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We discuss the linear dispersive properties of finite one-dimensional photonic band-gap structures. We
introduce the concept of a complex effective index for structures of finite length, derived from a generalized
dispersion equation that identically satisfies the Kramers-Kronig relations. We then address the conditions
necessary for optimal, phase-matched, resonant second harmonic generation. The combination of enhanced
density of modes, field localization, and exact phase matching near the band edge conspire to yield conversion
efficiencies orders of magnitude higher than quasi-phase-matched structures of similar lengths. We also discuss
an unusual and interesting effect: counterpropagating waves can simultaneously travel with different phase
velocities, pointing to the existence of two dispersion relations for structures of finite length.
[S1063-651%99)15010-4
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[. INTRODUCTION tions of the potential of these structures have been made in
the microwave regime with the recent development of a PBG
Recently, one-, two-, and three-dimensional periodicmetal substrate for applications to antenna structii#p
structureg1—3] have attracted a great deal of attention in the !N this paper, we first discuss tigenerallinear dispersive

optics community because these structure may hold the k tog)er;[]ies mat cr]lfaratctenze ﬂrtnte 1|D structu(rjes,t_ ar_1dt then
to significant technical advances in the field. The essentiatI udy now they affect resonant noninear quadratic interac-

property of these structures, often referred to as photoni ons of the type first discussed in Ref]. Growing interest

' . fh second-harmonic generatidi®HG) is reflected by the
band-gagor PBQ structures, is the existence of allowed a”dlarge number of recent publications on this tofsee Ref.

forbidden frequency bands and gaps, in analogy to the afg] and references therginThe importance of parametric
lowed and forbidden energy bands and gaps of semicondugnteractions such as SH generation, and frequency up- and
tors. down-conversion in general, is due to the unavailability of
The simplest types of PBGs are one-dimensiofi®), laser radiation at frequencies that are not accessible through
periodic or quasiperiodic multilayer stacks, which will be the more direct processes. SH generation and its enhancement in
focus of our discussion. By way of a brief review, we note periodic structures was first proposed in Réd2]. Introduc-
that significant potential applications for a broad class of 1Ding a periodic modulation in the refractive index, phase-
linear and nonlinear optical devices have recently been promatching conditions for SH generation may be satisfied.
posed. The list of applications include a nonlinear opticalVarious phase-matching schemes have been proposed, such
limiter [4] and a diode[5], photonic band-edge lasé6], as using uniform Bragg gratinfl3], local defect modes
true-time delay lind 7], a high-gain optical parametric am- within the forbidden banfl14—16, and introducing corruga-
plifier for nonlinear frequency conversidB], and, more re- tions in thin-flm waveguides [17]. These cavity-
cently, transparent metal-dielectric sta¢R$. Here, we will  enhancement schemes are based on the use of resonant peaks
not discuss 2D and 3D structures, but point out that, forfor either the pump or the SH field. To our knowledge, op-
example, in two dimensions, photonic crystal fib&PCF3 timal conditions for nonlinear interactions have never been
were recently developefdlQ]. In our view, PCFs represent discussed for structures havingsanall number of periods
the most significant advance in guided-wave structures invith large index discontinuitieswhere it is possible tga)
recent memory because of their unique properties. In 3Dresolve individual transmission resonancés; have a high
PBG applications in the optical regime still remain elusivedensity of modes near the band edge; and, as we will show
due to the difficulties associated with the fabrication orbelow, (c) achieve exact phase matching.
growth of structures with lattice constants only a few hun-  Our present work is motivated mainly by the results dis-
dreds of nanometers in length. However, some demonstraussed in Ref[8]. In that work, it was numerically estab-
lished that SH generation near the band edge of a finite PBG
structure with deep gratings may be enhanced by several

