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Switching of electromagnetic waves by two-layered periodic dielectric structures
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The propagation of electromagnetic waves in two-layered periodic dielectric structures is investigated. The
systematic dependence of the reflection coefficient on the parameters characterizing the structure is studied in
detail. Using results of this exact analysis we investigate the influence of variation of the structure parameters
on the reflection and transmission coefficients. As an example, we consider the changes in the structure
parameters under an elastic stress. We show that under practically realizable conditions the reflection and
transmission of the electromagnetic wave can be changed by as much as 80—90 % by creating a constant elastic
stress inside the structurg51063-651X99)01210-9

PACS numbds): 42.79.Jq, 78.20.Ci

[. INTRODUCTION In this paper we develop an improved analytic formula-
tion for the propagation of two Floquet-Bloch waves inside a
The propagation of waves through media with one-two-layered periodic structure for the general case of plane
dimensional periodicity has long been a topic of interest inwaves incident at an arbitrary angle to the axis of periodicity.
various areas of physics and technology, beginning with th&Ve extract exact analytic expressions for the reflection and
well-known paper of Kronig and Penng¢g]. The literature transmission coefficients for the case of normal angle of in-
on the subject includes several monographs and review&dence in a more simple and physically understandable
[2—7] which are mostly devoted to the development of effec-form. Using a more convenient set of parameters we ob-
tive numerical and approximate analytical methods. They infained exact expressions for allowed and forbidden regions
clude the Floguet-Bloch methofB], the matrix method of frequencies for the structure. As a result we find extremely
[5,9,10, the theory of Kogelnik coupled wavdd1], and high sensitivity of the reflection and transmission of the elec-
some modifications of theory of Coup'ed WaV[QSlZ,lS tromagnetic wave to the structure parametel’s. For eXample,
Recent studies in this area have led to important new analytit SOme cases it is possible to change them by up to 80% by
results for one-dimensional periodic structures with an arbivarying the structure parameters by only 0.1%. As the sim-
trary periodic shape for profile of the dielectric permittivity. Plest possibility for the creation of such variation, we con-
Results have been obtained for the transmission coefficierfider in detail the result of applying a constant elastic stress
[14-16, field distribution [15,16, and group velocity inside the structure. We have identified suitable combina-
[15,16] for electromagnetic waves propagating normally totions of materials for the construction of practical optical
the axis of periodicity through periodic structure. Some ofSWitching devices based on this effect. _
these results can be extended to general one-dimensional in- In the following section, the method of exact analytic so-
homogeneous med[d6]. lution is developed in terms of Floquet-Bloch waves propa-
From a mathematical point of view, layered periodic gating inside the structure. These results are then applied in
structures have a special interest because this is one of tigec. lll to calculate the reflection and transmission coeffi-
few cases[17] where it is possible to find exact analytic cients for the case of normal incidence for the incoming
solutions. However, even for the simplest case of a twoWwaves. In Sec. IV we investigate the influence of a constant
layered periodic structure, previous solutions in terms ofelastic stress on the structure parameters, and as a result on
Floquet-Bloch waves were very complicated and cast in 4he reflection and transmission of electromagnetic waves
form involving several parameters whose physical meaningropagating through the structure. Finally, the conclusions
was not clear. As a result in existing expressions for thei’® summarized in Sec. V.
reflection and transmission coefficients for waves incident on

two—layered periodic structurgs,12] it is diffiqult to follow Il. EXACT ANALYTIC SOLUTION IN TERMS OF
analytically the dependence of thesg cqeﬁluents on th_e struc- FLOQUET-BLOCH WAVES

ture parameters, such as refractive indices of the basic layers

and their widths. The parameters specifying the problem are as shown in

Despite the fact that two-layered periodic structures havéig. 1. We assume a two-layered periodic transpaferith-
been extensively used in different physical applications forout absorptionnonmagnetic 4= 1) medium with refractive
more than 30 years, some new possibilities for their practicaindicesn; and n, and thicknessed; andd, of the layers
use follow from a more thorough theoretical analysis. In resuch that d=d;+d, is the period of the function
cent paperg$18,19 it was suggested that two-layered peri- n(z) [n?(z)=¢(z)], andN is the number of the periods of
odic dielectric structures could be used as a dielectric omnithe structure. Monochromatic plane waves with angular fre-
directional reflector. Such an application does indeed follonquency o and wave vector in vacuurky are assumed to
directly from a thorough analysis of forbidden and allowedpropagate inside the structure in tke plane according to
regions of optical frequencies for the structure. Maxwell's equations
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o 1o FIG. 1. Two-layered periodic dielectric
m L . structure.

