSIONS

We have presented results relating to the effects of bou
ary conditions on the dispersive properties of finite multila
ered stacks. In particular, we have developed an effec
index approach specifically for one-dimensional finite str
tures, and have highlighted the concept for the study
phase-matching conditions in parametric nonlinear inter
tions in photonic band-gap materials, although we focu
our attention on second-harmonic generation processes.

The effective-index approach takes into account the
persion introduced by the geometry of the materials we
considering, including input and output interfaces. The nu
ber of interfaces, and the presence of input and ou
boundaries, causes fundamental modifications in the ph
velocity of backward and forward components of the field
a way which is strictly connected to the specific geome
under consideration. The influence of the input and out
interfaces is strongly felt near the band edges, and we h
shown that these effects disappear for structures of infi
length. Our results can only inspire caution when results
tained for structures of infinite length are generalized
structures of finite length, especially without the benefit o
simple verification of propagation effects in real, finite sy
er
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tems. We have also shown that using the effective ind
approach phase matching conditions can be found for alm
any kind of layered structure.

To summarize, the effective index approach provide
unique, simple, and fast method to achieve and optim
phase matching conditions in dispersive media via the ma
transfer method. Normal material dispersion can be ov
come by proper choice of layer thicknesses, angle of in
dence, number of periods, and symmetry properties.

PBG structures offer several other advantages, such
increased density of modes, large field enhancements,
group velocity, and field overlap for the enhanced convers
efficiency relative to phase-matched bulk crystals. These
sults are valid for layered structures with large index co
trast, long grating structures, waveguides having small in
modulation depth, and structures that are not periodic.

Finally, the analogy that is usually drawn between pho
nic and electronic band structure brings us full circle to p
dict the same phenomena described above for electron
finite, solid-state nanostructures. While we cannot pred
with certainty what effects can be expected for electr
waves in matter, the concept is very intriguing and me
further investigation.
tt.
n,

R.

. E

op-
l.

. J.

uc-
@1# E. Yablonovitch, Phys. Rev. Lett.58, 2059~1987!.
@2# J. D. Joannopoulos and P. R. Villeneuve, Nature~London!

386, 143 ~1997!.
@3# C. M. Soukoulis, Phys. Scr.T66, 146 ~1996!.
@4# M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloem

Phys. Rev. Lett.73, 1368~1994!.
@5# M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowde

J. Appl. Phys.76, 2023~1994!.
@6# J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowde

J. Appl. Phys.75, 1896~1994!.
@7# M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D

Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M
Bendickson, J. P. Dowling, and R. P. Leavitt, Phys. Rev. E54,
R1078~1996!.

@8# M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M
Bowden, R. Viswanathan, and J. W. Haus, Phys. Rev. A56,
3166 ~1997!.

@9# M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C.
Bowden, and A. S. Manka, J. Appl. Opt.83, 2377~1998!.

@10# J. C. Knight, T. A. Birkes, P. Russel, J. P. De Sandro, J. O
Soc. Am. A15, 748 ~1998!.

@11# E. Yablonovich, Microwave J.VI , 66 ~1999!.
@12# N. Bloembergen and A. J. Sievers, Appl. Phys. Lett.17, 483
,

,

,

t.

~1970!.
@13# M. J. Steel and C. M. de Sterke, Appl. Opt.35, 3211~1996!.
@14# J. Martorell and R. Corbalan, Opt. Commun.108, 319 ~1994!.
@15# J. Trull, R. Vilaseca, J. Martorell, and R. Corbalan, Opt. Le

20, 1746 ~1995!; J. Martorell, R. Vilaseca, and R. Corbala
Appl. Phys. Lett.70, 702 ~1997!.

@16# D. J. Lovering, G. Fino, C. Simonneau, R. Kuszelewicz,
Azoulay, and J. A. Levenson, Electron. Lett.32, 1782~1997!.

@17# A. Jariv and P. Yen, J. Opt. Soc. Am.67, 438 ~1977!.
@18# J. P. Dowling and C. Bowden, J. Mod. Opt.41, 345 ~1994!.
@19# J. Pankove,Optical Processes in Semiconductors~Dover, NY,

1975!.
@20# J. M. Bendickson, J. P. Dowling, and M. Scalora, Phys. Rev

53, 4107~1996!.
@21# D. Brunner, H. Angere, E. Bustarret, F. Freudenberg, R. H

ler, R. Dimitrov, O. Ambacher, and M. Stutzmann, J. App
Phys.82, 5090~1997!.

@22# C. Simonneau, J. P. Debray, J. C. Harmad, P. Violokavic, D
Lovering, and J.A. Levenson, Opt. Lett.22, 1175~1997!.

@23# L. Poladian, Opt. Lett.22, 1571~1997!.
@24# J. P. Dowling, IEE Proc.-J: Optoelectron.145, 420 ~1998!,

special issue on photonic crystals and photonic microstr
tures.


