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We analyze scenarios of soliton generation in an ideal fiber for an input that consists of either two in-phase
or out-of-phase solitonlike optical pulses at different frequencies. In both cases the relationship between the
structure of the emerging solitons and the frequency separation of the initial solitons is studied both analyti-
cally and numerically. Depending on the value of the frequency detuning, if the two initial solitons are in phase
(symmetric inpuy, two bound solitons with equal amplitudésreathey, a single soliton, or a pair of solitons,
which have equal amplitudes and exhibit opposite velocities, can be generated. When the two initial solitons
are out-of-phaséantisymmetric input only the last scenario takes place. Also, we calculated the threshold
values of the frequency separation at which the structure of the emerging solitons changes. Moreover, we
demonstrated that two of these critical frequencies correspond to cusplike maxima of the energy density of the
radiative modes. Finally, we show that these analytical results are entirely verified by numerical simulations.
[S1063-651%9901910-9
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[. INTRODUCTION anomalous dispersion it is possible to propadatght soli-
tons[3] while in the region of normal dispersiatark soli-
The idea of using optical solitons as carriers of informa-tons can be excitef#].
tion in high-speed communication systems was first pro- As it is well known, the equation governing the nonlinear
posed in the seminal papers of Hasegawa and Tappprt Pulse evolution in an ideal optical fiber in the anomalous
By taking into account the intrinsic Kerr nonlinearity of dispersion regime is the following NLSE:
silica, they showed that the propagation of optical pulses in )
both the anomalous dispersion regitnegative group veloc- 6’1# a_‘/’
: : : . . —+— +2[y|*y=0. ey
ity) and the normal dispersion regingositive group veloc- "t
ity) is governed by similar types of nonlinear Sctiirmger
equationgNLSE). As it is well known, both of these equa- Here we adopt the notations in the mathematical literature,
tions are completely integrable and their solutions can béhat is, the variablé plays the role of the evolution variable.
found by the inverse scattering transfott8T) [2]. One of  However, we stress that the physical meaning of the variable
the most important characteristics of an equation solvable by/is the normalized distance along the fiberepresents the
the IST is that it possesses solutions which propagate withoutormalized time, and is the normalized complex amplitude
any distortion of their shape, the so-called soliton solutionsof the pulse envelope. The normalized units are
In the case of the NLSE, the mechanism by which these=|B,|Z/2T§ andx=(T—Z/vg)/T,, whereg, is the group-
solitons are formed is well understood: they can be viewedelocity dispersion coefficient,T, is the pulse width
as the outcome of the balanced interplay between the grougd swnw=1.763T), v, is the group velocity, and andT are
velocity dispersion and the nonlinearly induced self-phaséhe physical distance and time, respectivéiywWHM denotes
modulation. More exactly, the robustness of the soliton sofull width at half maximun).
lutions stems from the fact that their wave numbers are sepa- In spite of the fact that a single optical soliton can propa-
rated from those of linear dispersive waves so that there is ngate over very long distances without experiencing any de-
resonant exchange of energy between the nonlinear and lifiermation of its shape, in order to be used as bits of infor-
ear modes. mation in reliable high-speed communication systems one
In the early 1980s, as the fiber optics technology ad-as to create stable propagating trains of well separated soli-
vanced, the experimental verification of the propagation otons. Therefore, it is important to understand the interaction
optical solitons was possible. Thus, in a series of eleganetween adjacent solitons belonging to such a train. This
experiments, it was demonstrated that in the region ofnteraction has mainly two components. The first one is de-
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termined by the nonlinear interaction among solitons whersolved and so the initial scattering data are determiéd

all other perturbations are neglected. To be more specific, weect scattering analysisThese data contain the spectrum of a
stress that the linear superpositionNb$olitons does not lead linear differential operator: the discrete part of the spectrum
to anN-soliton state whose parameters are described simplgietermines the properties of the soliton component of the
by a linear combination of the parameters of the initial soli-solution while the continuous part describes the radiation
tons. Instead, there is a very intricdtonlineaj relationship  field. In the second step, by using the time evolution of the
between the parameters which describe the emergingcattering data, their values at an arbitrary timare ob-
N-soliton state and the parameters of thenitial solitons.  tained. This step is rather trivial as the discrete part of the
The effects of the nonlinear interaction between copropagaispectrum does not change in time while the continuous part
ing solitons in the absence of any perturbative factors haveatisfies a simple linear differential equation. Finally, in the
been thoroughly investigated both analyticdli-9] and nu-  last step, the solutiog(x,t) is reconstructed from the scat-
merically[5,10]. The second component of the nonlinear in-tering data at the time(the inverse scattering transfornin
teraction among solitons in a soliton train is given by thewhat follows, we will describe the steps outlined above. To
influence of various perturbative factors on the parameters dfegin with, let us consider the following two systems of
the propagating solitons. In order to describe this interactionequations:

usually one assumes that the parameters of the solitons

slowly change upon the action of perturbations and so one is f_ UE @)
able to determine their dependence on the propagation dis- ax
tance along the optical fiber. This was performedlib—19
for N=2 solitons and ir{9,10,20 for N=3 solitons. JF
In order to increase the transmission capagiiy rate) of ot =VF, ©)

soliton-based communication systems, channels at different

wavelengths can be used. However, solitons in differentvhere U and V are 2<2 matrices given by the following
channels interact because of the cross-phase modulation afgtmulas:

this can have a deleterious influence on the bit rate of the

transmission line. Therefore, one needs to understand the A —
interaction between overlapped solitons of different frequen- 2 Y
cies. This problem has been addressed only in its limit cases, U= x| (4)
when the frequency detuning is much small&8] or much - o
[

larger[7,8,21—-24 than the spectral width of the solitons. In
the first case the interacting solitons propagate in the same
channel while in the later case they propagate in different 2

channels. — )\___ ilg]2 —ing+ ad

In this paper we analyze the nonlinear interaction between 2i (28
two superimposed solitons with different frequencies when V= g N2 : 5
the frequency detuning is comparable with the soliton fre- —iNgy— x E+i|¢|2

guency width. We discuss the structure of the emerging soli-

tons without taking into account any interaction with exter-

nal perturbative factors. The paper is organized as follows. I is a vector-valued functior is a spectral parameter, and
Sec. Il we give a brief summary of the IST and soliton so-the overbar signifies complex conjugation. In the above for-
lutions of Eqg.(1). Then, in Sec. Ill we present the structure mulas, as well as in the subsequent presentation, we use the
of the emerging solitons from a linear superposition of twonotations in25]. With this choice of the matricdd andV, it
in-phase solitons with different frequenciésymmetric in-  is easy to verify that the compatibility condition for the sys-
put). In Sec. IV, by a similar analysis to that in Sec. Ill, we tems(2) and(3), the so-callegero curvature representatipn
present the structure of the optical field in the case in which

the two solitons are out-of-phagentisymmetric input Fur- U _ a L TU V=0 6
thermore, the critical values of the detuning frequencies at ot ax [U.V]=0, ©)
which the structure of the emerging solitons changes are cal-

culated in Sec. V. Moreover, the results established in this equivalent to the NLSE1). Next, for real values. we
section are used to describe the structure of the emergingtroduce the Jost functiorB.. (x;\) associated with the ei-
optical field which corresponds to the case in which there iggenvalue problent2). These are X2 matrices whose col-
an arbitrary phase difference between the two overlappingmns are the two linearly independent solutions of &Y.
solitons. Finally, in the final section, the results are summaThey have the following asymptotic behavior:

rized and discussed.
To(X;N)—E(X;\),X— *+o0, (7)

Il. INVERSE SCATTERING TRANSFORM where E(x;\)=exp(A\X/2i)03), with o; (i=1,2,3) the
standard X2 Pauli matrices. Because the columns of the

In this section we briefly review the IST method, focusing matrix T_(x;\) are linearly dependent on the columns of the
on its application to the NLSE. This method consists mainlymatrix T, (x;\), one can write

in the following three steps. First, by using the initial condi-
tion (x,0), a spectral problem associated with the NLSE is T_(X;N)=TL(X;N)T(N), (8)
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whereT(\) is the scattering matrix. It is easy to see that the

matrix U(x;\) has the symmetry propertyU(x;)\)
=02U(x,f) o, and, obviously, for reak this symmetry re-
lation extends to the scattering matrif()\)zazT()\)az.
This leads to the general expression for the mafi(x):

a(\)
b(\)

—b(\)

T(N)= g()\) )

€)
wherea(\) and b(\) are the scatteringJos) coefficients
and are given by

a(\)=de(TP06N), TP (60), (10

b(\)=de (TP (x;\), TD(x;\)). (12)

Here, the first and the second columns of the Jost function£+(x’y)

were denoted b M(x;\) andT?(x;\), respectively. One
can prove that, if the initial conditiony(x,0) decreases as-
ymptotically to zero wheix|— <o faster than any power of
thenTO(x;\), T?(x;\), and, consequently, the scattering
coefficienta(\) can be analytically extended in the upper
half of the \-complex plane whileT®)(x;\) and TM(x;\)
can be analytically extended in the lower half of the
N-complex plane.

