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Switching of electromagnetic waves by two-layered periodic dielectric structures

Gregory V. Morozov, Roman Gr. Maev, and G. W. F. Drake
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

~Received 25 January 1999!

The propagation of electromagnetic waves in two-layered periodic dielectric structures is investigated. The
systematic dependence of the reflection coefficient on the parameters characterizing the structure is studied in
detail. Using results of this exact analysis we investigate the influence of variation of the structure parameters
on the reflection and transmission coefficients. As an example, we consider the changes in the structure
parameters under an elastic stress. We show that under practically realizable conditions the reflection and
transmission of the electromagnetic wave can be changed by as much as 80–90 % by creating a constant elastic
stress inside the structure.@S1063-651X~99!01210-6#

PACS number~s!: 42.79.Jq, 78.20.Ci
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I. INTRODUCTION

The propagation of waves through media with on
dimensional periodicity has long been a topic of interest
various areas of physics and technology, beginning with
well-known paper of Kronig and Penney@1#. The literature
on the subject includes several monographs and revi
@2–7# which are mostly devoted to the development of effe
tive numerical and approximate analytical methods. They
clude the Floquet-Bloch method@8#, the matrix method
@5,9,10#, the theory of Kogelnik coupled waves@11#, and
some modifications of theory of coupled waves@7,12,13#.
Recent studies in this area have led to important new ana
results for one-dimensional periodic structures with an a
trary periodic shape for profile of the dielectric permittivit
Results have been obtained for the transmission coeffic
@14–16#, field distribution @15,16#, and group velocity
@15,16# for electromagnetic waves propagating normally
the axis of periodicity through periodic structure. Some
these results can be extended to general one-dimension
homogeneous media@16#.

From a mathematical point of view, layered period
structures have a special interest because this is one o
few cases@17# where it is possible to find exact analyt
solutions. However, even for the simplest case of a tw
layered periodic structure, previous solutions in terms
Floquet-Bloch waves were very complicated and cast i
form involving several parameters whose physical mean
was not clear. As a result in existing expressions for
reflection and transmission coefficients for waves incident
two-layered periodic structures@5,12# it is difficult to follow
analytically the dependence of these coefficients on the st
ture parameters, such as refractive indices of the basic la
and their widths.

Despite the fact that two-layered periodic structures h
been extensively used in different physical applications
more than 30 years, some new possibilities for their pract
use follow from a more thorough theoretical analysis. In
cent papers@18,19# it was suggested that two-layered pe
odic dielectric structures could be used as a dielectric om
directional reflector. Such an application does indeed foll
directly from a thorough analysis of forbidden and allow
regions of optical frequencies for the structure.
PRE 601063-651X/99/60~4!/4860~8!/$15.00
-
n
e

s
-
-

tic
i-

nt

f
in-

the

-
f
a
g
e
n

c-
rs

e
r
al
-

i-

In this paper we develop an improved analytic formu
tion for the propagation of two Floquet-Bloch waves inside
two-layered periodic structure for the general case of pl
waves incident at an arbitrary angle to the axis of periodic
We extract exact analytic expressions for the reflection
transmission coefficients for the case of normal angle of
cidence in a more simple and physically understanda
form. Using a more convenient set of parameters we
tained exact expressions for allowed and forbidden regi
of frequencies for the structure. As a result we find extrem
high sensitivity of the reflection and transmission of the el
tromagnetic wave to the structure parameters. For exam
in some cases it is possible to change them by up to 80%
varying the structure parameters by only 0.1%. As the s
plest possibility for the creation of such variation, we co
sider in detail the result of applying a constant elastic str
inside the structure. We have identified suitable combi
tions of materials for the construction of practical optic
switching devices based on this effect.

In the following section, the method of exact analytic s
lution is developed in terms of Floquet-Bloch waves prop
gating inside the structure. These results are then applie
Sec. III to calculate the reflection and transmission coe
cients for the case of normal incidence for the incomi
waves. In Sec. IV we investigate the influence of a const
elastic stress on the structure parameters, and as a resu
the reflection and transmission of electromagnetic wa
propagating through the structure. Finally, the conclusio
are summarized in Sec. V.