0 d; d Nd z

wheref, = \/(kozsl— 6°) is thez component of the wave vec-
tor k in then, layer. Analogously, inside the, layer of the
same period,

5) 1)
V><E=?H, V><H=—i8(z)€E. (1)

The solutions are then independent of the coordigakéow- . N
ever, the total electric fiel&(x,z,t) inside the structure can E122)=By2SiN 01(z—dy) = 30205+ 4 o], (@)
have two independent polarizations. In the first cdsas
perpendicular to the plane of wave propagation, i.e., it isvhered,=(kge,— 6°) is thezcomponent of the wave vec-
directed along the axis, and magnetic fieltl is in thexz  tor k in the n, layer. By direct substitution, it is clear that
plane of propagation. In the second cébés directed along  these functions satisfy E¢B). The coefficientsA; andA; in
they axis andE lies in thexz plane of propagation. formulas(7) can be set equal to uniighey play the role of

In this paper we consider only the first case of polariza-normalization constants for the Floquet-Bloch waveghe
tion. The solutions to EqJ) for the total electric field inside phasesp; , and ¢, , are in general complex. Their introduc-
the structure can then be expressed as the linear superpotipn represents the major point of departure from the usual

tion representation of Floquet-Bloch waves inside each layer as a
superposition of two exponential functiof3,5,9,12.
E(x,z,t)=E(z)[ D, exp(i x)+ D, exp —i6x)] To find the parameters,, ¢4, and B; which define
R Floquet-Bloch waveE;(z) in the first period, we use the
Xexp —iwt)e, (2 conditions of continuity for the functiot,(z) and its de-

rivative (corresponding to the continuity of the magnetic
whereéy is a unit vector along the axis, #=kgn; sina, field) at the pointsz_zdl andz=d;+d,=d and then use the
—kyn, Sina, are projections of the wave vectlronto thex ~ loquet theorem in the forn2,8,20 E;(z) =exp(&)Es(z
axis in the layers with refractive indexes, n,, respec- —d), whlc_:h means that in systems_ with perloc_hq coefficients,
tively, anda, anda, are the angles between the direction of th€ solutions differ by a factor exgj upon shifting by the
wave propagation and ttEaxis in these layers. The function Periodd. As a result we have the system
E(z2) is then determined by the equation

Sin(3 01d;+ @1) =By SiN(— 5 6,0, + 1),

TED | 2oz () —0 3
dz? Lkge(2) = 6°JE(2) =0, @ 0108 5 61d;+ 1) = 6,B1 COL — 5 6,d,+ t7),
()
wheree(z) is a piecewise constant periodic function. Thus exp(i&;)sin(— 3 6,d,+ @) =By sin(3 0,d,+ ¢;),

Eqg. (3) has the form of the Hill equation and according to
Floguet theony2,8] we can represent its general solution as .
a superposition of two traveling Floquet-Bloch waves in the 1 8XP(i61)C08 — 20101+ @1) = 0281 COS 3 0,d,+ ).
form
The second Floquet-Bloch wag,(z) is determined by an
E(z)=C,E4(2)+C,Ex(2), (4) analogous procedure with the parameters :,bl,_gl, B;
replaced byp,, ¥, &, B,. Thus, systeni8) describes both
Floquet-Bloch waves,(z) and E,(z). To emphasize this
point, we may drop the subscripts on the unknown valpies
¢, &, B, and make the following transformations. Divide the
E, o 2)= Flz(Z)eXp( i izz) FiA2)=F,z+d). first equation into the second and the third into the fourth to
' ' d ’ ’ obtain the system of two equations and two unknown param-
(5 eterse, :