*FAX: +39 06442 40183. orders of magnitude compared to SH generation from a
Electronic address: sibilia@axrma.uniromal.it phased-matched bulk sample of similar length. A scheme for
Electronic address: mscalora@ws.redstone.army.mil doubly resonant second harmonic generation near the band
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edge of a finite, 1D PBG structure was proposed. The pummhere
and the second harmonic fields are tuned at transmission
resonances near their respective band edges, where the den- P =tan Y(y/x)=mm
sity of modes is high, group velocity is low, field localization
and overlap are strong, and, consequently, interaction timeis the total phase accumulated as light propagates through the
are longer. The idea of using band-edge resonances to emedium. The transmissidifw) can be easily calculated us-
hance nonlinear processes results primarily from an interesing the well known matrix transfer methoeb, contains all
ing effect relating to linear pulse propagation: short, picosecthe information relating to the layered structure, such as re-
ond pulses can propagate at speeds much lessahtire  fractive indices, number of layers, and layer thickness. The
speed of light in vacuum, with minimal distortion and scat-integermis uniquely defined assuming(w) is a monotoni-
tering losses through the structdi@. These results strongly cally increasing function, and the condition that=0 asw
suggested at the time that while phase-matching conditions. 0 is satisfied. This is important in order to calculate the
were importantand not well understogda high density of  proper phase of the field as a continuous function and to
modes was necessary in order to enhance conversion eftiefine the true effective index, as we will see below.
ciencies well above the values obtained from phase-matched Beginning with the analogy of propagation in a homoge-
bulk media. That is, the combination of high mode densityneous medium, we can express the total phase associated
and phase matching creates the conditions that are necessajith the transmitted field as
to observe the unusually large conversion efficiencies theo-
retically demonstrated for the first time in RE&]. ®

We therefore set out to understand the phase properties of $1=k(@)D=Ne(@)D, (2
finite multilayer stacks, and for this purpose we introduce the

concept of “complex effective index” for a structure of fi- wherek(w) is the effective wave vector and consequently

Elltze 1|$?.gathHow:veiorx(ee%ar?fssgﬁ:gxgeI?r?:)i(nf(;vg(t)ignr;emne“ is the effective refractive index that we attribute to the
our’a : ro'ach as follt,)ws First, we solve Maxwell's e uationsIayerecj structure whose physical lengttDis
PD X ’ q The presence of gaps in the transmission spectrum, where

by applying boundary conditions in the presence of entry an : = : )
exit interfaces, i.e., all the variables introduced take into ac?he propagation of light is forbidden, suggests that the effec

- tive index of the structure should be complex. In particular,
count the fact that 'Fhe structure has finite Iength_. Second,t e index should have a large imaginary component inside
method presented is general, and not necessarily restricted

eriodic structures. Third, we demonstrate that the complex . 3o to allow for nearly 100% scattering losses, i.e., re-
P L ; R . X € comp ﬁections, and evanescent field modes. Thus we simply recast
effective index derived in this way identically satisfies the

Kramers-Kronid relations. and hence it is causal. Fourth Wéhe transmission function as follows. First, we assume that
g ' ' ' JT=|t|=e ?P. This implies that an incident field of unit

emphasize the importance of the density of modes in tham litude is “attenuated” bv an amourg ?®. where
calculation of the conversion efficiency in nonlinear interac- P . . y ’ Y
=(w/c)n;, andn; is the imaginary component of the index.

tions. To our knowledge, the density of modes has never di his i iteT—e"™T and th
been explicitly invoked simultaneously with phase matching/ \cc0rding to this picture, we writg/ T=e"*" and the com-

conditions, and we note that the complex effective index thaP!€X transmission becomes: e"Te'%t=e'?=x+iy. There-

we introduce is completely determined by the linear properfore.

ties of the structure. Although nonlinear index shifts are al-

ways present in the dynamics, typically they remains three to C _ @y

four orders of magnitude smaller compared to the linear in- Ip=1dt lnﬁ_'( c neﬁD)’ ©

dex modulation of the structure, which, as in R, is of

order unity. The model can be modified to include band-edgevhere we still havep,=tan (y/x)+=mar, as before. Equation

shifts in the case of fiber Bragg gratings, for example, bui3) then becomes:

that is beyond the scope of the current analysis. Finally, we

will also briefly mention an interesting related effect also Aer( @)= (clwD)[ ¢i— (1/2)IN(X*+y?)]. (4

never noted before, to our knowledge. For a structure of

finite length, we show by direct integration of the equationsEquation (4) suggests that at resonance, wh&re x>+ y?

of motion that counterpropagating waves can travel with dif-= 1, the imaginary part of the index is identically zero. Inside

ferent instantaneous phase velocities, pointing to the exishe gap, where the transmission is small, scattering losses are

tence of two dispersion relations, in part predicted by oufexpected to be high, leading to evanescent waves.