II. EXACT ANALYTIC SOLUTION IN TERMS OF
FLOQUET-BLOCH WAVES

The parameters specifying the problem are as shown
Fig. 1. We assume a two-layered periodic transparent~with-
out absorption! nonmagnetic (m51) medium with refractive
indicesn1 and n2 and thicknessesd1 and d2 of the layers
such that d5d11d2 is the period of the function
n(z) @n2(z)5«(z)#, andN is the number of the periods o
the structure. Monochromatic plane waves with angular f
quencyv and wave vector in vacuumk0 are assumed to
propagate inside the structure in thexz plane according to
Maxwell’s equations
4860 © 1999 The American Physical Society
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FIG. 1. Two-layered periodic dielectric
structure.
i

za

po

o
n

us
to
as
he

e

-

-
t

-
ual
as a

tic

ts,

e
to
m-
“3E5
iv

c
H, “3H52 i«~z!

v

c
E. ~1!

The solutions are then independent of the coordinatey. How-
ever, the total electric fieldE(x,z,t) inside the structure can
have two independent polarizations. In the first case,E is
perpendicular to the plane of wave propagation, i.e., it
directed along they axis, and magnetic fieldH is in thexz
plane of propagation. In the second caseH is directed along
the y axis andE lies in thexz plane of propagation.

In this paper we consider only the first case of polari
tion. The solutions to Eq.~1! for the total electric field inside
the structure can then be expressed as the linear super
tion

E~x,z,t !5E~z!@D1 exp~ iux!1D2 exp~2 iux!#

3exp~2 ivt !êy , ~2!

where êy is a unit vector along they axis, u5k0n1 sina1
5k0n2 sina2 are projections of the wave vectork onto thex
axis in the layers with refractive indexesn1 , n2, respec-
tively, anda1 anda2 are the angles between the direction
wave propagation and thez axis in these layers. The functio
E(z) is then determined by the equation

d2E~z!

dz2
1@k0

2«~z!2u2#E~z!50, ~3!

where«(z) is a piecewise constant periodic function. Th
Eq. ~3! has the form of the Hill equation and according
Floquet theory@2,8# we can represent its general solution
a superposition of two traveling Floquet-Bloch waves in t
form

E~z!5C1E1~z!1C2E2~z!, ~4!

where

E1,2~z!5F1,2~z!expS i
j1,2

d
zD , F1,2~z!5F1,2~z1d!.

~5!

The quantitiesj1,2 are the so-called characteristic Floqu
indices, related byj252j1 @20#. To find exact analytic ex-
pressions for the Floquet-Bloch wavesE1(z) andE2(z), we
represent them inside then1 layer of the first period as

E1,2~z!5A1,2sin~u1z2 1
2 u1d11w1,2!, ~6!
s

-

si-

f

t

whereu15A(k0
2«12u2) is thez component of the wave vec

tor k in then1 layer. Analogously, inside then2 layer of the
same period,

E1,2~z!5B1,2sin@u1~z2d1!2 1
2 u2d21c1,2#, ~7!

whereu25A(k0
2«22u2) is thez component of the wave vec

tor k in the n2 layer. By direct substitution, it is clear tha
these functions satisfy Eq.~3!. The coefficientsA1 andA2 in
formulas~7! can be set equal to unity~they play the role of
normalization constants for the Floquet-Bloch waves!. The
phasesw1,2 andc1,2 are in general complex. Their introduc
tion represents the major point of departure from the us
representation of Floquet-Bloch waves inside each layer
superposition of two exponential functions@3,5,9,12#.

To find the parametersw1 , c1, and B1 which define
Floquet-Bloch waveE1(z) in the first period, we use the
conditions of continuity for the functionE1(z) and its de-
rivative ~corresponding to the continuity of the magne
field! at the pointsz5d1 andz5d11d2[d and then use the
Floquet theorem in the form@2,8,20# E1(z)5exp(ij1)E1(z
2d), which means that in systems with periodic coefficien
the solutions differ by a factor exp(ij) upon shifting by the
periodd. As a result we have the system

sin~ 1
2 u1d11w1!5B1 sin~2 1

2 u2d21c1!,

u1 cos~ 1
2 u1d11w1!5u2B1 cos~2 1

2 u2d21c1!,

~8!

exp~ i j1!sin~2 1
2 u1d11w1!5B1 sin~ 1

2 u2d21c1!,

u1 exp~ i j1!cos~2 1
2 u1d11w1!5u2B1 cos~ 1

2 u2d21c1!.