where

The quantities¢; , are the so-called characteristic Floquet 0,

indices, related by,=— &, [20]. To find exact analytic ex- tan( o+ 3 6,d;) = H—tar( y—36,d,),

pressions for the Floquet-Bloch wavEg(z) andE,(z), we 2

represent them inside thg layer of the first period as ©

61
tan( ¢ — 3 6,d;) = —tan( ¢+ 5 6,d,).
EyA2)=A1,SIN(6,2— 5 0101+ @1 5), (6) N¢—76,dy) %, N4+ 3 6,d3)
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Before finding the solution of this system, we define thewhere AQ 44 and AQ,., are the widths of oddwith the
following more convenient parameters: centers)=(21+1)m,1=0,1,2 .. .] and even(with the cen-
ters (=2l 1) forbidden regions. Expressiori$4) and (15)
will play an extremely important role in the investigation of
the elastic stress influence on the electromagnetic wave
propagation in Sec. IV. Also we would like to emphasize
that they are exact.

However, our aim now is to express the Floquet-Bloch
wavesE; 4(z) in a more transparent form directly in terms of
the already known parametegs , and i, ,. This cannot be
done from Eq(13) as it stands because the signégfand ¢,

0,— 0, \Kgep— 67— \kge,— 67

a= = ,
02+ 01 \/k%é‘z_ 02+ \/kgsl—ﬁz

Q: 02d2+ Hldl,

(10)
A: 02d2— Gldl,

. sin(3Q)—asin(3A)
sin(l0)+asin(iA)

Then we solve systert®) and express the final solutions for
parameters of Floquet-Bloch wavds (z) and E,(z) in
terms ofa, (), A. We have ifC>0

a lsinQ+asinA

P1=*3 arcco%

2 sin 6,d5) '
(13)
L, —a lsinQ+asinA
1= F 3 arcco 2 s 6,dy)
If C<0, our parameters are defined by
o a lsinQ+asinA
PL2= =2 AICCOST5 G d,) |
(12

—a lsinQ+asinA
2 Sin 6,d;)

Pro=*3 arcco%

remains ambiguous. In order to rectify this, we expréss
and &, directly from the systent8) in terms of parameters
¢©1,Y andg,, i, and then use Eq¢ll) and(12). The final
result is

asin(Q+A)]
asini(Q+A)]|

§10=

i\(cosQ—a?cosA)’—(1—a?)?

cosQ —a? cosA

X arctar|i

(16)

which is equivalent to Eq13) except that the sign af; , is
now determined.

Thus, we have defined all the parametefs, (¢, ¥, and
&>, @5, y) Which determine both Floquet-Bloch waves in
the first period of our structure. The normalization coeffi-
cientsB, andB, in the second layer of the first period can be
expressed in terms af,, ¢4, ande,, i, from any equation
of the systeni{8). Using Floquet's theorem for the two waves

We now return to a discussion of the characteristic Flodin the form E;(z)=exdi&(N—1)]Ei(z—Nd) and E,(2)

quet indicest; , (&,=—&;=¢). The well-known dispersion
equation for thet; ,[3,5,6,9,12 follows from system(8). In
terms ofa, (), andA, the dispersion equation is

2

cos() — COSA.

COSé= 13
¢ 1-a? 1-a? a3

=exdi&(N—1)]Ex(z—Nd), we can obtain final expressions
for them in theNth period of the structure as

Ey(z)=sin{6;[z— (N—1)d]— 3 6,d;+ ¢}

Xexdié(N—1)],
. ) _ (17)
Ex(2)=sin{0;[z—(N—1)d]—36:d;+ @ofexdié(N—1)]

Its analysis allows one to establish the basic properties of

Floguet-Bloch wave$3,5,14. There are two physically dif-

in the layers withn=n,, and

ferent regions of parameters for our structure. In the first, the

&, are real[|cos@)|<1], and the waveE, 5(z) propagate

without attenuation. Such regions are called allowed regions.