The soliton solutions of Eq1) are determined by the set
of zeros of a(\): Z={\;,eCla(\;)=0, Im(\;)>0, i
=1,...n}. As Eq.(10) shows, ifA=\; is a zero ofa(\),
the column TM(x;\;) is proportional to the column
T@(x;\;) so that, if one denotes by; the proportionality
coefficient, one can write

TR = HnTOxN). (12)

The zeros ofa(\), together with the complex coefficients
vi, i=1,...n, completely define the soliton part of the
solution of Eq.(1) while the Jost coefficienta(\) andb(\)
with X on the real axis describe the radiative part.

The general solution of Eq1) can be obtained by solving
the Gelfand-Levitan-Marchenk@GLM) equation

o

' (x,5)Q(s+y)ds=0,
(13

I (x,y)+Q(x+y)+ J

X

where the kernel’ | (X,y) is a 2<x2 matrix defined by the
following integral representation of the Jost functions
T(XN):

o

T+(X;A)=E(x;>\)+f IL(xy)E(y;Ndy (14

X

and the 2 matrix ((x) is determined by the spectrum of
the linear differential operator appearing in Ef):
Q) =w(X)o_—w(X)o, (15)

with
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1 (= b(\
w(X)ZEf7 (M)

Here, c;= v; /é()\j) and the dot represents the derivative
with respect tor. Once the kernel, (x,y) is determined
from the GLM equations, the general solution of Ef.can
be found from the following relation:

_ 148
iAX/2 - . |)\-x/2.
xa()\)e d\ > j§:1 cie'M (16)

o3Uo(X)=[I"1(x,X), 03], 17
whereUy(X)=i(¢o, +po_). So, once the scattering data
a(n),b(N),N;,y, i=1,...,n are known, by using Egs.
(13) and (17) one can find the general solution of EQ).
However, we mention that the solution of the GLM equation
(13) can be found in a closed form only if the scattering
coefficientb(\) =0 for A on the real axis.

Similar to the matricedJ(x;\) and T(\), the kernel

has the symmetry property I'.(x,y)
=0, (X,y)o,. Therefore, it can be written as
F-li—l _FlZ

+

T11
I

I‘+: 1_,]_;—2 (18)

Next we discuss the time evolution of the scattering data.
This dynamics can be obtained from E8) and the fact that
the functiony(x,0)—0 for |x|—c0. Without any proof, we
present here only the results. Thus, one can show that the
spectral parametex and the scattering coefficiea(\) do
not change upon propagation while the scattering coefficient
b(\) and the complex coefficientg, i=1, ... n have the
following time dependence:

b(\,t)=b(x,0)e N, (19)

¥ =7 (0)e N (20)

To conclude this section, we introduce the integrals of
motion of the NLSE. As it is known, this equation has an
infinite number of integrals of motion which are in involu-
tion with respect to a certain Poisson structure. From a physi-
cal point of view, the most useful are the number of particle
N, the momentuni, and the Hamiltoniamd. They are given
by the following expressions:

N:F |¢|20|x:2_21 ni—%fc Infa(\)|dn, (21
L= [ay— oy
P—E w(& —51//)dx
n 1 -
=23, né-—[ amaooldr, (22
=1 T) -
I S 2
H_L( L )dx
1

n 1 .
=23, ( mél- §77i3) [ xamanlar, 29
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wherez,=Im\; and ¢ =Re\;. for ImA=0, and
ll. SOLITON GENERATION FROM SYMMETRIC INPUT b(A\)==b(—)\) (29
PULSES

for real \. This implies that the zeros of the scattering coef-
In this section we analyze the structure of the optical fieldficienta(\) are located either on the imaginary axis or they