effective index model. We can also define the effective index as the ratio be-
tween the speed of light in vacuum and the effective phase

Il. DISPERSION RELATION FOR EINITE PBG velocity of the wave in the medium. We have

We consider 1D, linear PBG materials. We seek an ex- N
plicit dispersion relation for a structure of finite length, and k(w)= Eneﬁ(“’)- ®
we begin by writing the complex transmission coefficient for
the structure: Once the effective index has been defined, Byrepresents

_ the general dispersion relation of the layered structure, with-
t(w)=x(w)+iy(w)= ﬁe“’% (1 out any specific condition of periodicity. It is interesting to
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FIG. 1. Mixed quarter-wave/half-wave 1D PB®;=1, n,
=1.42857N=20 periods. Continuous line, transmission spectrum; 4x10° -
dotted line, imaginary part of the effective index; dashed line, real .
part of the effective index. We note that for this layer configuration 3x10°F K"
the first- and second-order gaps are separated by approximately a “5 o
factor of 2. In contrast, in a quarter-wave stack the first- and e 2x10 :‘-kl
second-order gaps are separated by a factor of 3. - 1x1 06'_
note that from the dispersion equation we can also define a ok /. —_
“group index” in terms of the real part of the effective index -5 0 5
in the usual way: (b) k
dNe( @) FIG. 2. Fourier components for pump wave packets at a time

(6) when the peak of the pulse reaches the structure of Figp) For
pump tuned to a low-frequency band edgéw,=0.591; =k, are

v the di . lati L. ) free-space components associated with the part of the pulse located
Usually, the dispersion relation for periodic structures is oby, the free space surrounding the structurek’ and k” are the

tained by applying periodic boundary conditions to the wavecarrier wave vectors inside the structure, are transient, and corre-
equation for an infinite,periodic structure. According t0  spond to the effective wave vectots) Pump is tuned to the high-
Bloch’s theorem, Eq(5) reduces to cd&(w)d]=1/2T{M], frequency band edgey/ w,=0.738. Note that the relative location

dk
Ng(w)=C5—=Nex(w) + w

dw dw

or of the reflected peaks is shifted with respect to the forward-moving
components, and with respect to the reflected components) of
niwa n,wb above. This comes as a result of anomalous dispersion across the
cogk(w)d]=|co c co c photonic band gap.
n?+n2 [n,ea n,wb index are identically satisfied, as we will see below. That is,
1 My L) ! ! ! HESE
" 2npn, sin SN —¢ (7)  given the imaginary part of the effective index as mhgj

=(3)In(P+y?), the real part of the effective index is recov-
Here,M is the scattering matrix for the elementary unit cell; ered.
n, andn, are the refractive indices of layers of thickness The validity of the effective index can be demonstrated by
andb respectivelyd=a+b. Equation(7) is valid strictly for ~ direct numerical integration of Maxwell's equations. A pulse
a periodic structure with an infinite number of layers. Intransmitted through a PBG structure “sees” an effective in-
contrast, our approach was developed principally for finitedex given by the simple approach that we have presented
structures. We note, however, that our model is in complet@bove(an example is given in Fig. 2 for the same parameter
agreement with the results of E(), provided the structure of the layered structure of Fig,).lin the calculation, we use
is periodic and the number of periods is large. The validity ofa Gaussian input pulse that is approximately 1 ps in duration,
Eqgs.(4, 5 is general because it holds for any kind of layeredtuned to the first resonance near the first-order band edge, at
structure, periodic or not. wl/wy=0.591 [see Fig.(1)]. Pulse length is hundreds of

As an example, let us consider the 20-period, quartertimes longer compared to the length of the struct{8g