In the second, the; , are complex|cosg)|=1], and the

E1(2)=Bysin{6,[z—d;—(N-1)d]

— 30,0+ ¢ texdi & (N—1)],
(18)

E.(z) direct Floquet-Bloch wave is exponentially damped, .
even in the absence of real absorption. Such regions are E2(2)=B;sin{6;[z—d;— (N—1)d]

called forbidden regions. Physically, the accumulated —10,d,+ otexiEx(N—1)]

Fresnel reflection from inhomogeneities of the dielectric per- 2rete 2 2

mittivity £(z) with the periodicity of the structure results in i, the layers withn=n..

an increase of the amplitude of the backward Floquet-Bloch | et ys discuss these expressions. First, it should be noted
wave at the expense of the forward wave, leading to an ingat al| parameters for wave,(z) can be expressed in terms
crease of the reflection coefficient. Using the conditiony¢ parameters foilE,(z) by making the sign replacements
|cos_§)|>1 we can easily find from Eq.13) the widths of E,=—&1, @2=—o1, y=— . Second, all these param-
forbidden regions: eters can be either real or complex. However, using formulas
(11)—(13), we can establish a simple relation.élf , is com-

AQoqq=2 arccopl —2a’ cos(34)], (14 plex, 1, and i , are real, and we can see from E¢57)
and (18) that the wave<€,(z) and E»(z) lie in forbidden
AQye=2 arccofl—2a’sirf(3A)], (15 regions. If & , is real, ¢, , and ¢, , are complex, and the
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wavesE;(z) andE,(z) lie in allowed regions. Thus, we can of polarization(along they or x axis). Taking the amplitude
determine the widths of the forbidden and allowed regionf the incident wave as unity, we can express the total elec-
not only from the dispersion equatigi3), but also from tric field in the regionz<0 as
expressiongl1) and(12) for ¢, , Or ¢y 5.
E(z)=exp(ikgngz) + A expl —ikgngz), (19
Il. REFLECTION AND TRANSMISSION COEFFICIENTS . . L.
FOR THE CASE OF NORMAL INCIDENCE whereA exp(—ikgng2) is the reflected wave, andlis its am-
plitude. In the regiore>Nd the total field is just the trans-

To illustrate the advantage of the present method, we conmitted wave, which can be written in the form
sider the case of electromagnetic waves normally incident
upon a two-layered periodic structure. In particular, we de- E(z)=Bexfd ikgng(z—Nd)], (20
rive the reflection and transmission coefficients for the struc-
ture in an exact analytic form that is very convenient forwhereB is the amplitude. Using continuity conditiof&inc-
subsequent analysis. tion itself plus its derivative for the total field E(2)

Denote the index of refraction of the medium on either=C,E;(z) + C,E,(z) inside the structure, whete,(z) and
side of the structure as,, i.e.,n=nq if z<0, andn=ny, if E,(z) are defined by expressiori$7), (18), with the field
z>Nd. Assume that an electromagnetic wave with wave(19) at the pointz=0 and with the field20) at the pointz
vector in vacuunkg is normally incident upon the two-layer =Nd we obtain a system with four equations and four un-
periodical structure from the region<0. In this case of known coefficientsC,, C,, A, B. Solving it for the coeffi-
normal incidence, light polarization does not play a role anccients A and B and taking into account the relatiods= ¢
the calculations given below are valid for both possible cases: — &, and ¢,= — ¢4, we have the final result

A (1-b)sinQ+a(b+1)sinA—2ayb/(1—a?)(cosQ — cosA)i

—[(1+b)sinQ+a(1—b)sinA]+2\b(1—a?)sin&cot(N&)i | (21)
+2b(1—a?)[sing/sin(N¢) i o

5= —[(1+b)sinQ+a(1—b)sinA]=2\b(1—a?)sin& cot N&)i '

whereb=n3/(nn,), a, Q, A are determined by Eq10),  cients depend on five parametees:b, Q, A, N (¢ is a
and for our case of propagation along thexis, for which ~ function of a, (), andA). Each of them has clear physical
#=0 and as a resuli;d, =kyn;d;, 6,d,=kgn,d,, take the meaning.a characterizes the variation in optical properties

simpler forms from one layer to the nexti.e., the amount of optical
“modulation™). It depends only on the ratio,; /n,, and for
a= N2~M _ ( 1— ﬂ) / (1+ ﬂ) common dielectricgdielectrics with positives) —1<a<1.
Np+ng n; ny b characterizes the Fresnel interaction between an electro-

magnetic wave and the boundaries of the structue,
=kpy(n1dq+n,d,y)d/d=kond is a period-average dimen-
sionless wave vector of the light inside the structute,
=kqy(n,d,—n4d;) is the difference in optical paths of the