The second Floquet-Bloch waveE2(z) is determined by an
analogous procedure with the parametersw1 , c1 , j1 , B1
replaced byw2 , c2 , j2 , B2. Thus, system~8! describes both
Floquet-Bloch wavesE1(z) and E2(z). To emphasize this
point, we may drop the subscripts on the unknown valuesw,
c, j, B, and make the following transformations. Divide th
first equation into the second and the third into the fourth
obtain the system of two equations and two unknown para
etersw, c:

tan~w1 1
2 u1d1!5

u1

u2
tan~c2 1

2 u2d2!,

~9!

tan~w2 1
2 u1d1!5

u1

u2
tan~c1 1

2 u2d2!.



he

r

lo

th

n

d
a

te
er
n
oc
in

on

of
ave
ze

ch
of

in
fi-
e

s

s

oted
s
ts
-
las

4862 PRE 60GREGORY V. MOROZOV, ROMAN GR. MAEV, AND G. W. F. DRAKE
Before finding the solution of this system, we define t
following more convenient parameters:

a5
u22u1

u21u1
5

Ak0
2«22u22Ak0

2«12u2

Ak0
2«22u21Ak0

2«12u2
,

V5u2d21u1d1 ,
~10!

D5u2d22u1d1 ,

C5
sin~ 1

2 V!2a sin~ 1
2 D!

sin~ 1
2 V!1a sin~ 1

2 D!
.

Then we solve system~9! and express the final solutions fo
parameters of Floquet-Bloch wavesE1(z) and E2(z) in
terms ofa, V, D. We have ifC.0

w1,256 1
2 arccosFa21 sinV1a sinD

2 sin~u2d2! G ,
~11!

c1,257 1
2 arccosF2a21 sinV1a sinD

2 sin~u1d1! G .
If C,0, our parameters are defined by

w1,256 1
2 arccosFa21 sinV1a sinD

2 sin~u2d2! G ,
~12!

c1,256 1
2 arccosF2a21 sinV1a sinD

2 sin~u1d1! G .
We now return to a discussion of the characteristic F

quet indicesj1,2 (j252j1[j). The well-known dispersion
equation for thej1,2 @3,5,6,9,12# follows from system~8!. In
terms ofa, V, andD, the dispersion equation is

cosj5
1

12a2
cosV2

a2

12a2
cosD. ~13!

Its analysis allows one to establish the basic properties
Floquet-Bloch waves@3,5,12#. There are two physically dif-
ferent regions of parameters for our structure. In the first,
j1,2 are real@ ucos(j)u<1#, and the wavesE1,2(z) propagate
without attenuation. Such regions are called allowed regio
In the second, thej1,2 are complex@ ucos(j)u>1#, and the
E1(z) direct Floquet-Bloch wave is exponentially dampe
even in the absence of real absorption. Such regions
called forbidden regions. Physically, the accumula
Fresnel reflection from inhomogeneities of the dielectric p
mittivity «(z) with the periodicity of the structure results i
an increase of the amplitude of the backward Floquet-Bl
wave at the expense of the forward wave, leading to an
crease of the reflection coefficient. Using the conditi
ucos(j)u>1 we can easily find from Eq.~13! the widths of
forbidden regions:

DVodd52 arccos@122a2 cos2~ 1
2 D!#, ~14!

DVeven52 arccos@122a2 sin2~ 1
2 D!#, ~15!
-

of

e

s.

,
re
d
-

h
-

where DVodd and DVeven are the widths of odd@with the
centersV5(2l 11)p,l 50,1,2, . . . # and even~with the cen-
ters V52lp) forbidden regions. Expressions~14! and ~15!
will play an extremely important role in the investigation
the elastic stress influence on the electromagnetic w
propagation in Sec. IV. Also we would like to emphasi
that they are exact.