wave/half-wave structure already discussed in R&f[see pulse bandwidth is much smaller than band-edge transmis-
Fig. 1]. We construct the transmission functitfw) and use  sion resonances so that most of the pulse is transmitted with-
the results to calculate the effective index, as given by Eqout scattering losses of distortionand the interaction is
(4). In Fig. 1 we plot the components of the effective indexlinear. In Fig. 2a), we plot the Fourier transforf ,(k)|? of
of refraction. We note that the real part of the index displayghe incident pump field as a function of the wave vedtor
anomalous dispersion inside the gap. The imaginary compaoxrhen the peak of the pulse has reached the structure. In the
nent is small and oscillatory in the pass bands; it attains itslynamics, four components can be identified. Two corre-
maximum at the center of each gap, where the transmissiospond to free-space propagation;tat,, i.e., portions of the
is a minimum, and it is identically zero at each transmissiormpulse have been transmitted and reflected from the structure.
resonance, as expected. We will have more to say on th&he other two components are transient, and they are clearly
similarities and differences between our effective wave vecvisible as long as energy lingers inside the structure. An
tor and Bloch’s vector in a separate publication. Suffice it toanalysis of the other two components reveals that the loca-
say here that the Kramers-Kronig relations for the effectivetions of the “center of gravity” of the forward moving wave
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packetk” and the backward moving wave packek’ are  rameters of a structure with an infinite number of periods, the
consistent with the simple effective index calculations. AtBloch phase in particulaf20], defined asB=KzA. Here,
the same time, we note that thek’ component is slightly K is the Bloch vector defined in Ed7) above, where
shifted, indicating the existence of a different dispersion rek(w)=K; and A=a+b is the length of the unit cell. The
lation for forward and backward waves. results in Ref[8] suggest that the nonlinear interaction is
The wave packets of Fig.(@ are quite broad, and their maximized at the resonances near the band edge. We would
widths correspond to a range of wave vectors. Unlike thdike to test the predictions of the effective index model re-
free-space componentsak,, the widths of the wave pack- garding the existing phase-matching conditions and compare
ets at—k’ andk” are independent of incident pulse width, an with the results of Ref.8]. We tune the pump at a resonance
effect that persists in the quasimonochromatic wave regimgeak where the transmission is unity and the imaginary part
We interpret this effect as a consequence of the sudden cors zero. According to the results in Rg20], we can write an
finement of the incident wave to a space of widthwhich  explicit analytic expression for the real part of the effective

excites a range of wave vectors such thk&1/D. index. That is, Eq(4) becomes
In Fig. 3, we depict the effective indices upon transmis-
sion for a 2-, a 10-, and a 20-period structure, and compare 1 mzr 1
with the results of the dispersion relation for infinite struc- Neg=—tan [y/x]=—= —[ *am
ture. This figure makes it clear that the effective, dispersive @ @ @
properties of the structures are modified by the number of y; SinNB
periods, and converge to the infinite-structure results increas- +tan ! .
ing the number periods. X1 sinN,B—(xierf)sin(N—l)ﬂH
It can be shown numerically that the real and imaginary (10)

parts of the complex effective index identically satisfy the
Kramers-Kronig(KK) relations. Starting with the imaginary
part of the effective index,(w), [see Fig. 1a)] which is
proportional to In/T, we apply the usual KK relations and
obtain the real part of the effective index as follows:

y, andx; are the imaginary and real parts of the transmission
of the elementary cell of the structure, which is repeated
times,a=(w/c)D. mis an integer number that is not arbi-
trary; it is a function of frequency, due to the fact that the
2 = o'n(w / phase shift in transmission between consecutive resonances
(o")dw ) : : ;
Nr(w) —Ng(®)= —Pf —_— (8) is m. It can be obtained following the assumption timat
7T (@)~ w =0 at w=0, as before, and(w) is a monotonically in-
N N creasing function. It is also possible to expresas a func-
where ng()~ (2= 1nid)/(Zi-,di), wheren; and d; are  {jon of the Bloch phase: if we consider that the transmission
the refractive index and the thickness of thielayer, respec- T(B) is a periodic function of period/N, and two consecu-

tively. We note that the effective index has asymptotic beyjye resonances correspondA@=7/N andAm=1, then
havior at high frequencies. Therefore, beginning with the

knowledge of the imaginary part, i.e., the modulus of the

transmission, it is possible to recover the real part of the m=int
index for any kind of layered structure by simple application

of Eq. (8). This equation explicitly shows that the transmis-

sion coefficientt(w) is a causal function, i.e., its Fourier Here intis the integer part, with a range of definition of the
transform is identically zero for negative timgk9], and in-  tangent function betweer-7/2 and +#/2. Therefore, the
trinsically implies the monotonic growth of the phase as aphase of the transmitted field in terms of the Bloch phase is
function of frequency. These results lend further credence to