Q=Ko(nzdy+n1d;),  A=Kg(nzd,—nady), (23
and¢ (é=¢,) is determined by Eq.16). The upper sign in

formulas (21), (22) corresponds to the case where 272 . .
i ) wave inside each layer, aidlis the number of periods.
asin3(2+A)]=0 and the lower sign corresponds to the case Taking into account the fact that the term §ot(Né) is

whereasin 3(Q+A)]<0. always real, we can express the reflection and transmission
We can see that the reflection and transmission coeftoefficients as

e [(1-b)sinQ+a(b+1)sinA]?>+[4a%b/(1—a?)](cosQ — cosA )?
© [(1+b)sinQ+a(1—b)sinAT2+4b(1—a?)[sin& cot N¢) ]2

(29)

T 4b(1-a®)[sinésin Y(N¢)]?
" [(1+b)sinQ+a(1—b)sinA]2+4b(1—a?)[sin£ cot N&) ]2

(29
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0.4t FIG. 3. Dependence oR(Q) for ng=4, n;=1.5, n,=2.5,

N=10, A=0.
4 M
R

13 regions. Figure @) shows the effect of introducing a differ-
0_8_1 ﬂ ( © ence in optical thickness of the basic layers. Teeanfor-
ot bidden regions appear. With= 7/2, the widths ofevenand

) odd forbidden regions become equifig. 2(c)]. With A
0.47 = [Fig. 2(d)], theoddforbidden regions disappear, leaving
0.2} w w only evenforbidden regions, which now have their maxi-

mum widths. IfA is further increased, the pattern proceeds

N q ( @ in the opposite direction so that when=27 we have re-
0.8% turned to the initial picture corresponding4c=0. The cycle
0.61 then repeats with period =27.

Now we consider the influence éof Fresnel interaction

o4 at the boundaries of the structure. For this we/ix 0 and
0.23 | increasen, until ny=4, corresponding tb=64/15(Fig. 3).
P el L R We can see/compare with Fig. @)] that increasingb

changes the behavior &in the allowed regions, making the

Q amplitude of oscillations higher. However, the behavioRof
FIG. 2. Dependence of R(Q) on A, for ny=2, n,=15, in the forbidden reglons.does not change. '
n,=2.5,N=10.(a) A=0, (b) A= /4, (c) A=/2, (d) A= In order to follow the influence oR of the optical modu-

lation parametern and the number of periodd, we mini-
mize Fresnel interaction at the boundaries by takingl,

It is evident that the reflection and transmission coefficient:?_e” n§=n1n2, and taken; andn, to be 1.5 and 1.6, respec-

do not depend on the sign éf Thus the dispersion equation tively, while keepingN=10 [Fig. 4a)]. We can see that
(13) can be used to fing if the wave amplitudes themselves decrye’asinga caugesgthe widthg of the allowed regions to

are not needed. Note that all our final results are expressed IRcrease, witR tending to zeroR in the forbidden regions is
terms  of () fnd A, rather_ than konad, and 554 diminished, but it remains relatively high compared with
Konydy (2konydi=Q—A, 2konad,=0+A). We consider gy the allowed regions. However, if we increase the num-

that this notation makes more physical sense. It facilitatef)er of periodsN, for example, up tN= 50, keeping all other
comparisons between the exact method used here, and ap- ’ ’ ’