generated from a linear symmetric superposition of two fU”'appear in pairs at\,—\). Here we mention that a similar
damental solitons with different frequenCieS. Such an initialsituation was encountered in the case of a perturbed NLSE
condition of Eq.(1) can be written as [26,27). However, in that case the zeros of the scattering
_ L ox Ciox coefficients appear in pairs for any arbitrary initial condition
¥(x,0)=seclix)e’™” + seclix)e ' (24 and not only for those with a specific symmetry. Moreover, it
where 2o is the frequency detuning between the two soli-Was proven in28] that th_e structure of a soliton _solutlon of_
tons. The symmetry implied by the initial conditié24), that that perturbed N_LSE Whl_ch corresponds to a pair of zeros is
is, (x,0)=(—x,0), extends to the matrik (x;\), so that preserved even if the solitons propagate under the action of a

it has the additional involution property general perturbation. In the present case this is no longer
true: only perturbations which have the same symmetry as
U(X;N)=—a,U(—X;—\)oy. (25)  the initial condition(24) will preserve the structure of the

zeros of the scattering coefficieaf\).

By taking into account the structure of the linear eigen- Now let us describe the case in which the only zeros of
value problem(2), it is easy to see that the symmet85)  the coefficienta(\) are located at Xy, —\o) With Ag= &
implies that ifF(x;\) is an eigenfunction of Eq2) corre-  +iy, ¢ %>0, andb(\)=0 for any real\. If we denote by
sponding to the eigenvalue theno,;F(—x;\) is an eigen-  (y+,y-) the proportionality coefficients defined by Eq.
function corresponding to the eigenvaluer. Therefore, the (12, one can see that E(6) implies that
discrete eigenvalues of the linear probld®) are located —
symmetrically with respect to the imaginary axis. Further- y+v-=1. (30)

more, by taking into account the asymptotic behairof Moreover, if we take into account the time dependef2®

the Jost functpns, one obtfauns that the eigenfunctions of E%f these coefficients, we see that this relation is satisfied at
(2) corresponding to the eigenvaluesand —\ are related  gny timet, that is, the soliton solution preserves its initial

by the following relationship: symmetry. Furthermore, one can see from E#8) and(16)
— that if we choose the initial values afs such that
TOxN) =0, TR(—x;—0), (26) o
_ y+(0)=vy_(0)=i, (31)
TAx; =N = TH(=Xx;\). (27)

then the initial conditiony(x,0) corresponding to these scat-
Here it was supposed that k>0, that is, it belongs to the tering data is real. This proves that, contrary to one of the
domain of analyticity off ™ andT{?). The above equations, results in[5], real symmetric pulses can generate pairs of
together with Eqs(10) and(11), lead to the conclusion that solitons with nonzero velocity.
the scattering coefficients must have the following symmetry By solving the GLM equatiorf13) which corresponds to
property: a pair of zeros located symmetrically with respect to the
imaginary axis and with coefficientg, ,y_ which satisfy
a(M)=a(—N\) (28 Eq. (31), one obtains the following two-soliton solution:

e'&cosh p(x+2£&t) +ip]+e ¥cosh p(x—2&t) —i¢]
£2coshy(x+ 2&t)coshy(x—2£t) + p?sin&(x+ 2i pt)sin&(x— 2i pt) ’