However, our aim now is to express the Floquet-Blo
wavesE1,2(z) in a more transparent form directly in terms
the already known parametersw1,2 andc1,2. This cannot be
done from Eq.~13! as it stands because the sign ofj1 andj2
remains ambiguous. In order to rectify this, we expressj1
and j2 directly from the system~8! in terms of parameters
w1 ,c1 andw2 ,c2, and then use Eqs.~11! and~12!. The final
result is

j1,256
a sin@ 1

2 ~V1D!#

ua sin@ 1
2 ~V1D!#u

3arctanF iA~cosV2a2 cosD!22~12a2!2

cosV2a2 cosD
G ,

~16!

which is equivalent to Eq.~13! except that the sign ofj1,2 is
now determined.

Thus, we have defined all the parameters (j1 , w1 , c1 and
j2 , w2 , c2) which determine both Floquet-Bloch waves
the first period of our structure. The normalization coef
cientsB1 andB2 in the second layer of the first period can b
expressed in terms ofw1 , c1, andw2 , c2 from any equation
of the system~8!. Using Floquet’s theorem for the two wave
in the form E1(z)5exp@ij1(N21)#E1(z2Nd) and E2(z)
5exp@ij2(N21)#E2(z2Nd), we can obtain final expression
for them in theNth period of the structure as

E1~z!5sin$u1@z2~N21!d#2 1
2 u1d11w1%

3exp@ i j1~N21!#,
~17!

E2~z!5sin$u1@z2~N21!d#2 1
2 u1d11w2%exp@ i j2~N21!#

in the layers withn5n1, and

E1~z!5B1 sin$u2@z2d12~N21!d#

2 1
2 u2d21c1%exp@ i j1~N21!#,

~18!
E2~z!5B2 sin$u2@z2d12~N21!d#

2 1
2 u2d21c2%exp@ i j2~N21!#

in the layers withn5n2.
Let us discuss these expressions. First, it should be n

that all parameters for waveE2(z) can be expressed in term
of parameters forE1(z) by making the sign replacemen
j252j1 , w252w1 , c252c1. Second, all these param
eters can be either real or complex. However, using formu
~11!–~13!, we can establish a simple relation. Ifj1,2 is com-
plex, w1,2 and c1,2 are real, and we can see from Eqs.~17!
and ~18! that the wavesE1(z) and E2(z) lie in forbidden
regions. If j1,2 is real, w1,2 and c1,2 are complex, and the
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wavesE1(z) andE2(z) lie in allowed regions. Thus, we ca
determine the widths of the forbidden and allowed regio
not only from the dispersion equation~13!, but also from
expressions~11! and ~12! for w1,2 or c1,2.

III. REFLECTION AND TRANSMISSION COEFFICIENTS
FOR THE CASE OF NORMAL INCIDENCE

To illustrate the advantage of the present method, we c
sider the case of electromagnetic waves normally incid
upon a two-layered periodic structure. In particular, we
rive the reflection and transmission coefficients for the str
ture in an exact analytic form that is very convenient
subsequent analysis.

Denote the index of refraction of the medium on eith
side of the structure asn0, i.e., n5n0 if z,0, andn5n0, if
z.Nd. Assume that an electromagnetic wave with wa
vector in vacuumk0 is normally incident upon the two-laye
periodical structure from the regionz,0. In this case of
normal incidence, light polarization does not play a role a
the calculations given below are valid for both possible ca
re

s

e

s

n-
nt
-
-

r

r

e

d
s

of polarization~along they or x axis!. Taking the amplitude
of the incident wave as unity, we can express the total e
tric field in the regionz,0 as

E~z!5exp~ ik0n0z!1A exp~2 ik0n0z!, ~19!

whereA exp(2ik0n0z) is the reflected wave, andA is its am-
plitude. In the regionz.Nd the total field is just the trans
mitted wave, which can be written in the form

E~z!5B exp@ ik0n0~z2Nd!#, ~20!

whereB is the amplitude. Using continuity conditions~func-
tion itself plus its derivative! for the total field E(z)
5C1E1(z)1C2E2(z) inside the structure, whereE1(z) and
E2(z) are defined by expressions~17!, ~18!, with the field
~19! at the pointz50 and with the field~20! at the pointz
5Nd we obtain a system with four equations and four u
known coefficientsC1 , C2 , A, B. Solving it for the coeffi-
cientsA and B and taking into account the relationsj1[j
52j2 andw252w1, we have the final result
A5
~12b!sinV1a~b11!sinD22aAb/~12a2!~cosV2cosD!i

2@~11b!sinV1a~12b!sinD#62Ab~12a2!sinj cot~Nj!i
, ~21!