proximate methods [7,12] (Floquet-Bloch formalism,

coupled wave theopyin which Q is considered as the main 1t ()
variable and also allows one to consider some interesting 0.8}
limiting cases of our structuresee Appendix 0.6t
Now we investigate in detail how the general expression
(24) for the reflection coefficient depends on the parameters 041
Q, A, a, b, N. For convenience, we tak® as an indepen- 0.2} jL A/\\
dent variable and study the functiét=R()) with A, a, b,
N as parameters. R 1}
First, we consider the functioR= R({) for different val- o.st ()
ues ofA. Suppose thaa=0.25, b=16/15, andN= 10 (for
exampleny,=2, n,=1.5,n,=2.5). Figure 2a) shows a plot o6t
of the graph ofR(Q)) with A=0, i.e., when the basic layers 0.4}
have equal optical thickness. As can be seen, the behavior of o2}
the curve is quite different in the forbiddehcosg>1) and J
allowed (cos&>1) regions. In the forbidden regionR, is M SRS SRR A SR
almost constant and for givemandb it very nearly reaches Q

unity. In the allowed regions, its dependence(®ris oscil-
latory with increasing amplitude near the boundaries with the FIG. 4. Dependence oR(Q) on N; for n3=n;n,, n;=1.5,
forbidden regions. WitlA =0 there are onlydd forbidden  n,=2.5, A=0. (a) N=10, (b) N=50.
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parameters the same, we can $E&. 4(b)] thatR in the  where S, , are the stresses in the layatg,, p;, are the
forbidden regions almost reaches unity again. Thus, the mostlasto-optic coefficients in these layers, which depend on the
important and physically interesting influence of the numbematerial and directions of the stress and electromagnetic
of periods onR is the following: even though the optical wave propagation.

modulationa may be very small, there are always some nar- From a mathematical point of view, the last case is sim-
row forbidden regions in whicR practically reaches unity if pler for analytical description because tBg, are constant
the number of periods is sufficiently great. inside the basic layers. Let us consider this case in detail.
Suppose we apply compression forces to the boundaries so
that stress appears only along thexis (axis of the period-
icity of the structur@ Then the variations of the structure
parameters are

We consider the problem of an elastic stress influence on
the reflection and transmission of the electromagnetic wave sd T3 d sd
1 1 2

IV. ELASTIC STRESS INFLUENCE ON THE REFLECTION
AND TRANSMISSION

3
propagating in a two-layered periodic dielectric structure in _C(lll) _C(121)d2'
order to demonstrate its possible application for the creation (28)
of a new optical switching system. Different types of such 1 Ts 1 T,
systems are widely used in various optical devices to control onj=— —niplm, on,=— —ngpzﬁ,
and govern laser radiation, as recently reviewed in Refs. 2 C11 2 Ci1

[21,22). The main reason for suggesting optical switch is to (1.2) o .
change the structure parameters so as to Shiftom a for-  Wherec;;” are stress coefficients of the layers wily,, p; >

bidden region of optical frequencies, where the reflectior@® their elasto-optic coefficients, afig is a traction force
coefficient almost reaches unity, to an allowed region, wheréforce per unit aregalong thez axis. According to Eq(26)
the reflection coefficient can be around zero. the changes if) andA are then
As we have in the preceding section, the parameters of the 5 B
two-layered periodic dielectric structure which define the o _ _E E _E
. : L 60 =kg 1 ps | +n.dy 1 P11,
propagation of the electromagnetic wave with fixed wave- 2 C(lll) 2
length are the widths of the basic layersandd, and their (29)
refraction indexes; and n,. Suppose we change each of T n2 T n2
. 3 2 3 1
them by a small amounéd,;, &d,, on;, on, keeping the SA =Kk, n2d26<1—7p2) —nldlw(l— ?p1> .
periodicity. Then the variations i@ andA have the form Ci1 Ciq

Let us demonstrate that even small variatidless than

3
nzdzﬁ
C11

00 =Kko(Nz6d3+ny18d; + 6npdy+ ongdy), 0.1% of the structure parameters may cause a large change
(26) in the reflection coefficient24). As a first example, consider
SA =Ko(Np8dy— N, 8d; + 8nydy— 8n1dy) a two-layered periodic structure consistinghbf 20 periods

of polystyrene f;=1.59, c{¥=0.58<10* N/mn?, p;

. =0.31[12,23) with d;=7.5 um and chlorotellurite glass
under the condition that we neglect second-order terms . _ 2)_ 2 _ :
dn,8d; and 8n,8d,. There are also changesarandb, but tn,=2.00, cfs —4.25¢10° N/mm®, p,=0.09 [24]) with