P(x,1) = Ene?® (32

where the overall phasé(t)=—i(&2— 7°)t+a, a=In]\¢,  responds to the initial conditiof24). In order to do this, we
and tanp= 7/£. This function corresponds to a pair of soli- discretized the interval{L,L) into 2M +1 subintervals of
tons with equal amplitudeg and with equal and opposite equal sizes. Within each such subinterval the funcik(x,0)
velocities £. As mentioned before, it preserves the initial was taken to be constant, while fdx|=L we chose
symmetry during the propagation, that #x,t) = ¢ (—x,t), ¥(x,0)=0. Then, in order to advance the eigenfunctions one
and is real at=0. step, we solved Eq(2) by using a standard exponential
In order to verify these results, we considered as the inipropagator method. Thus, by knowing a solution of &) at
tial condition for the NLSEK21) the real, symmetric superpo- x=—L, by successive iterations one can find it>atL.
sition (24) of two fundamental solitons. Thus, by using a Furthermore, by choosing as the initial value of the solution
numerical algorithm based on the 1$Z9], we determined at x=—L the one given by Eq(7), one can relate the Jost
the spectrum of the linear eigenvalue probl&nwhich cor-  functions atx=—L andx=L. This information allows us to
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(@) soliton with zero velocity can be generated. If the frequency
8 ' ' ' - ' ' ' o is further increasedy’ < o< w3=1.509, again the coeffi-
cienta(\) has two zeros on the imaginary axis so that again
6 a breather emerges. Finally, if3< o, the coefficienta(\)
Al has two zeros situated symmetrically with respect to the
,,,,, imaginary axis so that the emerging solution is the two-
ol )l soliton solution(32). As a final remark related to the discrete
ol e spectrum in the symmetric case, we mention that, as F&). 1
’;_{‘ ol—= | illustrates, for frequencies>1 the velocity of the emerging
solitons isé=w. This result can be understood by noting that
-2t 1 for large values ofw, the nonlinear interaction between the
two superimposed solitons is very weak so that we expect
—4f 1 that the amplitude and velocity of the initial solitons are only
slightly perturbed by their interaction. More exactly, df
-6r 1 >1, the frequency shifté— w| is inversely proportional to
. . . . . . . the square of the soliton width and the frequency detuaning
% 1 2 3 4 5 6 7 8 [1821
o Furthermore, by using the expression of the input pulse
() and the scattering data, we calculated the total enEygpf
10 , , , , , , , the initial pulse, the energy of the emerging solitdag,,
and the energy in the radiative modegy. Obviously, they
or ] must satisfy the relatiok;,= E¢,+ E;54. These energies are
8k . | defined by the following relations:
7r \\\ b %
6f ] Ein= j_w|¢(X.0)|2dX, (33
w5
i Tl "
. EsoI: 221 i (34)
3.
2t 1 (=
Erad:__f Infa(\)[dX, (35)
1k m) -
0 . . s

0 0.5 1 15 2 25 3 3.5 4 and do not change upon propagation. As was pointed out in
o Sec. Il, in the IST theory the above quantities have the mean-
FIG. 1. The discrete spectrum determined by the symmetric inind Of the number of particles, but here we use their physical
put (24) and the energies in the optical field at the outggelt. The interpretation, that is, the energy of the optical field. .The
amplitudes (dotted ling and the velocity¢ (continuous lingofthe ~ dependence om of the total energyE;, and the energy in
generated solitons as a function of the frequency detuairiy) the  the radiative modeg 4 is presented in Fig. (b). One im-

energiesE;, (dashed linpand E o4 (continuous ling versusw. portant fact that this figure illustrates is that the energy of the
radiative mode€,,(w) has two peaks at the threshold fre-

determine the scattering matrix and, implicitly, the scatteringquenciesw?,w3. Consequently, the generated solitons will
coefficientsa(\) andb(\). In order to compute the zeros of be influenced by the radiative field especially when the fre-
the scattering coefficierd(\), we used a standard Newton- quency detuningw is close to these two threshold values.
Raphson method. The numerical values of the parameéters The origin of these two peaks can be understood if we take
andM were increased gradually until the computed values ofnto account the spectrum shown in Figajl Thus, forw

the scattering data converged to an asymptotic value. Then; wjz the scattering coefficierd(\) has one zero on the
by using these scattering data, we calculated the energy cakal axis, that isa(0)=0. Therefore, the integrand in Eq.
ried by the emerging solitons as well as the amount of energy3s) has a logarithmic singularity at these two critical values
carried by the radiative modes. In Figal, the spectrum of  of the frequency detuning.

the linear eigenvalue problei2) for the symmetric initial As a further check of the results presented above, we
condition(24) is presented. As one can see, as the frequencyetermined numerically the solution of the NL$B corre-
detuningw varies, three different kinds of solitons can be sponding to the initial conditior(24), and the results for
generated. First, fon<w$=0.505 the coefficiena(\) has  some specific values of the frequency detuningare pre-
two distinct zeros located on the imaginary axis, so that &ented in Figs. @—2(d). As one can see, ai=0.1 andw
bound state consisting of two solitons with zero velocities=1.4 a breather emerges, at=1.0 one obtains only one
(breathey emerges. Furthermore, far;<w<w3=1.313 the  soliton with zero velocity, while fow=1.525 the emerging
coefficienta(\) has only one zero located on the imaginary solution represents a two-soliton solution with equal ampli-
axis so that for frequencies in this domain only a single tudes and opposite velocities.
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FIG. 2. The amplitude(x,t)| versus the normalized distanteand normalized timex for symmetric initial conditiong24). (a) w
=0.1;(b) w=1.0;(c) w=1.4;(d) ©=1.525.