B5
62Ab~12a2!@sinj/sin~Nj!# i

2@~11b!sinV1a~12b!sinD#62Ab~12a2!sinj cot~Nj!i
, ~22!
l
es
l

tro-

-

e

sion
whereb5n0
2/(n1n2), a, V, D are determined by Eq.~10!,

and for our case of propagation along thez axis, for which
u50 and as a resultu1d15k0n1d1 , u2d25k0n2d2, take the
simpler forms

a5
n22n1

n21n1
5S 12

n1

n2
D Y S 11

n1

n2
D ,

V5k0~n2d21n1d1!, D5k0~n2d22n1d1!, ~23!

andj (j[j1) is determined by Eq.~16!. The upper sign in
formulas ~21!, ~22! corresponds to the case whe

a sin@ 1
2(V1D)#>0 and the lower sign corresponds to the ca

whereasin@ 1
2(V1D)#,0.

We can see that the reflection and transmission co
e

ffi

cients depend on five parameters:a, b, V, D, N (j is a
function of a, V, andD). Each of them has clear physica
meaning.a characterizes the variation in optical properti
from one layer to the next~i.e., the amount of optica
‘‘modulation’’ !. It depends only on the ration1 /n2, and for
common dielectrics~dielectrics with positive«)21,a,1.
b characterizes the Fresnel interaction between an elec
magnetic wave and the boundaries of the structure,V
5k0(n1d11n2d2)d/d5k0nd is a period-average dimen
sionless wave vector of the light inside the structure,D
5k0(n2d22n1d1) is the difference in optical paths of th
wave inside each layer, andN is the number of periods.

Taking into account the fact that the term sinj cot(Nj) is
always real, we can express the reflection and transmis
coefficients as
R5
@~12b!sinV1a~b11!sinD#21@4a2b/~12a2!#~cosV2cosD!2

@~11b!sinV1a~12b!sinD#214b~12a2!@sinj cot~Nj!#2
, ~24!

T5
4b~12a2!@sinj sin21~Nj!#2

@~11b!sinV1a~12b!sinD#214b~12a2!@sinj cot~Nj!#2
. ~25!
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It is evident that the reflection and transmission coefficie
do not depend on the sign ofj. Thus the dispersion equatio
~13! can be used to findj if the wave amplitudes themselve
are not needed. Note that all our final results are expresse
terms of V and D, rather than k0n2d2 and
k0n1d1 (2k0n1d15V2D, 2k0n2d25V1D). We consider
that this notation makes more physical sense. It facilita
comparisons between the exact method used here, and
proximate methods @7,12# ~Floquet-Bloch formalism,
coupled wave theory! in which V is considered as the mai
variable and also allows one to consider some interes
limiting cases of our structure~see Appendix!.

Now we investigate in detail how the general express
~24! for the reflection coefficient depends on the parame
V, D, a, b, N. For convenience, we takeV as an indepen-
dent variable and study the functionR5R(V) with D, a, b,
N as parameters.

First, we consider the functionR5R(V) for different val-
ues ofD. Suppose thata50.25, b516/15, andN510 ~for
example,n052, n151.5, n252.5). Figure 2~a! shows a plot
of the graph ofR(V) with D50, i.e., when the basic layer
have equal optical thickness. As can be seen, the behavi
the curve is quite different in the forbidden (ucosju.1) and
allowed (ucosju.1) regions. In the forbidden regions,R is
almost constant and for givena andb it very nearly reaches
unity. In the allowed regions, its dependence onV is oscil-
latory with increasing amplitude near the boundaries with
forbidden regions. WithD50 there are onlyodd forbidden

FIG. 2. Dependence of R(V) on D, for n052, n151.5,
n252.5, N510. ~a! D50, ~b! D5p/4, ~c! D5p/2, ~d! D5p.
s

in

s
ap-

g

n
rs

of

e

regions. Figure 2~b! shows the effect of introducing a differ
ence in optical thickness of the basic layers. Thenevenfor-
bidden regions appear. WithD5p/2, the widths ofevenand
odd forbidden regions become equal@Fig. 2~c!#. With D
5p @Fig. 2~d!#, theodd forbidden regions disappear, leavin
only even forbidden regions, which now have their max
mum widths. IfD is further increased, the pattern procee
in the opposite direction so that whenD52p we have re-
turned to the initial picture corresponding toD50. The cycle
then repeats with periodD52p.