' d,=5.9 um. Outside the structure there is also polystyrene

they are, respectively, not as big 88 and SA. As a result, (No= . . .
. - . no=1.59). Figure E) represents the reflection coefficient
for a fixed wavelengti\g (ko=27/\g), the reflection and dependence o, We can see that fok=0.6328 xm

transm|sspn poeff|0|ent€24), (25) are aIsp changed. From (He-Ne laser the reflection coefficient almost equals 100%
the analysis in Sec. Ill it follows that in some cases the(no transmission

ngf)eringc((; b(AatvxeAenthgi(Qi 'Aki)) and R(th’Af) ;\(/)hegg(oif | Now suppose we apply constant compression forces to the
et i can be as much as /Y=SU 5. N 1,4 ndaries of the structure so as to create a stress aloag the

o][dgr lt)o fget such a diﬁer(fanﬁe we should hﬁ/ie(the. Valﬁe axis (axis of the periodicity of the structure and the direction
ot 2% belore yarlanons of the structure parame)t_enst_e of the electromagnetic wave propagadionLet T,
forbidden region and); (the value of() after variationgin ——30 N/mn?, then &d,=—0.039 um, &d,=—0.004

the allowed region. pm, 6n;=0.0032, 5n,=0.0003 and the reflection coeffi-

For the real creation of the variation of the structure Paiant is plotted on Fig. ). We can see now that fox,

rameters we can use variations of the elastic stress inside th=e0.6328 um Ris less than 10%, i.e., the reflection is de-

structure. In order to keep the existing periodicity, we havecreased by a factor of 10n fact we have almost full trans-

two possibilities. First, we can modulate the structure by aqnissior). Figure 6 illustrates general dependence of the re-

. . . e _ ; — ? - . - ; .
acoustic wave satlsfymg the Cond't'qé$1_dl’ 2h2 d, flection coefficienR on the applied traction forcg; for this
where\ ; , are acoustic wavelengths in the basic layers. structure

Second, we can apply constant compression forces to the As a second example we consider the structure With

boundaries of our structure. In both cases the variations of 40 periods of fused silica ng=1457, c=7.85
the structure parameters can be described as

X 10" N/mn?, p,;=0.27 [25,23) and flint glass £,
=1.616,c{2=4.61x10* N/mn?, p,=0.256[25]) which is
surrounded by the flint glass itselin{=1.616). Letd;

1
_ __ = 3
01275112, 0Ny 2= 7 M12 PLS12, @27) =5.1 um andd,=4.6 um. Then the reflection coefficient
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FIG. 5. Dependence dR on A\, for ng=1.59, N=20. (a) n,
=1.59,n,=2.0,d;=7.5 um, d,=5.9 um (no stress is applied
(b) n;=1.59+0.0032, n,=2.00+0.0003, d;=7.5-0.039 um,
d,=5.9-0.004 um (stress is applied

FIG. 7. Dependence dR on \q for np=1.616, N=40. (a) n,
=1.457,n,=1.616,d,=5.1 um, d,=4.6 um (no stress is ap-
plied, (b) n,;=1.4570.0004, n,=1.616+0.0008, d,=5.1
—0.005 um, d,=4.6—0.007 um (stress is applied

dependence oRy is plotted in Fig. Ta). We can see again
that R(0.6328 um)=1. If we apply traction forceT;
=—70 N/mnt to the boundary of the structure along the
axis and corresponding forces along iendy axis(in order
to have stress just along theaxis) the variations of the
structural parameters will bedd;=—0.005 um, é&d,
=—0.007 um, 6n,;=0.0004, 5n,=0.0008, and the reflec-
tion coefficientR (0.6328 wm)~0 [Fig. 7(b)], i.e., the situ-
ation is exactly the same as in the previous example. The
application of stress changes the characteristics from no
transmission to nearly full transmission. Figure 8 illustrates .
general dependence of the reflection coefficRmn the ap- We have applied Floquet-Bloch theory to the well-known
plied traction forceT for this structure. problem of the propaga_mo_n o_f eIe_ctromagnetlc waves
From these examples we can see general requirements fFough a two-layered periodic dielectric structure, using an
using a two-layered periodic structure as a basic medium fopXact analytical method. The main idea of this method is to
optical switches. The most important one is to build therépresent the solution for each Floquet-Bloch wave inside

structure from materials with very high elasticity such as, foréach basic layer as a sinusoidal function. This allows us to
example, polymers. determine general expressions for the dependence of the re-