IV. SOLITON GENERATION FROM ANTISYMMETRIC Tg)(x; —\)= —iozﬂ”(—x;f). (39)
INPUT PULSES

By a similar analysis with the one in the preceding sec-These involution properties show that Edg8) and (29)
tion, in what follows we describe the structure of the opticaldescribe this case too, so that the zeros of the scattering
field generated by an antisymmetric superposition of twacoefficienta(\) are located either on the imaginary axis or

fundamental solitons with different frequencies they appear in pairs am(ff).
_ _ In what follows, we describe the case in whigb\) has
— IwX —lwX —
¢(x,0)=i[sectix)e'”—sectix)e '“"]. (36)  only a pair of zeros atNg,—Ng) With Ng=é+i7, & 7

>0, andb(A)=0 for any real\. One can see that in this
Here, the imaginary unit was introduced only to ensure thatase Eq(38) implies that
the initial condition(x,0) is a real function. As before, the
symmetry propertyy(x,0)= — (—x,0) extends to the ma- — __
trix U(X;\): yey-=-1. (40

U(XN)=—0,U(—X;—\) 0oy, (37)  As before, this relation is satisfied at any timehat is, the
soliton solution preserves its symmetry upon propagation.

This involution property implies that i (x;\) is an eigen-  Furthermore, if we choose the initial values g6 such that
function of Eq.(2) corresponding to the eigenvalae then
UZE(—X;)\) is an eigenfunction corresponding to the eigen- v+(0)=—vy_(0)=1, (41
value —\. Therefore, again the eigenvalues of the syst2m
appear in pairs located symmetrically with respect to thehen the initial conditions corresponding to these scattering
imaginary axis. The asymptotic dependefigeimplies that, data are real.
for ImA>0, the Jost functions must satisfy By solving the GLM equatiorf13) which corresponds to

" = — these scattering data, one obtains the following two-soliton
THN) =10, TP (—x;—N), (38 solution:



4874 N.-C. PANOIUet al. PRE 60

e'¥cost p(x+2£t) +ip]—e ¥cosh p(x—2£t) —i¢]
£2coshy(x+2&t)coshn(x— 2£t) + 72coSE(X+ 2i pt)cosE(x—2int) |

P(x,t)=—iEne®

Such solitons can be excited if one considers as the initialude » would vanish, then the coefficiea{\) would have a
condition of the NLSHE21) pulses with appropriate symmetry. zero in the origin. However, as we will show in the next
In order to illustrate this fact, we determined the spectrum ofection, this would require the area of the input pulse to be
the eigenvalue problerf?) which corresponds to the choice an odd multiple ofr/2, a condition which cannot be satisfied
(36). The structure of this spectrum, as well as the depenby an antisymmetric function. Finally, similar to the sym-
dence of the energids,, andE,,q0n the frequency detuning metric case, the energy in the radiative modigg, has a
, is presented in Figs.(8—-3(b). As Fig. 3a@) illustrates, for ~ maximum atw = {.
frequency detunings< wj=0.369 no soliton is generated,  These results are also verified by the numerical simulation
while for > the emerging solution represents the super-of the propagation of an input pul$86) for various frequen-
position of two solitons that exhibit equal amplitudes andcies w. Thus, as Figs. @—4(b) illustrate, for frequencyw
opposite velocities, that is, a two-soliton solution described=0.25< % no soliton is generated, while fas=0.75>w§
by Eq. (42). Furthermore, one can observe that, unlike thethe emerging solution represents the superposition of two
symmetric case, for antisymmetric input pulses with©§  solitons that exhibit equal amplitudes and opposite veloci-
the emerging soliton has a finite velocity. This fact can beties.
understood as follows: if both the velocityand the ampli-

V. THE NUMBER OF GENERATED SOLITONS

8 ' ' ' ' ' ' ' In what follows we will discuss the relationship between
the structure of the spectra of the eigenvalue prok@nand
the initial area of the optical pulse. A similar discussion of
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FIG. 4. The amplitudeéy(x,t)| versus the normalized distante

FIG. 3. The same as in Fig. 1, but for the antisymmetric inputand normalized time for antisymmetric initial condition$36). (a)
(36). 0=0.25;(b) =0.75.
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some of the results presented here can be fourjl@0r-32.
To begin with, let us consider the systé®) for the particu-
lar valueN =0 and for real functiong/(x,0):

JF, .
X :|I/IF2, (43)
aF,
Wzllﬂ:l. (44)

It is easy to see that the general solution of the sygi#3h
and(44) can be written as

. X . ’
F1 e—'3<X>( le P(x',0e?)dx’ +C,
F2 = !