N 1
—+3 (11)

the validity of the effective index approach. , )
¢=tan “[ztanNB)cotg(B)]+int 7+ 5| (12
lIl. PHASE MATCHING THROUGH EFFECTIVE INDEX
FOR A FINITE PERIODIC STRUCTURE 141
The effective index approach that we have developed in ~ 1 3:
the preceding sections allows us to define and evaluate s
phase-matching conditions for parametric interactions in any &
kind of layered structure in a simple way. We emphasize that 1.2
up to this point we have made use of the linear properties of i !
the structures. In a second-harmonic generation process, im- 06 08 10 12 14
posing phase-matching conditions is equivalent to imposing
.\ o . olo
the condition of equal phase velocities for the fields propa-
gating inside the structure. That is, we reqUit&] FIG. 3. Same refractive indices as Fig. 1, but wibh
=2,10,20, and an infinite numbé& of periods, as indicated by the
Ner( 1) =Rer( w5). 9 arrows. Note the dependence bhof the dispersion around the

- . ~ band edges. There is a noticeable kink arouré,=1 due to the
For afinite, N-periodstructure, the real part of the effective sudden onset of dispersion, which is necessary in this case to tune
index can also be expressed in terms of the geometrical pahe resonances as depicted in Fig. 1.
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wherez=y, /x;. Equation(10) essentially states that knowl- index approach takes into account effects due to the finite
edge of the properties of the unit cell, the number of periodssize of the structure. More importantly, the approach in-
and the Bloch phase completely determines the effective ineludes the influence of all the interfaces that make up the
dex of theN-period, finite structure. Equatiofi2) contains structure, including input and output interfaces, regardless of
additional information regarding the location of the reso-their geometrical disposition. In this way, we can predict that
nances where phase-matching conditions for seconder the optimal, phase-matched SHG process in a finite, pe-
harmonic generation can be realized. Locating the fundariodic structure, the pump field should be tuned to the low-
mental field at the first resonance near the band edge, wieequency band edge, where the density of modes is a maxi-
have mum, and the second harmonic field should be tuned to the
second-transmission resonance near the second-order band
edge[8], precisely as Eqq13), (18), and(19) suggest.

In general, we also predict similar behavior at the high-
frequency band edge, and expect that this approach can be
Substituting Eq(13) into Eq. (12), we obtain an expression applied to any problem where some kind of phase-matching

/31=%(N—1)- (13

for the phase of the fundamental field: condition is required for efficient nonlinear frequency con-
N 1 version, including third-harmonic generation, and in the
bi=int| — + =|=m(N—1). (14) more general case of parametric up- and down-conversion,
T 2 which we are currently studying.

) ) ) N To conclude this section, we note that Fig. 1 also depicts
Now, imposing the phase-matching condition for the secondthe real part of the effective index of refraction, and we note
harmonic generation process, nameli,,2w;) =K(wz), We  that the effective-index model accurately predicts that phase-
obtain matching conditions are satisfied exactly as predicted by di-

rect integration of the nonlinear propagation equations in the

Ni(wq)= % =N,y(wy)= j_;, (15) layered structuré8].

which leads to IV. EXAMPLES OF PHASE MATCHING CALCULATION
N 1 IN THE PRESENCE OF MATERIAL DISPERSION
m(N—1)=3tan [z tan(NBz)cotg(S.)]

NG, 1
= 2

As discussed in Ref8], under phase-matching conditions
o (16) the enhancement of second-harmonic generation in PBG’s is
2’ attributed to the high density of modes near the band edges.
As we saw above, the combination of high density of modes
where the subscript 2 refers to the second-harmonic field. Wgnd exact phase-matching conditions can be achieved in a
denote the value of the integer part of the second term on thgiixed half-quarter wave periodic PBG in such a way that the
right-hand side of Eq(16) asM. Consequently, we have  density of modes is high at both the fundamental and second-
1 harmonic frequencies. Therefore, the geometry can be used
tan [z, tan(NBz)cotg(B2) = m(2N—=2-M). (17) {5 yne the fields with respect to the band edge, as in Fig. 1.
As before, the range of the inverse tangent function is satisl-f con&derablg material dlgpersmn IS present, phage-
fied whenM — 2N+ 2=0. Therefore, mqtghmg con_dltlons can ea_sny be qulled and conversion
efficiencies will be low even if the density of modes is high
o [8]. Nevertheless, one can still achieve phase matching by
BzZN(ZN—Z)- (18) manipulating the geometry of the structure, in particular,
layer thicknesses, angle of incidence, number of periods, and