Now we consider the influence onR of Fresnel interaction
at the boundaries of the structure. For this we fixD50 and
increasen0 until n054, corresponding tob564/15~Fig. 3!.
We can see@compare with Fig. 2~a!# that increasingb
changes the behavior ofR in the allowed regions, making th
amplitude of oscillations higher. However, the behavior oR
in the forbidden regions does not change.

In order to follow the influence onR of the optical modu-
lation parametera and the number of periodsN, we mini-
mize Fresnel interaction at the boundaries by takingb51,
i.e., n0

25n1n2, and taken1 andn2 to be 1.5 and 1.6, respec
tively, while keepingN510 @Fig. 4~a!#. We can see tha
decreasinga causes the widths of the allowed regions
increase, withR tending to zero.R in the forbidden regions is
also diminished, but it remains relatively high compared w
R in the allowed regions. However, if we increase the nu
ber of periodsN, for example, up toN550, keeping all other

FIG. 3. Dependence ofR(V) for n054, n151.5, n252.5,
N510, D50.

FIG. 4. Dependence ofR(V) on N; for n0
25n1n2 , n151.5,

n252.5, D50. ~a! N510, ~b! N550.
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parameters the same, we can see@Fig. 4~b!# that R in the
forbidden regions almost reaches unity again. Thus, the m
important and physically interesting influence of the num
of periods onR is the following: even though the optica
modulationa may be very small, there are always some n
row forbidden regions in whichR practically reaches unity if
the number of periods is sufficiently great.

IV. ELASTIC STRESS INFLUENCE ON THE REFLECTION
AND TRANSMISSION

We consider the problem of an elastic stress influence
the reflection and transmission of the electromagnetic w
propagating in a two-layered periodic dielectric structure
order to demonstrate its possible application for the crea
of a new optical switching system. Different types of su
systems are widely used in various optical devices to con
and govern laser radiation, as recently reviewed in R
@21,22#. The main reason for suggesting optical switch is
change the structure parameters so as to shiftV from a for-
bidden region of optical frequencies, where the reflect
coefficient almost reaches unity, to an allowed region, wh
the reflection coefficient can be around zero.

As we have in the preceding section, the parameters o
two-layered periodic dielectric structure which define t
propagation of the electromagnetic wave with fixed wa
length are the widths of the basic layersd1 andd2 and their
refraction indexesn1 and n2. Suppose we change each
them by a small amountdd1 , dd2 , dn1 , dn2 keeping the
periodicity. Then the variations inV andD have the form

dV5k0~n2dd21n1dd11dn2d21dn1d1!,
~26!

dD5k0~n2dd22n1dd11dn2d22dn1d1!

under the condition that we neglect second-order te
dn1dd1 anddn2dd2. There are also changes ina andb, but
they are, respectively, not as big asdV anddD. As a result,
for a fixed wavelengthl0 (k052p/l0), the reflection and
transmission coefficients~24!, ~25! are also changed. From
the analysis in Sec. III it follows that in some cases t
difference between theR(V i ,D i) andR(V f ,D f) whereV f
5V i1dV, D f5D i1dD can be as much as 70–90 %.
order to get such a difference we should haveV i ~the value
of V before variations of the structure parameters! in the
forbidden region andV f ~the value ofV after variations! in
the allowed region.

For the real creation of the variation of the structure p
rameters we can use variations of the elastic stress insid
structure. In order to keep the existing periodicity, we ha
two possibilities. First, we can modulate the structure by
acoustic wave satisfying the conditions1

2 l15d1 , 1
2 l25d2,

wherel1,2 are acoustic wavelengths in the basic layersn1,2.
Second, we can apply constant compression forces to
boundaries of our structure. In both cases the variation
the structure parameters can be described as

dd1,25S1,2d1,2, dn1,252
1

2
n1,2

3p1,2S1,2, ~27!
st
r

-

n
e

n

ol
s.

n
e

he

-

s

e

-
the
e
n

he
of

where S1,2 are the stresses in the layersn1,2, p1,2 are the
elasto-optic coefficients in these layers, which depend on
material and directions of the stress and electromagn
wave propagation.