—iCeSW—F,
(45)
whereC,,C, are arbitrary constants and
S(x) = Jxmw(x’,O)dx’. (46)
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FIG. 5. The discrete spectrum determined by the initial condi-
tion (51). The amplitudes (dotted ling and the velocityé (con-
tinuous ling of the generated solitons as a function of the frequency
detuningw. The phase difference &=2/3.

in excellent agreement with the threshold frequencigs.

Therefore, by taking into account the asymptotic conditionsThe fact that Eq(49) can lead to wrong results is illustrated

(7), one can see that the Jost functi®h)(x;0) is deter-
mined by the choiceC;=i, C,=1. Furthermore, knowing
the expression of the Jost functioR®)(x;0) and the
asymptotic dependencE?)(x;0)— (9), x—=, one can de-
termine from Eq.(10) the scattering coefficiera(0),

a(0)=eiso(ifw P(x',0e7dx +1|, (47

where Sy=S(«) is the initial area of the pulse. A simple
integration by parts in Eq47) leads to the final expression

for a(0):

a(0)=cosSy. (48)

This formula has been used to predict the number of soliton
which are generated from an optical pulse with a certain

by the discrete spectrum shown in Figal Thus, for w3
<w< o3, Eq.(49) predicts that no soliton with zero velocity
can be generated, a conclusion which is obviously wrong.

To conclude this section, we will illustrate how E&0)
can be used to describe the structure of the eigenvalue spec-
trum associated with the following initial condition:

#(x,0)=sechix)e'[*xT (9] 1 seclix) e [«x+ (0],
(51)

This expression represents the superposition of two funda-
mental solitons with different frequencies and phases. The
phase difference between the two solitong.i§he symmet-

ric and antisymmetric initial conditions can be obtained from
gq. (51) by choosingd=0 and 6=, respectively.

The initial area of the optical pulse described by Exi)

initial area. Thus, assuming that only solitons with zero ve'S
locities are generated and that, up to a constant phase, the

initial condition (x,0) is real, it was argued that the number

N of solitons is given by31,32

: (49

TW [

So(w,0)=27 secVE 7) cos( E)'

From Egs.(50) and(52) one can see that ib=0, there are
two critical values of the phase differenag for which

(52

— H 1)
where[ ] is the largest integer smaller than the argument@(0)=0. The two critical values aré(})=2 arccos§) and

However, a more rigorous restatement of E&p) is that in

62)=2 arccosf) and correspond ta=2 andn=1, respec-

order to generate a soliton with zero amplitude and velocitytively. This implies that ato=0, depending on the value of
that is,a(0)=0, the ared, of the initial pulse must satisfy the phase difference, there are two distinct eigenvalues

SO=(2n—l);, (50)

located on the imaginary axis if909< 6}, one if 6)< ¢
<6, and none if6¥)< #<m. Consequently, the eigen-
value spectra in the first and the third case are topologically

similar to the ones presented in Figaland Fig. 3a), re-

wheren is an arbitrary integer. When applied to the symmet-spective|y_ A typical spectrum which corresponds to the sec-

ric case, Eq(50) has the following solutionsw, = 0.506 for

ond case, that i\ < < 6§

o, is presented in Fig. 5 and is

n=2 andw,=1.313 forn=1. We see that these values are obtained forg=2=/3.
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VI. CONCLUSIONS emerging solitons from a superposition of two Gaussian
ulses and the results we obtained were qualitatively similar

In conclusion, we have described the interaction betwee o those presented here, the only difference consisting in the

two overlapping solitons of different frequencies which

propagate in an ideal monomode optical fiber. We analyze@umrical values of the threshold frequencieg, s, w1 .
the physical regime in which the frequency detuning is com- herefore, the results we presented are rather general and not

parable to the soliton spectral width. It has been shown tha{’estricted to a specific form of the two superimposed pulses.

depending on the separation in the initial frequencies, the

structure of the generated solitons can be very rich. Thus,_it ACKNOWLEDGMENTS
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