Taken together, Eq€13) and (18) state that the pump field SYMMEtry properties. _ o
should be tuned to th¥— 1 transmission resonance, which ~ BY Way of example, we consider a periodic structure com-

corresponds to the first resonance near the first-order barfPSed of AIN/SIQ. We consider a range of wavelengths to

edge, and the second harmonic field should be tuned to t ve SHG _in the blue spectral region, i.e_., we tune the fun-
amental field at\;=0.794um; the SH field is tuned at

2N—2 resonance, which corresponds to the second resg="" ; ; i
nance away from the second-order band edge for the mixetz=0-397#m. The dispersive properties of AIN are de-
pscribed in Ref[21]. In the selected wavelength range we

half-wave/quarter-wave structure. This phase-matching co \ i L . :
dition that we find using the effective-index approach isMay neglect absorption. Sj@lso exhibits dispersion, which

identical to the results reported in RE], where a system- 1S also taken into account. Phase-matching conditions for

atic study was undertaken using short pulses in order to fing€cond-harmonic generation for a mixed half-quarter stack
the optimal conversion efficiency. From Eq&3) and (18), can then be obtained by choosing a suitable reference wave-

we thus arrive at the following simple, phase-matching conl€ngth, in this case ik =0.48,.m, and a suitable number of
dition: periods:N=14. The fundamental fieldFF) is tuned at the

first resonance near the band edge, and the SH field is tuned
B2(2w)=2p1(w). (19  at the second resonance near the second-order band edge, in
a manner similar to the depiction in Fig. 1; Fig. 4 shows part
Equation(19) is not a totally unexpected result. Accord- of the spectrum, i.e., the respective transmission resonance
ing to the formalism we have developed above, the effectivepeaks for FF and SH as a function of the normalized fre-

+int




4896 M. CENTINI et al. PRE 60

w/o0 2.82 2.86 2.90 2.94 2.98 3.02 3.06 3.10 3.14 3.18
200 600 7‘:‘\H‘UH‘\\‘H\‘W\‘HHHH‘\H‘ H‘HHHH‘HH‘\H‘HH‘HW“\‘\‘H‘HH‘HH‘H\"7« 800
: 12. DOM, ! : DO
SH ] 2 M
] 1.95 N l 1 harmonic
] [ I It 2 harmonic
] e [
— I
7 Q
] o | |
< | | —
11.85 i 40.0
] ol
1 i ‘ !
1.80 20.0 — i |
:: ||l !I| ‘ ) -
/a0 | i ,‘\l I / g ,'“\ A
HIIULI\/‘\‘ /,"\ Iy
FIG. 4. Effective indexdotted ling superimposed on the trans- [ )ﬁ,ﬂ&L/’ \\\,’” \\4\/’;
mission resonancegontinuous ling at w and 2w, for N=14 peri- 00 FrrrrrE e e 0.0
ods of AIN/SIG, layers. FF atA;=0.79um, and SH at)\, ! | | | ! | 1

=0.397um. 144 146 148 150 152 154 156 1.58

Density of modes vs wavelength for TE-polarization

guencyw/ wg; Fig. 4 also shows the real part of the effective

index (dotted curve and shows that the phase-matching re- 200
quirements imposed by E@9) are satisfied. We note that DOM,
calculation of the density of modes can also easily be accom-
plished using the matrix transfer meth@D].

Up to now we have considered periodic structures. If ma- |
terial dispersion is strong, departures from periodicity may
help achieve both phase-matching conditions and the neces-
sary high density of states near the band edge. For example, 19.0 —
adding one layer to a periodic structure will make it symmet-
ric. Phase matching will then occur under a new set of pa-
rameters, which can be summarized as follows ‘
=0.445um; the FF wavelength is tuned 20, =0.731um; h ) I / \ /
and the SH is tuned th,=0.3655um. / y" \/ N\