From a mathematical point of view, the last case is si
pler for analytical description because theS1,2 are constant
inside the basic layers. Let us consider this case in de
Suppose we apply compression forces to the boundarie
that stress appears only along thez axis ~axis of the period-
icity of the structure!. Then the variations of the structur
parameters are

dd15
T3

c11
(1)

d1 , dd25
T3

c11
(2)

d2 ,

~28!

dn152
1

2
n1

3p1

T3

c11
(1)

, dn252
1

2
n2

3p2

T3

c11
(2)

,

wherec11
(1,2) are stress coefficients of the layers withn1,2, p1,2

are their elasto-optic coefficients, andT3 is a traction force
~force per unit area! along thez axis. According to Eq.~26!
the changes inV andD are then

dV5k0Fn2d2

T3

c11
(2) S 12

n2
2

2
p2D 1n1d1

T3

c11
(1) S 12

n1
2

2
p1D G ,

~29!

dD5k0Fn2d2

T3

c11
(2) S 12

n2
2

2
p2D 2n1d1

T3

c11
(1) S 12

n1
2

2
p1D G .

Let us demonstrate that even small variations~less than
0.1%! of the structure parameters may cause a large cha
in the reflection coefficient~24!. As a first example, conside
a two-layered periodic structure consisting ofN520 periods
of polystyrene (n151.59, c11

(1)50.583104 N/mm2, p1

50.31 @12,23#! with d157.5 mm and chlorotellurite glass
(n252.00, c11

(2)54.253104 N/mm 2, p250.09 @24#! with
d255.9 mm. Outside the structure there is also polystyre
(n051.59). Figure 5~a! represents the reflection coefficie
dependence onl0. We can see that forl050.6328 mm
~He-Ne laser! the reflection coefficient almost equals 100
~no transmission!.

Now suppose we apply constant compression forces to
boundaries of the structure so as to create a stress alongz
axis ~axis of the periodicity of the structure and the directi
of the electromagnetic wave propagation!. Let T3
5230 N/mm2, then dd1520.039 mm, dd2520.004
mm, dn150.0032, dn250.0003 and the reflection coeffi
cient is plotted on Fig. 5~b!. We can see now that forl0
50.6328 mm R is less than 10%, i.e., the reflection is d
creased by a factor of 10~in fact we have almost full trans
mission!. Figure 6 illustrates general dependence of the
flection coefficientR on the applied traction forceT3 for this
structure.

As a second example we consider the structure withN
540 periods of fused silica (n151.457, c11

(1)57.85
3104 N/mm2, p150.27 @25,23#! and flint glass (n2

51.616,c11
(2)54.613104 N/mm2, p250.256@25#! which is

surrounded by the flint glass itself (n051.616). Let d1
55.1 mm andd254.6 mm. Then the reflection coefficien
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dependence onl0 is plotted in Fig. 7~a!. We can see again
that R(0.6328 mm)'1. If we apply traction forceT3
5270 N/mm2 to the boundary of the structure along thez
axis and corresponding forces along thex andy axis~in order
to have stress just along thez axis! the variations of the
structural parameters will bedd1520.005 mm, dd2
520.007 mm, dn150.0004,dn250.0008, and the reflec
tion coefficientR (0.6328 mm)'0 @Fig. 7~b!#, i.e., the situ-
ation is exactly the same as in the previous example.
application of stress changes the characteristics from
transmission to nearly full transmission. Figure 8 illustra
general dependence of the reflection coefficientR on the ap-
plied traction forceT3 for this structure.

From these examples we can see general requiremen
using a two-layered periodic structure as a basic medium
optical switches. The most important one is to build t
structure from materials with very high elasticity such as,
example, polymers.

A practical difficulty in achieving this goal will be the
sensitivity of the transmission and reflection coefficients
fluctuations in thickness of the layers due to inhomogene
growing conditions. This will tend to smear out the sha
features shown in Figs. 5–8. In order to study this eff
mathematically, we are currently developing a Green fu

FIG. 5. Dependence ofR on l0 for n051.59, N520. ~a! n1

51.59, n252.0, d157.5 mm, d255.9 mm ~no stress is applied!,
~b! n151.5910.0032, n252.0010.0003, d157.520.039 mm,
d255.920.004 mm ~stress is applied!.