A practical difficulty in achieving this goal will be the flection and transmission coefficients on the structure param-
sensitivity of the transmission and reflection coefficients to®t€rs in a more physically transparent form. Using the results
fluctuations in thickness of the layers due to inhomogeneou8f this analysis we found that small variations of the struc-
growing conditions. This will tend to smear out the sharpturé parameters can lead to large changes in the reflection
features shown in Figs. 5-8. In order to study this effec@and transmission coefficients. In particular, we demonstrated
mathematically, we are currently developing a Green funcihe possibility of changing the reflection and transmission of

tion technique for layered periodic structures. Our aim is to
obtain an exact analytic form which will allow us to study in

a precise way the effect of fluctuations in thickness on the
reflection and transmission coefficients. The results will per-
haps help to identify regions of stability where the coeffi-
cients are not critically sensitive to fluctuations in the struc-
ture parameters. We plan to present the results in the future.

V. CONCLUSION

17 1+

0.8¢ 0.8}

0.6% 0.6%
0.4% 0.4F

0.2

0.27

0 20 40 60 80

100

T (N/mm?) T5 (N/mm?)
FIG. 6. Dependence oR on T3 for ng=1.59, N=20 with
unstressed  parametersn,;=1.59, n,=2.0, d;=7.5 um,

FIG. 8. Dependence oR on T3 for ng=1.616, N=40 with
unstressed parameters;=1.457, n,=1.616, d;=5.1 um,
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the electromagnetic wave propagating in a two-layered periThis is the reflection coefficient from a single layer with
odic structure by up to 90% by the application of a constantefractive indexn; and widthNd;. The result is in accor-
elastic stress inside the structure. By a judicious choice oflance with the well-known fact that any numbers of half-
materials we have found two cases where a practical opticatave layers do not influence reflection or transmission. In

switch based on these properties would be feasible. the case where both basic layers are half-wave lay&rs,
=0 andB=1, i.e., we have full transmission.
APPENDIX (c) Example 3Suppose that the basic layers are quarter-

wave layers, i.e.kon;d;=Kkgn,d,=m/2. Then Q=, A

In order to obtain a better physical understanding of ex-—q and Eq(21) immediately gives the reflection coefficient
pressions(24) and (25) for the reflection and transmission

coefficients we consider some special and limiting cases of N

our structure. A 1-(ny/ny) (A3)
(a) Example 1.Let n;=n,=n. Then a=0 and b 1+(ny/ny)2N’

=n2/n?. Formula (16) gives é&;=¢=—0, and expression

(21) for the amplitude reflection coefficient takes the form ;. agreement with Born and WolB].

2402 (d) Example 4Let us consider the case where=1, i.e.,
(1—ng/n%) 9 : .
A= e - (A1) ng=n.n,. Physically, this case means that general Fresnel
—(1+ng/n)—2(ng/n)cot(NQ)i interaction at the boundaries of the structure has a minimum.

Then Eq.(24) takes the form
This is the reflection coefficient from one layer with refrac- a-24

tive indexn and the widthNd (Q=kgynd).

(b) Example 2Suppose that one basic layer, for example, R— g2 Sin® A+[1/(1—a%)](cos —cosA)? (Ad)
the layer withn=n,, is a half-wave layer, i.ekon,d,=I1, sif Q+(1—a?)[sinécot(N&) ]2
wherel=1,2,3....Then,¢,=—kgn,d; and
(1-nin?) This result illustrates the inte_resting property tRgh,/n,)
A= T -, (A2) =R(n,/n4). Thus the intensity of the reflected wave does
—(1+ng/n7)—2(ng/ny)cot(NKkonydy)i not change under an interchange of the basic layers.
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