As a final example, we briefly consider a 35-period stack \___,_/,/
composed of GaAs and AlAs layers. In order to have anon- g0 — ”\““\‘;“\l““r‘ rrprrrrprrrT o 0.0
zero nonlinear quadratic coefficient, it is necessary to use a ‘
suitable orientation of the GaAs crystal. This restricts the
input angle for the pump fielf22] (we have considered an (b)
incidence angled,=48°). In this case it is difficult, but not )
impossible, to compensate material dispersion with the geo- FIG. 5. Mixed quarter-wave/half-wave PBG structure composed
metrical dispersion introduced by layer arrangement. Build®f GaAs/AlAs. FF ath=3 um and SH at 1.5um. (@ Spectral
ing the stack beginning with GaAs/AlAs and ending with a density of modes foN=35 periods-1 layer of high refractive
GaAs layer to make it symmetric leads to good phasei"deX: TE polarization, input angle of 48fb) Same asa), with
matching conditions and high density of modes as before'::ﬂ pelrlodf*srl!ayer of high refractive index, TM polarization,
provided the pump is tuned nearn@dn and the SH is tuned ihput angle of 51°.
near 1.5,u_m. In this case, the fundame_ntal_ and second-_ V. PHASE OF THE EIELD UPON REELECTION
harmonic fields are once again tuned as in Fig. 1, near their
respective band edges. Figur@sshows a range of values In this section we analyze finite-size effects on the reflec-
for the density of modes for firsfcontinuous curveand tive properties of the structure near the band edge. We begin
second harmonidotted curvefield, and for transverse elec- with the dispersion relatiok( ) = (w/c)ngx(w). We can cal-
tric (TE) polarization as a function of the wavelength. The culate the effective dispersion relation for reflected waves
vertical bar represents the location of the wavelengths foaccording the matrix transfer formalism, as we did for trans-
which phase-matching conditions are satisfied. We note thathitted waves. For the reflected spectrum we can write
phase-matching conditions are not exact, but reasonably
good. On the other hand, we find exact phase-matching con- r=Ré€ ¢’r=rx+iry. (20
ditions for transverse magneti&M) polarization[Fig. 5b)]
provided we use 27 periods plus one layer, and an inpuVe note that the phase accumulated by the reflected wave
angle of 51°. Figure M) also shows the density of modes traveling from left to right(LTR) through the structure can
versus wavelength for Ffeontinuous curveand SH(dotted  be written as
curve. As before, the vertical bars represent the wavelengths
for which phase-matching conditions are satisfied. gbr:tan*l(ry/rx)tmw. (22

2.822.86 2.902.94 2.98 3.02 3.06 3.10 3.14 3.18

1 harmonic

—————— 2 harmonic

144 146 148 150 162 154 156 1.58

Density of modes vs wavelength
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c a)
)
o
LTR RTL
1'1'.,1....|.x..|.
0.5 1.0 1.5
/60
1.5
LRT RTL
® b)
FIG. 6. Schematic representation of the waves traveling from
left to right (LTR) and right to left(RTL) for symmetrical(A) and 1.0
periodic(B) geometry. 0 0.5 1.0 1.5 20