FIG. 6. Dependence ofR on T3 for n051.59, N520 with
unstressed parametersn151.59, n252.0, d157.5 mm,
d255.9 mm.
e
o

s

for
or

r
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s
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tion technique for layered periodic structures. Our aim is
obtain an exact analytic form which will allow us to study
a precise way the effect of fluctuations in thickness on
reflection and transmission coefficients. The results will p
haps help to identify regions of stability where the coef
cients are not critically sensitive to fluctuations in the stru
ture parameters. We plan to present the results in the fut

V. CONCLUSION

We have applied Floquet-Bloch theory to the well-know
problem of the propagation of electromagnetic wav
through a two-layered periodic dielectric structure, using
exact analytical method. The main idea of this method is
represent the solution for each Floquet-Bloch wave ins
each basic layer as a sinusoidal function. This allows us
determine general expressions for the dependence of th
flection and transmission coefficients on the structure par
eters in a more physically transparent form. Using the res
of this analysis we found that small variations of the stru
ture parameters can lead to large changes in the reflec
and transmission coefficients. In particular, we demonstra
the possibility of changing the reflection and transmission

FIG. 7. Dependence ofR on l0 for n051.616, N540. ~a! n1

51.457, n251.616, d155.1 mm, d254.6 mm ~no stress is ap-
plied!, ~b! n151.45710.0004, n251.61610.0008, d155.1
20.005 mm, d254.620.007 mm ~stress is applied!.

FIG. 8. Dependence ofR on T3 for n051.616, N540 with
unstressed parametersn151.457, n251.616, d155.1 mm,
d254.6 mm.



er
an

tic

ex
n
s

c-

le

th

lf-
In
,

er-

t

nel
um.

es

PRE 60 4867SWITCHING OF ELECTROMAGNETIC WAVES BY TWO- . . .
the electromagnetic wave propagating in a two-layered p
odic structure by up to 90% by the application of a const
elastic stress inside the structure. By a judicious choice
materials we have found two cases where a practical op
switch based on these properties would be feasible.

APPENDIX

In order to obtain a better physical understanding of
pressions~24! and ~25! for the reflection and transmissio
coefficients we consider some special and limiting case
our structure.

(a) Example 1. Let n15n2[n. Then a50 and b
5n0

2/n2. Formula ~16! gives j1[j52V, and expression
~21! for the amplitude reflection coefficient takes the form

A5
~12n0

2/n2!

2~11n0
2/n2!22~n0 /n!cot~NV!i

. ~A1!

This is the reflection coefficient from one layer with refra
tive indexn and the widthNd (V5k0nd).

(b) Example 2.Suppose that one basic layer, for examp
the layer withn5n2, is a half-wave layer, i.e.,k0n2d25 lp,
wherel 51,2,3, . . . . Then,j152k0n1d1 and

A5
~12n0

2/n1
2!

2~11n0
2/n1

2!22~n0 /n1!cot~Nk0n1d1!i
. ~A2!
e

-

i-
t

of
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of

,

This is the reflection coefficient from a single layer wi
refractive indexn1 and widthNd1. The result is in accor-
dance with the well-known fact that any numbers of ha
wave layers do not influence reflection or transmission.
the case where both basic layers are half-wave layersA
50 andB51, i.e., we have full transmission.

(c) Example 3.Suppose that the basic layers are quart
wave layers, i.e.,k0n1d15k0n2d25p/2. Then V5p, D
50, and Eq.~21! immediately gives the reflection coefficien

A5
12~n1 /n2!2N

11~n1 /n2!2N
, ~A3!

in agreement with Born and Wolf@9#.
(d) Example 4.Let us consider the case whereb51, i.e.,

n0
25n1n2. Physically, this case means that general Fres

interaction at the boundaries of the structure has a minim
Then Eq.~24! takes the form

R5a2
sin2 D1@1/~12a2!#~cosV2cosD!2

sin2 V1~12a2!@sinj cot~Nj!#2
. ~A4!

This result illustrates the interesting property thatR(n1 /n2)
5R(n2 /n1). Thus the intensity of the reflected wave do
not change under an interchange of the basic layers.
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