olo0
The reflected effective index can be obtained as follows:
FIG. 7. Example of reflected uppétotted and lower(dashed
¢, =kohew(r)D, (22)  boundary values, and transmittésolid) effective index, for the
structure of mixed quarter-wave/half-wave structurg=1, n,
whereng«(r) is the real part of the reflected effective index =1.42857, for(a) 20 periods, andb) 200 periods.
seen by the LTR reflected waysee Fig. 6. More care must
be exercised when calculating the dispersion relation for thgpqy the convergence properties of the effective indices in
reflected fields. Using symmetry considerations betweeligs 7, where we plot the index calculated from the average
LTR and RTLSrlght to Ieft)+|n0|d*ent Wavis, it can be shown phase in Eq(22) for 20 [Fig. 7(@] and 200 period$Fig.
that [23,24 17 ()= —{r"(o)}*[t(w)/t* (»)], where = 7] |n the limit of large number of periods, there is virtu-
refers .to LTR a_nq RTI_., respectlvely: D_eflnlng LTR a}nd_ RTL ally no difference between RTL and LTR propagation vari-
reflection co_efﬂ_ments in a manner similar to the def|n|t|9n Ofables, regardless of the symmetry properties of the structure.
the transmission coefficient in Sec. I, namely,” The evidence that indeed forward and backward effective
=|r|e'?r, it follows that indices are different can once again be found in the direct
integration of Maxwell equations in the time domain. An
~ b, (0)+ ¢, (w) T example is given in Fig. 2. The pulse is tuned at the first
$(w)= - 2 = ‘ﬁt(“’)iﬁj’ j=135.... resonance near the low-frequency band e@ge Fig. 1, and
(23)  we plot the Fourier transform of the field. As we mentioned
in Sec. Il, the center of gravity of the wave packets corre-
Equation(23) suggests that LTR and RTL phases cannot besponding to transient componeiisandk” leads us to con-
related unambiguously, and the solution to E2@) is not  clude that forward and backward components indeed propa-
unique. Alternatively, Eq(23) allows us to define upper and gate with different phase velocities. We find that the results
lower bounds for the average reflected phase. Suffice it tobtained by direct integration of the equations of motion
say here that, in general, RTL and LTR propagation cannofjenerally agree with the effective index calculation, and we
be considered separately, and that ambiguities can be reenclude that these results come about as a direct conse-
moved by solving Maxwell's equations in the time domain, quence of truncating the structure, and breaking the transla-
as we do here. In general, the phase and amplitude of th#onal invariance of the system. This point is further empha-
transmission coefficient are the same for LTR and RTLsized in Fig. 2b). This figure is a pictorial representation of
propagating waves; the related effective indices will also behe Fourier components of an input pulse as in Fig),2but
indistinguishable for RTL and LTR propagation. This is gen-tuned to the first transmission resonance near the high-
erally not true for reflected waves. The ambiguity can befrequency band edge. Comparison of Figéa)2and Zb)
extended to the effective index directly from Eg3): clearly shows that the relative location of the center of
gravity of the backward-propagating wave vector changes
T with respect to the freely propagating components. That is,
neﬁ(r)=neﬁ(t)i2k0Dj, 1=1.35, @4 iy Figs. 4a) and 2b), the magnitude of the location of
the center of gravity of the reflected wave packet-dt’
where(t) and(r) refer to the transmitted and reflected fields, is larger at the low-frequency band edge. This behavior
respectively. Because of the sign ambiguity, we find that it iSs unexpected, but is consistent with the results of the simpler
not possible to verify the Kramers-Kronig relations for the effective index model, which predicts anomalous dispersion
reflected effective complex index. across the photonic band gap, and discrepancies between
Equation (24) suggests that the ambiguity can only be forward and backward wave vectors in the case of finite
eliminated in the case of structures of infinite length. Westructures.
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VI. CONCLUSIONS tems. We have also shown that using the effective index

We have presented results relating to the effects of bouna@pproach phase matching conditions can be found for almost

ary conditions on the dispersive properties of finite muItiIay—anYI_ kind of Iayered ﬁtrucﬁure; ind h id
ered stacks. In particular, we have developed an effective 'O Summarize, the effective index approach provides a

index approach specifically for one-dimensional finite struc-UNidue, simple, and fast method to achieve and optimize

tures, and have highlighted the concept for the study ophase matching conditions in dispersﬁve mgdia via the matrix
phase-matching conditions in parametric nonlinear interact"ansfer method. Normal material dispersion can be over-
tions in photonic band-gap materials, although we focuse§ome by proper choice of layer thicknesses, angle of inci-
our attention on second-harmonic generation processes. dence, number of periods, and symmetry properties.

The effective-index approach takes into account the dis- PBG structures offer several other advantages, such as
persion introduced by the geometry of the materials we arécreased density of modes, large field enhancements, low
considering, including input and output interfaces. The numgroup velocity, and field overlap for the enhanced conversion
ber of interfaces, and the presence of input and outpugfficiency relative to phase-matched bulk crystals. These re-
boundaries, causes fundamental modifications in the phasailts are valid for layered structures with large index con-
velocity of backward and forward components of the field intrast, long grating structures, waveguides having small index
a way which is strictly connected to the specific geometrymodulation depth, and structures that are not periodic.
under consideration. The influence of the input and output Finally, the analogy that is usually drawn between photo-
interfaces is strongly felt near the band edges, and we hawgc and electronic band structure brings us full circle to pre-
shown that these effects disappear for structures of infinitelict the same phenomena described above for electrons in
length. Our results can only inspire caution when results obfinite, solid-state nanostructures. While we cannot predict
tained for structures of infinite length are generalized towith certainty what effects can be expected for electron
structures of finite length, especially without the benefit of awaves in matter, the concept is very intriguing and merits
simple verification of propagation effects in real, finite sys-further investigation.
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